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Molecular marker data collected from natural populations allows information on genetic
relationships to be established without referencing an exact pedigree. Numerous methods have
been developed to exploit the marker data. These fall into two main categories: method of
moment estimators and likelihood estimators. Method of moment estimators are essentially
unbiased, but utilise weighting schemes that are only optimal if the analysed pair is unrelated.
Thus, they differ in their efficiency at estimating parameters for different relationship categories.
Likelihood estimators show smaller mean squared errors but are much more biased. Both types
of estimator have been used in variance component analysis to estimate heritability. All marker-
based heritability estimators require that adequate levels of the true relationship be present in
the population of interest and that adequate amounts of informative marker data are available.
I review the different approaches to relationship estimation, with particular attention to
optimizing the use of this relationship information in subsequent variance component
estimation.
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1. INTRODUCTION
Molecular marker data have been used in many areas

of population biology and genetics, and are now

finding an increasing role in the study of organisms

in their natural environment. The marker data

collected provides information on population struc-

ture, relatedness and inbreeding (Dobson et al. 1998;
Surridge et al. 1999); all used in studies of, for

example, mating systems (Avise 1994), paternities

(Meagher 1986; Marshall et al. 1998) and isolation

by distance (Barburjani 1987). In more recent times,

more elaborate uses of molecular marker data have

been exploited in the study of natural populations,

with a study by Slate et al. (2002) combining

sophisticated statistical methodology and an exten-

sive bank of molecular markers to attempt to

estimate quantitative trait loci (QTL) in wild red

deer.

Over the last decade there has also been an

increasing interest in using marker-based relationship

information to enable the estimation of the phenotypic

components of variance for a quantitative trait in

populations of unknown pedigree. Knowledge of such

variance components is important in both evolutionary

and conservation studies. In evolutionary studies, they

are important in the understanding of short-term

evolution patterns, the reconstruction of historical
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patterns of natural selection, the prediction of genetic
responses to selection and the study of clinical variation
(Coyne & Beecham 1987). In conservation studies,
estimates provide information on the number of
individuals required in order to maintain a viable
population and, thus, are required for the management
of captive populations (Storfer 1996; Eding & Meu-
wissen 2001). Loss of genetic variation is a restricting
factor in a species’ ability to respond to natural
selection and hence a limitation on its potential to
evolve (Falconer & MacKay 1996; Lande & Shannon
1996). Maintaining variation is therefore critical for
maintenance of species within a changing environment.

Several methodologies allowing molecular marker
data to be combined with phenotypic information to
estimate heritability have been developed (Ritland
1996b; Mousseau et al. 1998; Thomas & Hill 2000).
Their properties have been explored through simu-
lation, showing that, provided certain population
criteria are met, tolerably accurate heritability esti-
mates can be obtained. However, examples of their
use in studying actual populations have been less
convincing (Thomas et al. 2002; Wilson et al. 2003).
The most fundamental problems with these methods
are (i) how to make most efficient use of the
molecular marker data to estimate relationship
information and (ii) how to best account for the
inherent uncertainty in this information in variance
component analysis. It is the purpose of this review to
discuss the different approaches to relationship
estimation, with particular attention to optimizing
its use in variance component (heritability)
estimation.
q 2005 The Royal Society



Table 1. Classification of the method-of-moment estimators of relationship.
(Note that the short codes defined for each pair are derived from the first member presented and are used for convenience rather
than to indicate any inherent advantage of one estimator over another. The references given indicate the most comprehensive
description of the estimator.)

correlation regression

estimators of r
pattern SI_c: similarity index

(Lynch 1988; Li et al. 1993)
SI_r: (appendix Aa)

allele specific—no weights QG_c: unweighted estimator (eqn (6)
in Ritland (1996) or eqn (10) in
Lynch & Ritland (1999))

QG_r: Queller & Goodnight
(Queller & Goodnight 1989)

allele specific—weighted R2_c: ‘two-gene’ correlation
(Robertson & Hill 1984;
Ritland 1996)

R2_r: (appendix Ab)

estimators of F and D

pattern JW_c: Wang
(Wang 2002)

JW_r: (appendix Ac)

allele and pattern specific—weighted R4_c: ‘four-gene’ correlation
(Ritland 1996)

R4_r: regression
(Lynch & Ritland 1999)
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2. ESTIMATING RELATIONSHIP INFORMATION
(a) Relationship coefficients

The most complete method of describing the genetic
relationship between a pair of individuals uses the
condensed coefficients of identity (Jacquard 1974).
These describe nine possible patterns of alleles
identical by descent that can be observed within, as
well as between, two diploid individuals. In large
random-mating populations allelic identity within
individuals is effectively zero and so only two of the
identities are required: the probability that a pair share
two alleles identical by descent (D) and the probability
they share one (F; Lynch & Ritland 1999). These are
combined to calculate the coefficients of co-ancestry
(q) and relatedness (r):

r Z 2qZf=2CD: (2.1)

The coefficient of co-ancestry describes the probability
that two alleles, one randomly sampled from each
individual, are identical by descent (Jacquard 1974). In
an out-bred population the coefficients take on specific
values for particular relationships (e.g. FZ1 and DZ0
for parent–offspring pairs, FZ0.5 and DZ0.25 for full-
siblings, FZ0.5 and DZ0 for half-siblings and FZ0
and DZ0 for unrelated pairs). In the context of
variance component estimation the most useful
relationship parameters are D and r, because these are
used to partition the genetic variance (sG

2 ) into the
additive (sA

2) and dominance (sD
2 ) components, with

s2GZ rs2ACDs2D (Falconer & MacKay 1996; Lynch &
Walsh 1998).

Two different approaches have been used to estimate
the coefficients of a relationship frommolecular marker
data: (i) method of moments (MOM; e.g. Queller &
Goodnight 1989) and (ii) maximum likelihood (ML;
Thompson 1975; Milligan 2003). Conceptually, both
work by partitioning the proportion of alleles within a
pair that are identical in state into the proportion
occurring due to chance and the proportion occurring
due to a particular relationship. Unfortunately, indi-
vidual parameter estimates are extremely noisy when
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taken on a pair by pair basis so that any joint analysis
with quantitative trait data must include many pairs
before it becomes useful (Ritland 1996a). In addition,
the inherent uncertainty in the estimated relationship
should be accounted for in the analysis of variance
components in order to minimize subsequent error as
well as bias. Since the two approaches to relationship
estimation deal with the marker data in a fundamen-
tally different manner, alternative approaches to
variance component estimation have been developed
for each.
(b) Method of moment relatedness estimators

Numerous MOM methods have been developed for
estimating relationship coefficients from co-dominant
marker loci data (Blouin 2003). These are divided into
two groups: ‘correlation’ estimators, which regard the
genetic similarity between the individuals jointly, and
‘regression’ estimators, which compare the genotype of
one individual against that of another. These terms
were adopted by Lynch & Ritland (1999) and are used
to convey the concept that correlation estimators yield
a single value for the relationship while the regression
estimators can yield different results, depending on
which individual is used as a reference. Most published
estimators have fallen into the correlation category,
since symmetrical statistics have an obvious innate
appeal.

The estimators may then be divided into those
estimating r and those estimating both F andD. Finally,
they may be divided by whether the parameter estimate
is based on the pattern of allelic similarity at each locus
(i.e. is independent of allele frequencies) or the
frequencies of the particular alleles shared. Divided in
this manner, it is possible to see that for each
correlation estimator there is an equivalent regression
estimator (table 1). Any estimators highlighted by this
categorization that have not been previously presented
are derived and shown in appendix A.

Several other estimators of relatedness exist that
work in the presence of incomplete data (Broman &
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Weber 1998) or use information from loci containing
dominant marker loci (Hardy 2003) or single nucleo-
tide polymorphisms (SNPs, Glaubitz et al. 2003).
However, when compared with using complete co-
dominant microsatellite data these show relatively poor
properties.

Usually, the allele frequencies required for related-
ness estimation must be calculated from the sample
under investigation, resulting in a positive covariance
between the within-pair and within-sample allele
frequencies and biasing relatedness estimates. For
example, Wang (2002) demonstrated that, with
samples of less than about 50 individuals, the R2_c
estimator can have a 0.1 positive bias when used to
estimate relationship information on unrelated indi-
viduals. To minimize the bias in allele frequencies, they
should be calculated excluding the information from
the pair currently under investigation (Queller &
Goodnight 1989; Wang 2002). The sums of the powers
of the estimated population allele frequencies are also
biased and should be substituted with the exact
formulae outlined by Crow & Kimura (1970; but see
Wang 2002 for further details). A final source of bias in
allele frequency estimation is due to the presence of
relatives within the sample which introduces a positive
covariance. In their study of co-ancestry in Iberian pigs,
Toro et al. (2002) found large biases in the estimates of
relatedness obtained when using molecular-based
methodologies to calculate allele frequencies from the
study sample, compared with those obtained using
genealogy-based approaches. Furthermore, they found
using simulation that the expected bias was greatly
reduced when allele frequencies from the base popu-
lation were used in place of sample estimates. It is much
more difficult to address the bias introduced by
relatives within the sample, because reducing it
requires that estimates of relationships are available
(Thomas et al. 2002; Wang 2004).

All the estimators may yield values of r or F and D

outside their legitimate parameter spaces (0–1); a
reflection of the large sample errors inherent in these
methods (Ritland 1996a; Lynch & Ritland 1999; Wang
2002). Truncating the estimates so that they fall within
the parameter space simply introduces bias (Milligan
2003) and offers few benefits.

The main differences between the performances of
theMOM estimators can be attributed to their different
allele-specific weighting schemes. Optimal weights for
any given pair are dependant upon their actual
relationship, which is, obviously, not known in
advance. Ritland (1996a) argued that, since the
individuals of a pair, randomly selected from a sample,
are most likely unrelated, it is reasonable to assume all
pairs are unrelated and calculate weights accordingly.
Although making such an assumption does not
introduce any bias to an estimator, it does alter its
efficiency. Since the weights are calculated under the
assumption of no relationship, only measures of
relatedness calculated from genuinely unrelated
pairs are optimized. Relatedness measures calculated
from full-sibling pairs, say, can be far from optimal
(figure 1). The estimators may be organised with
respect to the number of weights required for
calculation as SI, QG, JW, R2 and R4, in ascending
Phil. Trans. R. Soc. B (2005)
order. The greater the amount of weighting, the better
the estimator performs for unrelated pairs, but the
worse it performs for related pairs (reflected in the
mean squared errors (MSE) of figure 1; see also results
of Van De Casteele et al. 2001). The problem of
decreased efficiency is compounded when there are
rare alleles present due to the large weight placed on
information from rare alleles (Ritland 1996a; Lynch &
Ritland 1999); an effect most easily noted in full-sibling
parameter estimation using Ritland’s (1996a)
estimators (R2_c & R4_c—which yield identical
estimates of r). To minimize this error Ritland
(1996a) suggested pooling alleles with a frequency of
!0.05 into a single category. The problem of
decreased weighting efficiency is further compounded
in situations where weights are calculated using allele
frequencies calculated from the sample of interest.
In such situations it is even more important to follow
the guidelines outlined above for dealing with allele
frequency estimates. Similar problems, arising from the
use of weights that are only optimal for unrelated pairs,
are evident for the estimators of F and D (figure 1).

In general, the regression forms of the estimators
perform better than their correlation counterparts.
Again, this is because there are relatively fewer weights
incorporated into the regression estimators. Take, for
example, a locus containing 10 alleles. The R2_c
estimator requires 10 different weights optimized at
rZ0, while R2_r requires, at most, two weights.

In practice, it is unclear which of the estimators is
best. To minimize the error over all possible pairs in
most populations would require the use of R2_c or
R4_c, since the vast majority of randomly chosen pairs
are likely to be unrelated. However, if we are interested
in estimating information from full-sibling pairs then
the use of the SI estimator might be preferred.
Simulation methods should be adopted in order to
determine the most appropriate estimator for the
proposed study population and allele distribution
(Van De Castelle 2001).
(c) Likelihood-based relatedness measures

The likelihood of observing the genetic data of a given
pair can be expressed in terms of F and D

LðpairÞZ
Y
l

ðPðgl jnoÞð1KfKDÞCPðgl joneÞ

!ðfÞCPðgl jtwoÞðDÞÞ; (2.2)

(modified from Thompson 1975), where P(gljno),
P(gljone) and P(gljtwo)are the probabilities of the
observed genotype at locus l, given that the pair share
zero, one and two alleles that are identical by descent,
respectively (table 2). Standard ML techniques may
then be used to estimate values for F and D, given the
observed marker data and the population allele
frequencies. Generally speaking, ML methods show
lower MSE than the MOM approaches but small
datasets (i.e. few marker loci) yield very biased
estimates (figure 1; see also results of Milligan
(2003)). This observation is due to the fact that ML
estimates, unlike MOM estimates, are constrained to
lie within the legitimate parameter space. The bias



Table 2. The probability of observing a pair of genotypes given the two (F) and four (D) gene coefficients.
( p represents a population allele frequency and i, j, k and l index mutually exclusive alleles.)

pairwise genotype

coefficient

1KFKD F D

ii–ii pi
4 pi

3 pi
2

ii–ij 4pi
3pj 2pi

2pj 0
ii–jj 2pi

2pj
2 0 0

ij–ij 4pi
2pj

2 pipj(piCpj) 2pipj
ii–jk 4pi

2pjpk 0 0
ij–ik 8pi

2pjpk 2pipjpk 0
ij–kl 8pipjpkpl 0 0
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Figure 1. Single locus mean squared errors (MSE) for estimates of (a) r and (b) D for the different relatedness estimators. Ten
thousand pairs were simulated for each relationship class: unrelated (unrel), half-sibling (hs), full-sibling (fs) and parent–
offspring (p_o). Marker information comprised 10 alleles in a triangular distribution. MSE value for r estimates from R2_c &
R4_c estimators for fsZ0.402. MSE value for D estimates from R4_c estimator for fsZ1.04. Bias for likelihood estimation
(LK_c): r-unrelZ0.22, hsZ0.14, fsZ0.08 and p_oZ0.06; D-unrelZ0.03, hsZ0.08, fsZ0.07 and p_oZ0.12.
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approaches that of the MOM estimators with higher

numbers of multi-allelic marker loci (e.g. 20C).

The likelihood approach has mainly been used in a

restricted manner to determine the probability of a pair

falling into each of a number of different relationship

categories (Mousseau et al. 1998). Subsequent analysis
may then incorporate the probability information for

each category or may assume that the pair belongs to

the most likely category only and ignore uncertainty

(Thomas & Hill 2000). In practice, relationships are

assigned using likelihood ratio tests to test the support

for the pair falling into one pre-specified category
Phil. Trans. R. Soc. B (2005)
versus another. Statistical significance for the assigned

relationship may be obtained using simulation tech-

niques (Marshall et al. 1998; Goodnight & Queller

1999; Slate et al. 2000; Garcı́a et al. 2002). Similar

techniques may be adopted to assign specific relation-

ships using the MOM estimates (Blouin et al. 1996),
although these techniques are less intuitive than

using ML.

Methods based on pairs are less efficient than those

based on larger groups (Thomas & Hill 2002). For

example, when analysing full-sibling groups, exclusion

of incompatible sibling relationships is not possible on a
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strictly pairwise basis but is on a triplet-wise and greater
basis. Of academic interest is the fact that one does not
need to analyse groups larger than triplets in full-sibling
group analyses because there is no excluded group of
four that does not also contain at least one excluded
triplet group. Hence, all exclusion information is
contained within triplets (unpublished result). A great
advantage of likelihood techniques is that they can be
readily extended to jointly estimate a number of
relationships, as well as account for errors in the
marker data (Sieberts et al. 2002).

With increasing numbers of individuals, a full
likelihood analysis of all the possible population
structures becomes impractical and Markov chain
Monte Carlo techniques (MCMC) need to be adopted
to optimize structure (Painter 1997). These have been
based on either a combination of multiple pairwise
likelihoods (Smith et al. 2001), parent–offspring pairs
and triplets (Almudevar 2003) or on the reconstruction
of half or full-sibling relationships (Thomas et al. 2000;
Smith et al. 2001; Thomas & Hill 2002; Wang 2004).
Under limiting circumstances, for example, when
examining a single generation of a population, the
MCMC methodologies are superior to other methods
(Wilson et al. 2003). Unfortunately, there is the inbuilt
assumption that reconstructed pedigrees are true, since
no indication of their accuracy is carried forward into
subsequent analysis. Almudevar (2001) attempted to
use bootstrap procedures to assign an accuracy statistic
to reconstructed pedigrees but it is difficult to see how
these statistics could then be used in subsequent
analysis. For some purposes, such as variance com-
ponent analysis, little bias is introduced by the
assumption of pedigree accuracy, provided that pedi-
gree errors are low (Thomas & Hill 2000). Such an
assumption might be inappropriate for other analyses
where sibling relationship sizes must be accurate
(Chapman 2003).

Most of the MCMC methods also assume that the
marker data is accurate; a potentially serious limitation
since microsatellite data can contain a high percentage
of errors and thereby severely reduce the accuracy of
the reconstructed pedigree (Butler et al. 2004). More
recent developments by Wang (2004) have shown how
the MCMC methodology can be extended to account
for marker errors, significantly improving sibling
relationship accuracy. The MCMC approaches also
require that allele frequency estimates from the
parental generation be known (Thomas & Hill 2000).
These can be estimated simultaneously with the
pedigree through one of several suggested method-
ologies (Thomas & Hill 2000; Smith 2001; Wang
2004). Assuming a sibling-relationship analysis only
and that the marker data contains errors, then Wang’s
(2004) method based on the likelihood of putative
parental genotypes is the most appropriate, although
the method of Thomas & Hill (2000) is general for all
relationship structures.

An alternative method for pedigree reconstruction
in a single generation was developed by Almudevar &
Field (1999). This was based on using exclusions to
sequentially build up putative sibling relationships,
scoring them based on a pre-defined statistic. The
major appeal of this method is that it is independent of
Phil. Trans. R. Soc. B (2005)
allele frequency estimates. In comparison to other
MCMC analyses, it proved equally effective at estimat-
ing a few large sibling relationship groups but less
effective when estimating small groups where exclusion
information was lower (Butler et al. 2004).
3. COMBINING WITH QUANTITIATIVE DATA
(a) Method of moments heritability estimator

The first of the molecular-based methods of variance
component estimation was developed by Ritland
(1996b), and was based upon the regression of
pairwise phenotypic similarity against the relationship
(Grimes & Harvey 1980). The additive genetic
variance is calculated as:

ŝ2A ZCZ r =V̂ r ; (3.1)

where V̂ r is the variance of pairwise relationship and
CZr is the covariance of pairwise relationship and
phenotypic similarity (ZZ ð y1K �yÞð y2K �yÞ, with y1
and y2 being the phenotypic values for the individuals
in the pair). The environmental variance (sE

2) may then
be estimated from the sample variance and heritability
calculated accordingly (Falconer & MacKay 1996).

Replacing the actual value of the relationship with
an estimate requires an additional step be added to
the estimation procedure to account for the noise
introduced through the use of estimated relationship
parameters. Straightforward calculation of V̂ r would
include this noise, resulting in the parameter being
overestimated. Ritland (1996b) therefore proposed an
ANOVA to partition the variance of the relatedness into
between and within locus components; the intraclass
covariance providing an estimate of the actual variance
of the relationship for use in equation (3.1).

Obviously, anyMOM estimators of relationship may
be used in the regression framework outlined above.
The additional error introduced through using esti-
mated relationship information instead of known
information outstrips any differences in the amount of
error due to the choice of estimator (figure 2). In
general though, the Queller & Goodnight (1989;
QG_r) estimator performs least well overall and the
Lynch & Ritland (1999; R4_r) estimator performs best.
As the percentage of unrelated pairs increase and the
amount of allele information decreases, the Ritland
(1996a) estimators (R2_c or R4_c) perform best. ML
may also be used to generate relatedness information,
although its inherent bias can seriously bias subsequent
heritability estimates. For example, with ML, related-
ness is overestimated for both unrelated and full-sibling
individuals, with unrelated individuals being more
biased. Hence the phenotypic similarity of full-siblings
is attributed to a smaller genetic similarity, biasing
heritability upwards. In addition, the clever ANOVA,
described by Ritland (1996b) to minimize the error
introduced through estimating relatedness, cannot be
used to analyse ML estimates because of the large
biases shown by single-locus ML estimates. For the
regression framework to be useful, estimates of
relatedness must be either unbiased or all be biased
by the same amount.

Ritland (1996b) extended his regression estimator to
include the estimation of the dominance variance
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Figure 2. MSE for heritability estimates made using relationship information derived from the different method of moment
relatedness estimators. Two hundred replicates were simulated for each relationship structure. Different structures comprised
200 full-sibling pairs and varying numbers of unrelated pairs (urZ600, 800 and 1000). Marker information comprised 10
marker loci each with 10 alleles in a triangular distribution.
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(requiring unbiased estimates of D) and the genetic
covariance between traits. Curiously, his method for
estimating the covariance may be further developed so
that no marker data need be used at all (Lynch 2000).
Unfortunately, the estimates produced are extremely
noisy and require that unrealistic numbers of related
pairs be present in the sample.
(b) Likelihood-based heritability estimation

The likelihood approach to variance component
estimation was based on the assumption that the
distribution of relationships within the population was
known and the fact that the pair’s phenotypic infor-
mation also provides information on the relationship—
the distribution of a pair’s phenotypes is dependant on
their relationship (Mouseau et al. 1998). The molecu-
lar marker and phenotypic information are combined
to give the joint likelihood of the observed data:

LZ
Y
t

X
r

armtjrztjr

 !
; (3.2)

where t indexes a particular pair, r indexes a particular
class of relationship (e.g. full-sibling, half-sibling,
unrelated), ar is the prior probability of a random pair
sharing relationship r, mtjr is the likelihood of the
molecular data given r (table 2) and ztjr is the
probability density of the phenotypic data given r and
the population parameters, such as the additive genetic
variance, to be estimated. Several phenotypic distri-
bution functions have been suggested but the one
yielding the least biased results is based on the
phenotypic difference of the pair (Thomas et al.
2000). Alternatively, the joint distribution of the
pair’s observed phenotypes can be regarded as follow-
ing a multivariate normal distribution

MVN �m;A5
1 r

r 1

�����
�����CD5

1 D

D 1

�����
�����CE5

1 0

0 1

�����
�����

 !
;

(3.3)

where �m is the vector of trait means and A, D and E are
the additive, dominance and environmental covariance
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matrices, respectively. This model allows parameters
with more than one trait to be estimated simul-
taneously. As each pairwise likelihood is dependant
upon the phenotypic parameters being estimated, a
covariance is introduced that results in biases (Thomas
et al. 2000). The size of the bias is dependant upon the
relative contribution of the phenotypic information
versus the genotype information, and the number of
traits being analysed.

Since equation (3.2) does not represent the full
likelihood of the population but only the product of
pairwise likelihoods, standard methods of error esti-
mation (from the matrix of second derivatives) are
inappropriate. The best alternative is the bootstrap
(Efron & Tibshirani 1993), using repeat sampling at
the level of individuals (Thomas et al. 2002). In
analyses where all pairwise combinations of individuals
are being considered, repeat sampling of pairs leads to a
gross underestimate of the standard error. The boot-
strap may also be used to estimate standard errors for
the above MOM approach.

A problem of pairwise approaches is their relatively
poor weighting of family information and information
from different relationship classes (Thomas & Hill
2002). Families are weighted by the number of pairs
within which they are represented, thus, inappropri-
ately large weights are placed on larger families. It is
unclear exactly how different relationship classes are
weighted under the pairwise methodologies. These
problems helped motivate the use of MCMC recon-
structed sibling relationships to estimate variance
components. Under the assumption that MCMC
reconstructed sibling relationships are accurate, stan-
dard methods for variance component analysis that
weight family sizes and relationships appropriately may
be adopted (e.g. restricted maximum likelihood
methods; Lynch & Walsh 1998).

An appeal of the MCMC approaches is that they
appear to be conservative in nature, favouring the non-
assignment of a relationship (or assigning a lower
relationship) to a related pair—type 2 errors—over
assigning a relationship to a genuinely unrelated pair—
type 1 errors (Thomas et al. 2000; Thomas & Hill
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2002). Errors of type 2 do not greatly bias subsequent
variance component estimates unless present in large
numbers, while errors of type 1 can rapidly bias
estimates. Simulations have shown that, even though
biased, variance components estimated in this manner
are, in general, more precise than components esti-
mated using the pairwise approaches. However, the
methodology has currently only been applied to single
generation cohorts. Standard errors of variance com-
ponents may be estimated in the traditional manner,
but must be acknowledged to be underestimates
because they ignore the uncertainty in the pedigree.

ML techniques may also be adopted to estimate
variance components in hybrid situations when only
part of the pedigree is unknown. If there is uncertainty
in only a small part of the pedigree, it is feasible to
attach a likelihood to each of the different possible
pedigrees and maximize with respect to the parameters
of interest (Foulley et al. 1990) using methods
analogous to Mousseau et al. (1998). Another
approach useful in situations where only maternal
identities are known is to use paternity assignment to
help reconstruct pedigrees (Kruuk et al. 2000; Milner
et al. 2000). In both these studies, pedigrees were
reconstructed using CERVUS with paternities assigned
different confidence levels (Marshall et al. 1998).
The lower the set confidence level, the larger the
number of relationships reconstructed and the larger
the number of informative phenotypic contrasts
upon which to base variance component estimates.
However, a lower confidence interval also means a
larger number of incorrect assignments and a larger
bias (Thomas et al. 2002).

(c) Real data examples

There is a distinct lack of real-data examples of
variance component estimation based solely upon
marker-based information on relatedness. Ritland’s
(1996b) regression approach was used to estimate
heritability in a wild plant population,Mimulus guttatus
(Ritland & Ritland 1996). Resulting estimates were
larger than those determined under more controlled
conditions, a result contrary to expectation since
environmental variance might be expected to be lower
under these conditions (Coyne & Beecham 1987).
Alternatively, the result may simply reflect the large
sampling variance associated with this approach. The
pairwise likelihood technique was applied to a captive
salmon population (Oncorhynchus tshawytscha), result-
ing in heritability estimates that were similar to
previously derived estimates (Mousseau et al. 1998).
However, the salmon population was set up under
rather specific conditions to allow prior information
about the population structure to be determined.

Thomas et al. (2002) compared the three marker-
based approaches when estimating the heritability of
body weight in Soay sheep (Ovis aries). In addition, they
contrasted these against estimates made when mater-
nities were assumed known, but other relationships
required estimation, and estimates derived from a
pedigree determined using known maternal data and
paternity inference. Results showed that the two
pairwise approaches yielded inaccurate heritability
estimates that were not significantly different from
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zero, even when ‘known’ relationships were used in the
pairwise framework (arguably a reflection of the poor
family and relationship-specific weights). TheMCMC-
based approaches estimated levels of heritability that
were significantly greater than zero. However, the
greater the number of relationships assigned the lower
the estimate, which perhaps reflects the bias introduced
through misassigned relationships. A second example
study compared the regression andMCMCapproaches
using the rainbow trout (Oncorhynchus mykiss; Wilson
et al. 2003). The population had a much higher average
level of relatedness than the sheep population examined
by Thomas et al. (2002) and, in addition, comprised a
half-sibling/full-sibling structure thatwasmore suited to
MCMC analysis. Despite the advantage of a more
appropriate population, results were qualitatively
similar to Thomas et al. with MCMC analysis out-
performing the regression estimator, which was biased
and unreliable.

Understandably, variance components determined
from pedigrees made up of a combination of known
and marker-based relationships display the most
convincing properties (Kruuk et al. 2000; Milner
et al. 2000; Thomas et al. 2002). At present, it is likely
that the role of marker-based techniques will be as a
supplement to, rather than the replacement of, known
(observed) relationships.
4. DISCUSSION
A number of statistical tricks are available that help
maximize the relationship information gained from
marker-data, for example, weighting and minimizing
errors in allele frequency estimates and their functions.
For the purposes of variance component estimation,
the regression-based relatedness estimator of Lynch &
Ritland (1999) shows the most desirable properties
over the widest range of marker-data. Ideally however,
simulation should be used to check that this holds true
for the particular population being studied. If infor-
mation on population structure is known in advance,
then likelihood approaches improve estimation by
restricting relationship estimation to those classes
defined by the structure. If data are known to come
from a single generation, for example, a captive
population of fishes, then the MCMC-based
approaches improve estimation.

With expanding amounts of marker-data becoming
readily available (e.g. with SNPs), it is conceivable that
MCMC approaches will be expanded to account for
more general population structures. This may take the
form of reconstruction using triplet-wise likelihoods,
which would probably offer a reasonable compromise
between capturing useful full-sibling and parent–
offspring exclusions and losing indirect information
from the extended families, while still leaving the
tractable problem.

With a further expansion to the amount of marker
data available for analysis, two additional, but linked,
concepts become important: the role of linkage
between markers and the transition from estimating
the expected relationship value, given the pedigree of
expectation, to estimating the realized (actual) relation-
ship value.



Table 3. Derivation of the regression form of the similarity index (SIr).
(Similarity is the pre-defined value for the similarity of a given genotype, k represents any allele that is not of type i and l
represents any allele that is not of type i or j.)

pair-wise pattern pattern frequency-given base (FF) similarity (S) FF!S

homozygous reference individual
ii–ii pi

2 1 pi
2

ik–ii 2pi(1-pi) 3/4 3pi(1Kpi)/2
kk–ii (1Kpi)

2 0 0

similarity due to chance UhoZpið3KpiÞ=2

SIr estimator: homozygous reference rZ ðSKUhoÞð1KUhoÞ
K1

heterozygous reference individual
ii–ij pi

2Cpj
2 3/4 3( pi

2Cpj
2)/4

ij-ij 2pipj 1 2pipj
il–ij 2ðpiCpj Þð1KpiKpj Þ 1/2 ðpiCpjÞð1KpiKpjÞ

ll–ij ð1KpiKpjÞ
2 0 0

similarity due to chance UheZ ð4piKp2i C4pjKp2j Þ=4

SIr estimator: heterozygous reference rZ ðSKUheÞð1KUheÞ
K1
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The statistical methods discussed here have all
required that there is no linkage between the marker
loci and, hence, each can be regarded as an indepen-
dent estimate of the relatedness. In truth, loci may be
linked and hence provide non-independent infor-
mation. Accounting for linkage in adjacent loci using
an ML framework is conceptually straightforward,
requiring the inclusion of a function describing the
probability of jointly inheriting a linked pair given the
distance (recombination rate) between them (Boehnke
& Cox 1997). Recently, a study by Leutenegger et al.
(2003) demonstrated the use of a probability-based
model to examine the inbreeding of an individual
scored for a number of markers across their genome,
given a known marker map. Their methodology
allowed them to determine a distribution for inbreed-
ing status at each locus in the individual. An equivalent
method could be applied to a pair of individuals to
examine the distribution of their relatedness. This
approach would provide estimates of the relatedness
specific to each genomic region. In addition, the
distribution of the size of each region would also
provide information on the degree of relationship, with
more distant relationships tending to share smaller
segments then closer relationship (Browning 1998;
Zhao & Liang 2001).

Categorical ML and MCMC estimators of relation-
ship assign a specific relationship and, hence, fixed
values for F, D and r (e.g. FZ0.5, DZ0.25 and rZ0.5
for full-siblings). It has long been recognized that these
values are not fixed for a given class of relationship
(except parent–offspring) but are merely expectations
(Suarez et al. 1979; Donnelly 1983; Hill 1993;
Bickeböller & Thompson 1996). ML and MCMC
approaches actually estimate this expected relationship
value, not the realized value for the relationship.
Alternatively, MOM and continuous ML estimators
determine a continuous measure of relatedness. At
their limit, with full genotype data, they estimate the
actual relatedness between two individuals. Conse-
quently, once a certain level of marker information is
attained, more accurate relationships will be estimated
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using the approaches that are least reliable with little

marker-data.

Currently ‘actual’ relationship information derived
from marker-loci is only being used in the context of

variance-component estimation to search for QTL

(Williams et al. 1997; George et al. 2000). By

partitioning the phenotypic variance into components

explained by (i) the expected relationship matrix and

(ii) the realized relationship matrix derived from locus-
specific identities between the individuals, an area

thought to closely linked to a QTL can be determined.

This approach has been recently applied to a natural

population of red deer (Slate et al. 2002) whose

pedigree had been originally determined through

observation and marker-based paternity assignment.
With complete marker information, theoretically simi-

lar partitioning models that explore phenotypes in

terms of blocks of actual genome identity could be

described, without requiring the expected relationship

matrix.

The increased use of markers in the study of natural
populations has made it feasible to detect heritability

estimates in certain types of natural population.

Comparison of real data and simulated studies,

however, clearly indicate that not all populations are

suitable for marker-based analysis. The most important

single feature that allows for marker-based analysis is
having adequate numbers of relations within the

sample (Ritland 1996b). Clearly, the more individuals

collected the greater the number of related pairs.

Unfortunately, as sample size increases so too must the

amount of marker-data typed per individual, because

the probability of sampling two individuals of similar
marker structure due to chance alone also increases.

Thus, more marker-data is required to distinguish true

relatives from pairs that are genetically similar at a few

loci due to chance. Establishing the limits of the trade-

off between marker number and sample size requires

further theoretical and practical work.

I would like to thank Peter Visscher for his help and
encouragement during the completion of this manuscript.



Table 4. Probabilities of observing the different pairwise genotype patterns given the two- and four-gene relatedness coefficients.
(amZ

Pn
iZ1 p

m
i , where p indicates an allele frequency, n indicates the number of alleles at the locus, k represents any allele that is

not of type i and l represents any allele that is not of type i or j. Entries are derived from table 2.)

pairwise pattern
probability of
reference individual

probability of observed pattern coefficient

1KFKD F D

homozygous reference individual
ii–ii a2 a4 a3 a2
ik–ii a2 2(a3Ka4) a2Ka3 0
kk–ii a2 a2K2a3Ca4 0 0

heterozygous reference individual
ii–ij 1Ka2 2(a3Ka4) a2Ka3 0
ij–ij 1Ka2 2(a2

2Ka4) a2Ka3 1Ka2
il–ij 1Ka2 4ða2Ka22K2a3C2a4Þ 1K3a2C2a3 0

ll–ij 1Ka2 1K5a2C6a3K4a4C2a22 0 0
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APPENDIX A
(a) Similarity index regression form

The regression form of the similarity index is
derived in a similar manner to the correlation form
(see Li et al. 1993). For this estimator, relationship
estimates are defined as a ratio of the observed
similarity of a pair corrected for similarity due to
chance, and the expected similarity of an identical pair
(i.e. 1), also corrected for similarity due to chance
(Rousset 2002). Two forms of the regression form are
available, depending upon whether the reference
individual is homozygous or heterozygous (table 3).
Since either individual of a pair may be the reference,
unique locus-specific estimates are calculated as the
arithmetic mean of both estimates.

(b) Weighted allele specific estimator of r

regression form
The weighted allele specific estimator of r is derived
from a single locus form of the Queller & Goodnight
(1989) estimator. By moving the summation terms to
outside the division and including allele specific
weights, the locus-specific estimator becomes

r Z
X
a

wa

p1a K p̂a
p2a K p̂a

; (A 1)

where a indexes the different alleles observable at the
locus in the reference individual, pa

1 and pa
2 are the allele

frequency of a in the proband and the reference
individual, respectively, and p̂a is the population
frequency of a. When the reference individual is
homozygous waZ1. In the heterozygous case, allele-
specific weights can be derived by assuming that rZ0
using the method outlined in Ritland (1996a), and are
equal to

wa Z
2p̂1p̂2ðp̂1 C p̂2 K1:5ÞK p̂b

4p̂1p̂2ðp̂1 C p̂2 K1:5ÞK p̂1 K p̂2
; (A 2)

where p̂1and p̂2 are the allele frequencies of the first and
second alleles in the reference individual and b indexes
the other reference allele to a (i.e. bZ3Ka).
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(c) Wang joint estimator of F and D regression
form
The regression form ofWang’s (2002) joint estimator is
derived in a similar manner to the correlation form.
With a homozygous base individual three alternative
pairwise genotype patterns are observable (table 4).
The probability of observing these patterns are

PðiiK ii ÞZ
1

a2
½a4 C ða3 Ka4ÞfC ða2 Ka4ÞD�; (A 3)

PðijK ii ÞZ
1

a2
½2ða3Ka4Þð1KDÞCða2K3a3C2a4Þf�;

(A 4)

and

Pð jjK ii ÞZ
1

a2
½ða2K2a3Ca4Þð1KfKDÞ� (A 5)

(table 4). By setting the equation corresponding to an
observed pairwise genotype pattern to one, and the
other equations to zero, a locus-specific estimate of F
and D can be derived by solving any two of the
equations (since A 3CA 4CA 5Z1).

When considering a heterozygous reference individ-
ual, four alternative pairwise genotypes are observable
(table 4). Hence, no closed solution is obtainable since
there are more independent probability equations than
parameters. A notable exception to this is for biallelic
loci where there is only one ‘independent’ equation and
no solution is available. The weighting approach of
Ritland (1996a) can be adopted to solve more than two
independent equations, with weights being derived
numerically under the assumption FZDZ0.
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