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‘Repeated’ measurements for a trait and individual, taken along some continuous scale such as time,
can be thought of as representing points on a curve, where both means and covariances along the
trajectory can change, gradually and continually. Such traits are commonly referred to as ‘function-
valued’ (FV) traits. This review shows that standard quantitative genetic concepts extend readily to
FV traits, with individual statistics, such as estimated breeding values and selection response,
replaced by corresponding curves, modelled by respective functions. Covariance functions are
introduced as the FV equivalent to matrices of covariances.

Considering the class of functions represented by a regression on the continuous covariable, FV
traits can be analysed within the linear mixed model framework commonly employed in quantitative
genetics, giving rise to the so-called random regression model. Estimation of covariance functions,
either indirectly from estimated covariances or directly from the data using restricted maximum
likelihood or Bayesian analysis, is considered. It is shown that direct estimation of the leading
principal components of covariance functions is feasible and advantageous. Extensions to multi-
dimensional analyses are discussed.
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1. INTRODUCTION

Quantitative genetics has typically been concerned with
traits that, in essence, are points, i.e. measured at a
specific location or time. Clearly, however, there are
traits which are not only recorded repeatedly per
individual, but are also considered to be changing,
gradually, up or down, and continually, between
measurements.

The most common of these are longitudinal data,
i.e. records taken at successive times or ages, such as
weights or body size measurements, and we will
concentrate on this case in the following. Alternatively,
these could be records taken along some spatial scale,
or any other continuous covariable, referred to as
‘control variable’ in the following. For instance, we
might want to relate changes in backfat thickness of
farm animals to weight at recording, or assess the effect
of ambient temperature on growth rates of caterpillars
(Kingsolver & Gomulkiewicz 2003). In this case, our
traits of interest are complete curves or trajectories
rather than individual points, and we want to quantify
genetic values and their dispersion structure among
records for the complete range of the control variable.

Today, such traits are commonly referred to as
function-valued (FV) traits, where FV emphasizes that
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the corresponding curves are described by a math-
ematical function (rather than implying some notion of
functionality), and we will adopt this nomenclature.
Earlier, Kirkpatrick ez al. (1990) called these ‘infinite-
dimensional’ traits, as they could, hypothetically, be
measured infinitely many times along the continuous
scale of interest. This paper reviews the role and
analysis of FV traits in quantitative genetics.

2. GENETICS AND FUNCTIONAL DATA ANALYSIS
Functional data analysis (FDA) is the branch of
statistics concerned with the analysis of FV traits,
albeit generally at a phenotypic level. This extends to
more than one control variable, e.g. for two spatial
coordinates, we might deal with images. Loosely
speaking, FDA attempts to characterize patterns in
variation of curves and extract common features. This
might include horizontal and vertical shifts, i.e.
variation in phase and amplitude of curves, and an
investigation of the associated eigenfunctions or
‘eigenfaces’. A brief introduction to FDA is given by
Ramsay & Silverman (2001), and details can be found
in their books (Ramsay & Silverman 1997, 2002).
Applications span a wide range of fields, e.g. biology,
economics and psychology. For example, Rice &
Silverman (1991) considered the analysis of human
gait patterns, Spitzner et al. (2003) examined tactile
perception and Ramsay (2000) presented an analysis of
variation in handwriting.

In quantitative genetics, models and methods for
analyses of data that represent curves have obtained
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insights and stimuli from both evolutionary biology and
animal breeding (Hill 1998).

(a) Covariance functions

Kirkpatrick & Heckman (1989) and Kirkpatrick ez al.
(1990) introduced the infinite-dimensional model for
traits measured repeatedly per individual, and
suggested to model genetic covariances of trajectories
through covariance functions.

Let the continuous scale along which repeated
observations are taken be time z. As the name implies,
a covariance function (CF) then gives the covariance
between two measurements taken at times z and ¢ as a
function of these times. CFs for FV traits can be
interpreted as the equivalent to variance components
for standard, non-FV traits. While CFs conceptually
involve infinitely many parameters, Kirkpatrick &
Heckman (1989) showed that good estimates can be
obtained by approximating the CFs as the weighted
sum of a relatively small number of basis functions,
such as orthogonal polynomials. This yields reduced
rank and smoothed estimates of the corresponding
covariance matrices. Kirkpatrick er al. (1994) illus-
trated the scope for estimation of genetic CFs, for
records taken at individual test days during the course
of lactation of dairy cows.

CFs based on orthogonal polynomials or similar
functions do not involve any assumptions about the
shape of the trajectory or the dispersion structure other
than implicit in the choice of order of approximation
and, to a lesser extent, of basis functions. In contrast,
CFs commonly considered in other areas of statistics
are often parametric and restrictive in the structure
they permit and are sometimes difficult to justify
biologically. However, they generally involve only a
small number of parameters.

For the parametric approach, a CF is usually
decomposed into a variance function, describing
changes in variance with z, and a correlation function.
Commonly used correlation functions are stationary,
i.e. correlations for records taken at a given lag,
Ar= |zj/—zj|, are the same for all 7. A well-known
example is the auto-correlation structure with a single
parameter p, which involves an exponential decay in
correlation, r; = p*' = exp{—0Az}, with §=—log(p).
Other functions with one or two parameters exist
(e.g. Pletcher & Geyer 1999). Additional parameters
can add more flexibility. For instance, a Box—Cox
power transformation of ¢ accommodates some non-
stationarity (Nufez-Antén & Zimmerman 2000).
Pletcher & Geyer (1999) presented an application of
such models for the estimation of genetic CF, referring to
them as ‘character process’ models; see also Jaffrézic &
Pletcher (2000) for a review.

(b) Random regression models

In analyses of data from livestock improvement
schemes, measurements along curves have often been
treated simply as repeated measurement of the same
trait, potentially applying some correction for time or
age at recording. In addition, large ranges of observed
times have been subdivided into intervals representing
individual, correlated traits. A typical example is the
weights of cattle, for which we usually distinguish
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between birth, weaning, yearling and later weights.
A major drawback of these approaches is that they do
not fully use the information provided by the times of
recording, and thus do not account for any constraints
they might impose on the covariance structure.

Alternatively, curves of interest, in particular growth
and lactation curves, have been fitted at a phenotypic
level, and the parameters of the curve have sub-
sequently been analysed as new traits. Drawbacks of
this approach are that estimates of curves may be
influenced by systematic environmental effects not
taken into account, and that constraints are imposed
on the families of curves.

These considerations have motivated the random
regression (RR) approach. Estimates of breeding values
of livestock, i.e. of the additive genetic values of
animals, are usually obtained from mixed model
analyses. Fitting animals’ additive genetic effects as
random effects, analyses involve a linear regression of
observations on indicator variables, which have values
of unity or zero for animals that do or do not have a
record, respectively, for the trait considered. This
framework extends readily to other and multiple
covariables (Henderson 1982), such as functions of z.
This allows any trajectories that can be described in a
regression equation to be modelled directly within the
mixed model analysis. While the covariables are usually
nonlinear functions of z, such as polynomials or splines,
the model is linear in the regression coefficients to be
estimated. Fitting sets of RR coefficients for each
individual and random factor, e.g. additive genetic and
permanent environmental effects, then yields estimates
of the corresponding trajectories. This is the so-called
RR model, also referred to as the random coefficient
model in other areas of statistics.

Initial applications of the RR model were in genetic
evaluation of dairy cows, using records from individual
test days to model the lactation curve (Schaeffer &
Dekkers 1994; Jamrozik er al. 1997). Over the last
decade, the RR model has become a standard for
analyses of repeated records from animal breeding
schemes, such as test day, growth and feed intake data.
A recent review of applications has been given by
Schaeffer (2004).

Treating sets of regression coefficients as random
effects implies a matrix of covariances among RR
coefficients. In turn, these covariances determine the
covariance structure among all records along the
trajectory (Jamrozik & Schaeffer 1997), i.e. define a
CF. In other words, fitting a RR model and estimating
CFs approximated by a limited number of terms are
equivalent, assuming the corresponding functions of
t are fitted (Meyer & Hill 1997; Meyer 1998b). This can
be exploited to estimate CFs efficiently (Meyer 1998a).

3. MODELLING FUNCTION VALUED TRAITS

Classical quantitative genetics assumes phenotypic
observations are determined by the individuals’ addi-
tive genetic effects as well as so-called permanent
environmental effects, which may encompass any non-
additive genetic effects. In addition, there may be
systematic environmental effects, and a temporary envi-
ronmental effect, specific to each record. The same
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assumptions are invoked for FV traits, but with most
effects replaced by corresponding curves.

(@) The ‘functional’ linear model

Let y; denote the jth record for individual 7 taken at
time ¢ Assume the trait considered is continuous and
has a multivariate normal distribution. A ‘functional’
model is then

Vi = M) + Fy + gi(5) + pi(1) + & (3.1

where M(z) represents any systematic, fixed effects
affecting y; which change with z. This can simply be
a mean trajectory, or represent sets of fixed curves
nested within some classification. For instance, we
might want to allow for different mean growth curves of
male and female animals. F;; denotes any other fixed
effects, and ¢; is the temporary environmental effect.
Additive genetic and permanent environmental effects
are given by random functions g;(-) and p,(-) evaluated
at z;, with the subscript 7/ (omitted in the following)
emphasizing that these are curves specific to indi-
vidual z. The additive genetic and permanent environ-
mental covariance functions, G(z,z:) and (3, ),
respectively, describe the covariances between effects
at different ages.

In principle, M(-), g(-) and p(-) can be chosen
among many types of continuous functions, including,
for instance, exponential functions such as Gompertz’s
or Brody’s curves, which are commonly fitted to model
growth curves, and different families of function can be
used to model different trajectories in equation (3.1).
However, we will restrict our discussion to functions
that can be expressed as regression equations, i.e.
which are linear in the coefficients of the curve. This
assumes that g(-) and p(-) can be expressed as weighted
sums of a set of so-called basis functions of z, e.g.
polynomials.

Let ¢,(z;)) denote the rth basis function, evaluated for
1, and «; and v, be the regression coefficients for
additive genetic and permanent environmental effects
for the sth individual. Assume we fit k2, and &,
regression coefficients, respectively. Our model then
becomes

km k“/
Y =M +F+> b, (6)+ > vidt) +e5  (3.2)
r=1 r=1

where the first sum represents the additive genetic, g(-),
and the second sum the permanent environmental,
p(+), component of the phenotype. Omitting details,
M(-), of course, can be expanded in the same fashion.

Theoretically, there are infinitely many terms in the
expansion of g(-) or p(-). Hence, equation (3.2)
represents a truncated, reduced-rank approximation.
In practice, orders offit 2, and k., are often substantially
smaller than the number of distinct values of ¢
observed.

(b) Basis functions

A common choice for the basis functions are orthog-
onal polynomials, as advocated by Kirkpatrick &
Heckman (1989). In particular, the Legendre poly-
nomials used by Kirkpatrick er al. (1990) have been

Phil. Trans. R. Soc. B (2005)

used extensively in RR analyses. While polynomials are
flexible and have been proven capable of modelling a
range of covariance structures, they are also frequently
associated with numerical problems, especially for high
orders of fit. ‘Runge’s phenomenon’ describes the
observation that the error of polynomial approximation
of a curve increased with the order of polynomial fit.
Moreover, errors were predominantly due to oscil-
lations at the extremes (de Boor 2001). RR analyses
fitting higher degree polynomials have frequently
encountered erratic estimates of variance components
at the highest ages, in particular, for longitudinal data
with few records at the extremes.

An alternative to high degree polynomials are
‘piecewise polynomials’, i.e. curves constructed from
pieces of low degree polynomials, which are joined
smoothly at selected points, so-called splines.
A particular type of spline is the B-spline (de Boor
2001). Rice & Wu (2001) suggested the use of the basis
functions of a B-spline as covariables to model random
curves in mixed model analyses. Although B-splines are
not automatically orthogonal, they have good numeri-
cal properties that make them attractive (Ruppert ez al.
2003). While following the lead of White ez al. (1999),
cubic-smoothing splines have been used in a number
of studies (e.g. White et al. 1999; Huisman et al.
2002; DeGroot er al. 2003), use of B-splines in RR
analyses so far has been limited (Torres & Quaas 2001;
Meyer 2005).

(¢) Covariance structure

Let o, of length k,, and v;, of length k,, denote the
vectors of RR coefficients for individual . Assuming a
multivariate normal distribution for the data,
a;~N(0,K,) andy; ~N(0,K,), (3.3)
where K, ={K,;,} and K, ={K,} are the matrices of
covariances between RR coefficients, and define
Cov(a;, y})=0.

Temporary environmental effects are assumed to be
independently distributed, but variances are allowed to
change with z. This is modelled through a variance
function, i.e. V(e;) = ajz = e(z, ¢2). In the simplest case,
e(-) could be a step function. Alternatively, poly-
nomials or spline function of z can be used to model
heteroscedasticity of residual variances. Often, logar-
ithmic values of variances are modelled in this way to
account for ‘scale effects’, i.e. dependencies between
means and variances.

The covariances between RR coefficients determine
the covariance between two records for animal 7, taken
at times ¢; and 7.

ko kg
Covy. yi) = > > $r(t)by( 1)Ko

r=1 s=1

ky  ky
+ Z Z ¢r(tj)¢x(lj’)1<yrx + 6]]’0]27 (34)

r=1 s=1

with ¢;7 =1 for j=j, and zero otherwise. The first part
on the right-hand side of equation (3.4) is the additive
genetic covariance function (-, -), evaluated for ¢
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and ¢, and the second part is its permanent environ-
mental counterpart, (-, *).

(d) Matrix formulation
For N animals with #; records each, the model is

y=Xb+Za+ Wy +e, (3.5)

with y and e the vectors of observations and residuals,
respectively, « and vy the vectors of genetic and
permanent environmental RR coefficients, and b the
vector of fixed effects fitted. Expectations of these
vectors are E[a] =0, E[y] =0, E[¢] =0 and E[y]=Xb.
X, Z and W are the design or incidence matrices. For
effects modelled as trajectories, the design matrices
contain the basis functions evaluated for the time
pertaining to each record, ¢,(z), i.e. are considerably
denser than their counterparts in ‘standard’ analyses,
where each row of Z or Wwould only have a single non-
zero element of unity. The model accommodates any
pattern of values of z;, i.e. individuals may have different
numbers of records and records may be taken at
arbitrary times.

Generally, analyses include genetic effects for
animals which are parents only, i.e. do not have any
records. These are included in «, so that « has length
N4k, with N4> N the total number of animals, but
corresponding rows of Z are zero.

Random vectors «, ¥ and & are defined to be
uncorrelated, with covariance matrices

V(e) =A®K, =G V(y)=Iy®K,=P
V(e) = Diag{o}} = R,

where 4 is the numerator relationship matrix between
animals, Iy an identity matrix of size N, and ‘® denotes
the direct matrix product. Diagonal elements of 4 are
unity, augmented by the inbreeding coefficient for
individuals, and off-diagonal elements give the degree
of relationship, e.g. one-half for parents and their
offspring or one-fourth for half-sibs. This gives variance
of y

V =ZAR®K,Z + WIy®K,)W' + Diag{o,,}

=ZGZ' + WPW' +R. (3.6)

4. ESTIMATION OF BREEDING VALUES

The central tasks of quantitative genetic analyses,
estimation of breeding values and estimation of
covariance components and genetic parameters gener-
ally invoke the linear, mixed model. The so-called
mixed model equations (MME) for the model given by
equation (3.5) are

XR'w
ZR'w
WR'W+I®K;'

XR'X XR 'z
ZR'X ZR 'Z+A'®K]!
WR'X WR'Z

b XR'y
Xla|=|ZRy
¥ WR™ 'y

4.1)

Assuming variances are known, solutions to equation
(4.1) are generalized least-squares (LLSQ) estimates of
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the fixed effects b, and best linear unbiased predictors
of the random effects & and y (Henderson 1973). For
national genetic evaluation schemes, especially multi-
trait analyses for dairy or beef cattle, the MME can
comprise millions of equations. Hence equation (4.1) is
generally solved iteratively. Specialized strategies suit-
able for large scale, RR-test day models have been
discussed by Lidauer ez al. (1999), Gengler ez al. (2000)
and Jamrozik & Schaeffer (2000).

The MME (equation 4.1) play a central role in
statistical analyses in quantitative genetics, and in
particular, of animal breeding data. Standard general-
ized LSQ analyses would require inverting the variance
matrix V, but only inverses R~ ' and 4~ ! are needed in
the MME. While R has size equal to the number of
records, assuming zero environmental covariances
between records on different animals, it is generally
blockdiagonal for animals, if not, as in our case,
diagonal. R is thus readily invertable, and the data
part of the MME can be accumulated considering
records for one animal at a time. 4 has size proportional
to the number of animals in the analysis (including
parents without records), but 4! can be set up
directly and easily from a list of pedigree records
(Henderson 1976; Quaas 1976).

Estimated regression coefficients «; for animal ¢
define its genetic merit along the complete trajectory
considered. In some cases, we may be interested in
estimated breeding values for target times ;. These are
obtained simply by evaluating the regression equation

Ry
EBV(5); =) 8;h,(1). (4.2)
r=1

Other functions of the estimated curve may be of
interest. For example, integrals of estimated lactation
curves to provide an estimate of total lactation genetic
merit for dairy cows. For growth curves, first and
second derivatives give velocity and acceleration,
respectively, and turning points of estimated curves
may help distinguish between early and late maturing
animals.

Sampling covariances among estimated regression
coefficients are given by the inverse of the coefficient
matrix in equation (4.1). For most genetic evaluation
schemes, however, this matrix is too large to be
inverted. Approximation procedures for the inverse
and ‘accuracies’ of estimated breeding values for RR
analyses have been described by Jamrozik ez al. (2000)
and Tier & Meyer (2004).

5. ESTIMATION OF COVARIANCE FUNCTIONS:
I. INDIRECTLY’
Estimates of genetic and environmental CFs can be
obtained either directly from the data (see §6), or
indirectly. Indirect estimation is, in essence, a two-step
procedure. It requires a matrix of covariances for a set
of points along the trajectory, to be estimated in a first
step. Once such estimates of covariances are available,
estimates of CFs for different choices of basis functions
and orders of fit can be obtained and compared quickly.
However, in estimating CFs from covariance matrices,
usually only one source of variation is considered. This



Function valued traits

K. Meyer & M. Kirkpatrick 1447

ignores sampling correlations, for example, between
genetic and residual covariances. Hence, results tend to
differ somewhat from those obtained in corresponding
analyses estimating all CFs simultaneously from the data
(e.g. van der Werf et al. 1998; Kettunen ez al. 2000), as
the latter provide greater scope for a repartitioning of
variation to or from other random effects when order(s)
of fit are varied.

Let S denote the matrix of covariance estimates for a
grid of s values t, and ®Pg, of size sXk, the matrix of
basis functions evaluated for the z;, with £<s the order
of fit for the CF. We then assume
S = &;KPs + O, (5.1)
with K the matrix of coefficients of the CF, and O
a matrix of residuals.

(a) Least-squares

Kirkpatrick er al. (1990) described a weighted LSQ
procedure to estimate the coefficients of a genetic CF
from known genetic covariances. Kirkpatrick et al.
(1994) proposed a modified scheme for a phenotypic
CF, which allowed temporary environmental variances
to be separated from permanent environmental vari-
ances. Other studies have employed simple LSQ
estimation (e.g. van der Werf ez al. 1998; Veerkamp &
Goddard 1998).

Define X5 as the s(s+1)/2 X k(k+1)/2 matrix with
elements (2 — 0,,)¢,(4),(z;) corresponding to the jlth
element of § and the uvth element of K, and ¢, as
defined above. Weighted LSQ estimates of the coeffi-
cients of the CF are then obtained as
vech(K) = (X5Q 'X5) ' X5Q 'vech(S), (5.2)
where ‘vech’ is the operator that stacks the columns of
the lower triangle of a symmetric matrix into a vector
(e.g. Harville 1997), and £ is a matrix of weights.

(b) Maximum likelihood

A drawback of the LSQ approach is that it does not
guarantee the estimated CFs to be positive semi-
definite, i.e. to yield estimates within the parameter
space (Kirkpatrick ez al. 1990). This can be overcome
in a maximum likelihood framework, as proposed by
Mintysaari (1999).

In essence, this involves treating the estimated
covariances (8) as if they were crossproducts arising
from data, and equating them to their ‘expected’
values, shown above (equation (5.1)), comprising
sums of products of coefficients of the CF and base
functions evaluated at the grid points. Let F=E[S].
The log likelihood (log L) to be maximized is then
(Thompson 1976)
log L = const. —  d(log|F| + twr(SF~ 1Y), (5.3)
where d are the degrees of freedom associated with S.
Thompson (1976) outlined an iterative procedure to
maximize equation (5.3). Let # denote the vector of
parameters to be estimated, and 6" the estimate from
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the gth iterate.

0" = (H©O") g0
with H(0%) = {d t(F 1 (0F/90,)F ' (0F/36,))}
and g(0") = {d twr(F " 'SF1(0F/d0,))}, (5.4)

where H(6%) is the matrix of expected values of second
derivatives and g(éq) the vector of the data part of the
first derivatives of log " with respect to the elements of
0, both evaluated for F as given by §”. Alternatively, the
expectation-maximization approach, used to estimate
permanent environmental CFs and temporary environ-
mental variances from matrices of residual covariances
(Miéntysaari 1999; Emmerling ez al. 2002; Koivula ez al.
2004), may be useful to estimate genetic CFs where we
impose a structure on K, such as considering the largest
eigenvalues only (see §7).

(¢) Constructed CF

Estimation of CF from covariance matrices also has
been found useful for cases where we might have
reliable estimates for some variance components, but
have to rely on literature values or assumed relation-
ships (such as the auto-correlation function described
above) for estimates of some correlations. Misztal er al.
(2000) outlined an approach to construct matrices of
covariances § for this scenario, proposing linear
interpolation or variance function of standard shapes
to derive missing components, and to obtain LSQ
estimates of CFs. An application for CFs for growth of
beef cattle has been presented by Legarra er al. (2004).

6. ESTIMATION OF COVARIANCE FUNCTIONS:

Il. ‘DIRECTLY’

Alternatively, CFs can be estimated in a single step,
directly from the data. As shown above, the coefficients
of CFs are equal to the covariances between RR
coefficients in a functional, linear mixed model. Hence,
standard mixed-model-based variance component pro-
cedures can be used to estimate CFs directly from the
data.

(a) Restricted maximum lLikelihood
Early applications of restricted maximum likelihood
(REML) used a simple reparametrization of standard,
multivariate models to estimate CFs (Meyer & Hill
1997). This required MME of size proportional to the
number of distinct values of 7 to be manipulated, and
thus did not accommodate data from livestock
improvement schemes involving records at ‘all ages’.
Hence, today the coefficients of CFs are predominantly
estimated as the covariances among RR coefficients.
REML estimation maximizes the part of the like-
lihood independent of fixed effects. Assuming unstruc-
tured covariance matrices, i.e. imposing no restrictions
on K, and K, other than that they should be positive
semi-definite and symmetric, the vector of parameters
to be estimated, #, comprises the k,(k,+1)/2 unique
elements of K,,, the k,(k,+1)/2 elements of K., and &,
parameters modelling variances due to temporary
environmental effects. The REML log likelihood
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(log L) is then given by
—21log L(0) = const. + log| V! +log| X'V X]|
+@ - X'V (»—XB)
= const. + N4 log|K,| + &, log|A|
+ Nlog|K, | +log|R| + log|C| + y'Py,
6.1)

where C is the coefficient matrix in the MME (see
equation (4.1)), and P a projection matrix,
P=V'—VIXXV'X) X'V, so that Py=
R Y(y— XB—Za— W+). The first line of equation
(6.1) is the standard form of log £ (e.g. Harville 1977),
expressed in terms of the phenotypic variance matrix V.
The formulation of the second line, however, is
computationally advantageous. K, and K, are small,
of size k,Xk, and k,Xk,, respectively, and their
determinants are readily evaluated. Log|A| arises as a
by-product when setting up 4~ ! from a list of pedigree
information. The last two terms, ¥’ Py and log|C]|, can
be computed simultaneously through a Cholesky
factorization of C augmented by the vector of right-
hand sides in equation (4.1) and its transpose, and the
residual sum of squares (Graser er al. 1987).

M=

XR'X XR'Z XR'wW X'R 'y
ZR'X ZR'Z+A'®K;' ZR'W Z'R™ 'y
WR'X WR'Z WR'W+I®K,' WR™'y
YR'X yR'Z YR'W YRy
(6.2)

For M=LL', of size MXM, and [; the ith diagonal
element of L,

M—1
loglCl =2 ) log(;) andy'Py = L.

=1

(6.3)

REML estimates of K, and K, have to be positive semi-
definite, and estimates of temporary environmental
variances cannot be negative (Harville 1977). Hence,
maximization of log.[, as given in equation (6.1),
represents a constrained optimization problem. A repa-
rametrization can be used to remove constraints on the
parameter space. For instance, instead of estimating
the unique elements of a covariance matrix K, we can
estimate the elements of its Cholesky factor, taking
logarithmic values of the diagonals (Meyer & Smith
1996; Pinheiro & Bates 1996). This not only allows use
of unconstrained maximization procedures, but can
also improve rates of convergence in an iterative
estimation scheme (Groeneveld 1994).

The Newton—Raphson algorithm, with various
modifications, is frequently applied in maximum like-
lihood estimation (Jennrich & Sampson 1976). It is an
iterative scheme, which requires first and second
derivatives of log L. For Fisher’s ‘method of scoring’,
the latter are replaced by their expected values, but, in
most quantitative genetic applications, both are diffi-
cult to compute. Hence, today the so-called ‘average
information’ (AI) algorithm (Gilmour er al. 1995),
which approximates second derivatives with the aver-
age of observed and expected values, is generally
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preferred. These averages are equivalent to second
derivatives of the ‘data part’ of log .L', y'Py. They are
relatively easy to calculate, while yielding convergence
rates similar to those using second derivatives or their
expectations; see Hofer (1998) for a review.

Algorithms for multivariate analyses via Al REML
are readily adapted to the estimation of covariances
among RR coefficients. Jensen er al. (1997) employ
sparse matrix inversion of C to obtain first derivatives of
log L. An alternative, relying on automatic differen-
tiation of the Cholesky factor of M (see equation (6.2);
Smith 1995), is outlined by Meyer (1998a). This
requires specifications of first derivatives of M with
respect to the covariance components to be estimated,
which have a simple form. An extension, accommodat-
ing variance functions to model changes in temporary
environmental variances with 7z and parametric corre-
lation structures for covariances among permanent
environmental effects is given by Meyer (20015). Other
authors described expectation—maximization type
algorithms, and their extensions to improve conver-
gence, for RR models (Gengler ez al. 1999; Foulley &
van Dyk 2000; Foulley er al. 2000).

Most software packages available for mixed model
analyses allow RR models to be fitted, and the
corresponding covariance matrices to be estimated.

(b) Bayesian analysis

Even for comparatively low orders of fit, RR models
involve substantial numbers of covariance components
to be estimated. Typically, large datasets are required to
estimate so many parameters with sufficient accuracy.
However, high computational requirements limit the
size of datasets and models that can be analysed using
REML.

Bayesian estimation has become a standard for
quantitative genetic analyses (Sorensen & Gianola
2002). In particular, schemes sampling from fully
conditional posterior distributions of the parameters of
interest are widely used. These are computationally
easy to implement. While computing times required to
sample long or multiple Markov chains may be large,
memory requirements are considerably smaller than
for corresponding REML analyses. This facilitates
analyses of much larger datasets. In addition, as
estimates of complete posterior distributions are
obtained, sampling properties of estimates or functions
thereof are readily examined.

RR analyses using a Gibbs sampler have been applied
initially to the analysis of test day records of dairy cows.
Full details are given by Jamrozik & Schaeffer (1997)
and Rekaya ez al. (1999). Early models fitted a simple
step function for temporary environmental variances.
Variance functions (e.g. Schnyder et al. 2001) or
changepoint techniques (Lopez-Romero er al. 2004)
were used subsequently, but required Metropolis—
Hasting steps (Sorensen & Gianola 2002). Jamrozik
(2004) discusses implementation issues of Markov
chain Monte Carlo methods for RR analyses.

7. EIGENFUNCTIONS AND BEYOND
CFs can involve a large number of parameters. Hence
estimation can be computationally difficult, and
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estimates can be subject to large sampling variances.
This has motivated the use of principal component
methods to the analysis of FV traits (Kirkpatrick &
Meyer 2004).

An eigenvalue decomposition of a covariance matrix K
gives the matrix as the product of the matrix of
eigenvectors E and the diagonal matrix of eigenvalues A.

K = EAE/, (7.1)

E is orthonormal, i.e. EE'=I. The columns of E, or
eigenvectors, define linear transformations of the original
variables to new variables, which are uncorrelated and
have variances as given by the corresponding eigenvalues.
These variables are commonly referred to as ‘principal
components’ (PC). Eigenvectors and -values are usually
ordered in descending order of the latter, and the ith
PC explains maximum variation given PCs 1,...,7—1
(e.g. Jollife 1986).

The FV equivalent to eigenvectors are eigenfunc-
tions, for curves, or eigenfaces, for images. Eigenfunc-
tions are useful in visualizing and analysing patterns of
variation of FV traits. Like CFs, eigenfunctions,
theoretically, have infinite dimensions, but are, in
practice, approximated as the weighted sum of a
limited number of basis functions.

If the basis functions are orthogonal, estimates of the
eigenfunctions of a CF can be obtained directly from
the eigenvectors of the coefficient matrix of the CF
(Kirkpatrick & Heckman 1989). Let K of size 2 X k be
the coefficient matrix of a CF. The estimates of
eigenfunctions are then

k
Ri(t) =Y b, (Deys (7.2)
r=1

where ¢;, are the elements of the ith eigenvector of K.
Evaluating equation (7.2) for all values of 7 yields a
curve, the eigenfunction. Similarly, the eigenvalues of
K provide estimates of the eigenvalues of the CF. For
non-orthogonal basis functions, we need to adjust for
the basis (James ez al. 2000). Alternatively, we can
extract the eigenfunctions and -values numerically, by
evaluating the CF for a fine grid of values of 7, and
calculating the eigendecomposition of the resulting
covariance matrix (Rice & Wu 2001).

Eigenfunctions are one of the main characteristics of
CFs examined in FDA. As discussed below (§8),
eigenfunctions of genetic CFs provide an insight into
the expected transformation of trajectories when subject
to selection.

(a) Truncated expansion

Principal component analysis is widely employed as a
dimension-reduction technique. Considering only the
first m PCs with the largest eigenvalues, we reduce the
number of variables, while still capturing a maximum
of variation. If the eigenvalues for PCs m+1, ..., % are
small, loss of information can be negligible. The same
argument applies for FV traits. Moreover, we can
choose to use the eigenfunctions as basis functions, and
truncate our expansion by considering the most
variable PCs only (Kirkpatrick & Meyer 2004). This
is the Karhunen-Loeéve expansion favoured in FDA
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(Ramsay & Silverman 1997). As it is based on PCs of
the CF, it is the expansion which, for a given number of
terms, minimizes the residual.

Let «,,() and «,,(t) denote the rth eigenfunction of
G(-,-) and P(-, ), the additive genetic and permanent
environmental CFs, respectively. The functional, linear
model equation (3.2) then becomes

My My
yi = M@) + Fj+ ) aiert) + Y viky, 1) + e,
r=1 r=1

(7.3)

with o, and v} the rth additive genetic value and
permanent environmental effect for animal 1.
The corresponding CFs are directly given by the
eigenfunctions

3
2

g(t]’ []’) = Aar’(ar([j)Km([j’) and
i (7.4)
P, t7) = ) Ayrkyr ()R ().

r=1

As emphasized by Kirkpatrick & Meyer (2004), there
are two levels of truncation. First, we approximate the
CF by its first m eigenfunctions only, assuming infinite-
dimensional CF and eigenfunctions. Second, we
estimate the eigenfunctions using a limited number of
terms, k>m, as shown in equation (7.2).

(b) Estimating eigenfunctions divectly
Genetic PCs or eigenfunctions have usually been
estimated by first obtaining full rank estimates of the
genetic covariance matrix, and then carrying out an
eigenvalue decomposition of the matrix. Alternatively,
PCs have been determined at the phenotypic level, and
genetic parameters of the new variables have been
estimated (e.g. Chase er al. 2002). A better approach
would be to estimate the genetic eigenfunctions
directly, and, at the same time, to restrict estimation
to the most important eigenfunctions (Kirkpatrick &
Meyer 2004). Fortunately, this can readily be done
within the mixed-model framework described above. In
essence, it only requires a simple reparametrization of
the functional linear model given by equation (7.3).

Let Z*=Z(E,®Iy,), W'=W(E,QIy), o=
(E,,®Iy)a, and v* = (E) ®Iy)y, where E, and E,
are the matrices of eigenvectors of K, and K,,
respectively. These matrices, E, and E,, are orthonor-
mal, so at full rank
y=Xb+Za "+ W'y* +e¢, (7.5)
is an equivalent model to equation (3.5). The MME for
equation (7.5) are of the same form as given in equation
(4.1),butwith Z, W, a and 7y replaced by Z*, W*, a* and
v*, respectively. Furthermore, we have diagonal
matrices of eigenvalues 4, and 4,, instead of K, and K,.

Elements of the vector a*, «, are the additive
genetic effects for the eigenfunctions. This implies that
estimates of the «;, can be used to select animals for
desired transformations in the rth eigenfunction.

If we truncate E,, to the first m, columns only, a* has
only m, elements for each animal, corresponding to the
genetic effects for the leading eigenfunctions.
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Moreover, the number of equations in the MME can be
greatly reduced, as the number of genetic effects fitted
is now proportional to m, rather than %,. Analogously,
we can restrict the order of fit for permanent
environmental effects to m, <k,.

(¢) Reduced rank covariance functions
Considering the leading eigenfunctions only, the
corresponding CFs (equation (7.4)) have reduced
rank, m, <k, and m,<k,. We can estimate the CFs,
i.e. the coefficients of the eigenfunctions and the
corresponding eigenvalues, based on the reparame-
trized mixed model equation (7.5) in the same way as
described in §6 for the general RR model. Only REML
estimation is considered here.

For a trajectory modelled by £ RR coefficients, the
full-rank coefficient matrix has k(k+ 1)/2 covariances
among RR to be estimated. If we fit the first m
eigenfunctions only, the number of parameters describ-
ing the CF is reduced to m(2k—m+1)/2. While there
are km elements in the first m eigenfunctions and m
eigenvalues, the number of parameters is less as E is
orthonormal. To accommodate these constraints easily,
Kirkpatrick & Meyer (2004) suggested replacing
matrices E above with Q=EA"?, ie. to scale the
eigenfunctions by the square root of the corresponding
eigenvalues. As shown in Meyer & Kirkpatrick (2005),
the rth column of Q then has £+ 1—r ‘free’ elements,
while the remaining r—1 elements are given by the
orthogonality constraints on @Q, and can be determined
as solutions to a linear system of equations.

This parametrization puts all parameters to be esti-
mated into the design matrices, now Z* = Z(Q,Q Iy )
and W* = W(Q, ®I). As the scaled eigenfunctions a*
and y* have covariance matrices I,, and I, , the (log)
likelihood to be maximized is reduced to

—2log L = const. + my log|A4| + log|R)|

+ log|C*| + ' Py, (7.6)

where C¥* is the coefficient matrix in the correspond-
ingly reparametrized MME (see Meyer & Kirkpatrick
2005 for full details).

Strategies outlined above (§6) to evaluate and
maximize log L are directly applicable to the esti-
mation of eigenfunctions. An AI-REML algorithm is
described in Meyer & Kirkpatrick (2005). With the
number of random effects fitted and the size of the
MME to be handled proportional to m, and m,, rather
than &, and k,, computational requirements can be
reduced dramatically compared with full-rank analyses.

Parametrizing to the ‘free’ elements of matrices Q,
maximization of log [ represents an unconstrained
optimization problem. Estimates of the corresponding
eigenvalues can be obtained by calculating the vector
norm for the columns of Q. However, with V highly
nonlinear in the parameters to be estimated, conver-
gence of standard algorithms for this parametrization
has been found to be slow (James ez al. 2000; Meyer &
Kirkpatrick 2005). This can be alleviated by a rotation
of the parameter space (Smith ez al. 2001).

Let Q*=QT, where T defines an orthogonal
transformation. Since TT =1, this does not affect the
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likelihood. A suitable choice might be T=E', so that
Q*=EA"FE/, which is the matrix square root of K.
Alternatively, consider the Cholesky factorization
K= LgL, and the singular value decomposition of
Lg=U,DU,. The left singular vectors of Lg are equal
to the eigenvectors of K and the corresponding singular
values are the square root of the eigenvalues (Harville
1997, p. 232), i.e. Q=U;D. Hence, choosing the
matrix of right singular vectors as our transformation,
T=U,, the rotated matrix of parameters to be
estimated is Q*=Lg. This implies that we can
maximize log £ with respect to the non-zero elements
of the first m columns of the Cholesky factor of K, to
obtain REML estimates of the first m eigenfunctions of
K. This parametrization has been found to have good
convergence properties (Groeneveld 1994; Hofer
1998; Thompson & Mintysaari 1999).

(d) Sampling properties

As well as reducing computational requirements,
estimation of only the most important eigenfunctions
can yield estimates with smaller errors. This is
illustrated with a small simulation study.

Matrices of mean crossproducts for 500 unrelated
sires with four progeny each and three or five records
per progeny, were sampled from a Wishart distribution.
Genetic effects were assumed to have CF as considered
by Kirkpatrick ez al. (1990), i.e. vech(K,)' = (1348.13,
66.55-111.68, 24.27-14.01, 14.51) with %k,=3 and
eigenvalues 4,; =1360.8, A,,=24.5 and A,5=1.5. For
simplicity, records were assumed to be taken at the
same time for all animals and equally spaced. Perma-
nent environmental effects were considered absent, and
temporary environmental variances were assumed to be
homogeneous with ¢°=625. Maximum likelihood
estimates were obtained as described above (§5),
considering increasing numbers of eigenfunctions, i.e.
my,=1, 2 and 3. Accuracy of estimates was measured as
relative error, (9/0 — 1) X100 (in %), for 0=0>, A15 Aoy
A3, G. The error in the genetic CF, ¢, was evaluated
by numerical integration. Errors in estimated eigen-
functions were measured as the angle between ‘true’
and estimated eigenvectors (e,) of K,, i.e. (180/m)
arccos(éle,/(|é,]|e,]); in °), where || is the norm of a
vector; see Kirkpatrick & Meyer (2004) for details.

Results are summarized in table 1. When estimating
the first eigenfunction only, estimates of the residual
variance tended to be inflated. Similarly, estimates of
eigenvalue 4,; were somewhat lower than the popu-
lation values, though deviations were well within the
range of sampling errors. The first eigenfunction, k1,
was estimated accurately for all analyses, with mean
deviations from the true direction less than 1°. While
error in estimates of ¢ were largest for m,=1,
differences to the analyses fitting more components
were small. Results indicated that there was little
advantage in fitting the second eigenfunction, and that
there was nothing to be gained by estimating the third
eigenfunction.

8. SELECTION ON CURVES
An important component of quantitative genetics is the
selection of animals with desired characteristics, and



Funcrion valued traits K. Meyer & M. Kirkpatrick 1451
Table 1. Means (X) and standard deviations (s.d.) of relative errors in parameter estimates (50 000 replicates).
fit relative error in estimates of
a” (%) Aa1 (%) Aaz (%0) Aoz (%) Ka1 () Kaz () Ka3 () G (%)
three records/animal
my=1 X 6.96 —3.03 — — 0.80 — — 5.11
s.d. 2.38 4.85 — — 0.43 — — 2.78
my=2 X 0.44 —0.19 —0.95 — 0.73 8.40 — 4.28
s.d. 2.95 4.93 32.17 — 0.39 7.24 — 2.61
my=73 X —1.83 0.98 15.07 156.32 0.75 8.23 8.22 4.53
s.d. 4.32 5.18 40.04 354.45 0.39 6.80 6.81 2.79
five records/animal
me=1 X 4.28 —1.01 — — 0.63 — — 3.94
s.d. 1.65 3.95 — — 0.34 — — 1.97
my=2 X 0.26 —0.06 —0.26 — 0.60 6.84 — 3.49
s.d. 1.79 3.95 24.25 — 0.32 5.57 — 2.11
my,=3 X —0.31 0.10 3.25 48.25 0.61 6.64 6.63 3.50
s.d. 1.93 3.96 24.73 185.53 0.32 5.28 5.30 2.11

the prediction of response to selection. Standard
methods to quantify selection and predict response,
developed for traits which are points, extend naturally
to FV traits.

(a) Quantifying selection

Two related measures for the strength of selection on
quantitative traits are in use. The first is the selection
differential function, which is the difference in the
means of the selected individuals (M()*) and the
population as a whole (M(z)),

() = M@)" — M), (8.1)
If only differentials at individual points are known, we
may estimate s(f) by interpolation. With artificial
selection, the selection differential is controlled by the
breeder, while in studies of natural populations it needs
to be estimated, for instance, from data on survival of
individuals and their trait values.

The second measure is the selection gradient
function, ¥(-). It is a more informative measure in a
number of situations, and has a simple interpretation.
The value of the selection gradient, y(z), reflects the
intensity of selection acting to increase or decrease the
population’s mean at point z. In contrast, the selection
differential, s(z) also includes the effects of selection
acting at other points.

It is not always possible to observe the selection
differential directly. For example, we may be interested
in a trait that changes with age, and individuals die at
different ages. We cannot observe the trait values at a
given age for individuals that die at a younger age, so we
cannot estimate the selection differential at that age. We
can, however, still estimate /(7). The selection gradient
is equal to the partial regression of relative fitness on to
the trait value (Lande & Arnold 1983). We therefore
estimate (z) at each of several ages, then link these
points into a continuous function by interpolation
(Kirkpatrick & Lofsvold 1992). A similar situation
appears in studies of reaction norms, where an
individual’s phenotype depends on the environment.
If each individual can only be observed in a single
environment, we cannot observe the selection differen-
tial function s(-) directly. However, we can estimate
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Y(¢) within each of several environments ¢ by regressing
the trait value on to fitness, and then interpolate, taking
into account the frequency with which the environ-
ments are encountered (Gomulkiewicz & Kirkpatrick
1992).

Another use of the selection gradient is in predicting
evolutionary trajectories, based on assumptions about
how a trait affects fitness. Given a fitness function and
the distribution of the trait, we can calculate mean
fitness, W, in a population. When relative fitnesses for all
individuals are constant over time, the selection gradient
is equal to the gradient in mean fitness as a function of
the trait mean (Gomulkiewicz & Beder 1996)

(@) = d In(W)/dM (). (8.2)

Intuitively, the strength of directional selection acting at
each age is equal to the rate at which changing the mean
for the trait at that age would increase the population’s
mean fitness.

(b) Response to selection

Given a population’s additive genetic covariance
function and either the selection differential or the
selection gradient, we can calculate the population’s
mean function in the next generation (Kirkpatrick &
Heckman 1989; Beder & Gomulkiewicz 1998)

M'(2) = M) + [G(t, x)y(x) dx. (8.3)

If an estimate of s(-) is available, the selection gradient
function can be obtained by evaluating both s(z) and the
phenotypic covariance function, ¥(z, x) on a fine grid of
points, to form s and V, respectively. An estimate
of Y(t) is then obtained by interpolating the vector
p=Vls.

As outlined above (§7), it is advantageous to
formulate the functional linear model in terms of its
genetic and environmental PCs. Likewise, response to
selection can be described by the genetic PCs. We can
rewrite the selection gradient function as

ko
YD) = w,e,(), (8.4)
r=1
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where ¢,(r) are the same basis functions as used to
estimated the PCs, and w= {w,} are a set of regression
coefficients. These can be estimated, for instance, using
LSQ. For orthonormal basis functions, such as
Legendre polynomials, the predicted response to
selection for m, genetic PCs, estimated by correspond-
ing eigenvectors e.;= {e.}, is then

Ry ke
Z Cair Wy Aaiz eaird)r(t)
r=1 r=1
(8.5)

The form of the right-hand side of equation (8.5) is
convenient, as it does not involve integrals. Further-
more, it shows how selection response is determined by
the interactions between the selection gradient and the
genetic PCs. The first product, e/;w in vector form,
measures how strongly selection ‘loads’ on to the
respective PCs, i.e. to what extent the deformation of
the growth trajectory favoured by selection coincides
with that mode of genetic variation. The second
product, A,el;k,, represents the amount of genetic
variation available for the ith direction.

mﬂt

JG@ ) dx =)

=1

(c) Selection strategies

When selecting for several, correlated traits, selection
indices are used to combine estimates of genetic merit
for individual traits, and to identify animals which
maximize the overall response to selection. Index
weights are derived as a function of the phenotypic
covariance matrix among the selection criteria, and the
genetic covariances with the selection objective. Again,
this extends readily to FV traits (Kirkpatrick & Bataillon
1999; Kirkpatrick 2002). Togashi & Lin (2003)
demonstrated equivalence of selection based on an
index of estimated breeding values for part-lactations
and selection based on estimates of RR coefficients, to
improve persistency of lactation in dairy cows.

Genetic changes in the mean trajectory due to
selection can be quantified using the PC approach
described above (§7). Genetic PCs or eigenfunctions
that have large eigenvalues represent the deformations
in the shape of the mean trajectory for which the
population has large amounts of genetic variation, i.e.
they show the kind of changes readily achieved by
selection (Kirkpatrick er al. 1990). Further, these PCs
indicate the genetic changes likely to occur as correlated
responses to selection. For example, the leading PC for
growth of animals is typically positive for all ages. This
implies that an increase or decrease of the mean at all
ages is relatively easy to produce. Conversely, selection
to increase (or decrease) mean size at any one age will
result in a corresponding change in size for all other ages
as a correlated response to selection. PCs that change
sign indicate trade-offs: selection that increases the
mean at one age will decrease the mean at other ages.
Optimal breeding strategies for FV traits can readily be
designed by deriving selection index weights for
individual PCs (van der Werf 2002).

9. EXTENSIONS
For simplicity, the model considered so far was
univariate and comprised random effects of the animal
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only. Extensions to more complicated scenarios, invol-
ving additional random effects, multiple traits or more
than one control variable, are conceptually straightfor-
ward. Implementations, however, have been hampered
by computational and data structure problems and
require further research.

Models including additional random effects have
been used in the analysis of data measured on pigs
where litter effects were to be modelled (Schnyder ez al.
2001; Huisman ez al. 2002), and growth data from beef
cattle (e.g. Albuquerque & Meyer 2001; Meyer 2001a;
Nobre er al. 2003), where both additive genetic and
permanent environmental effects of the dam needed to
be taken into account.

(a) Multivariate analyses

In some cases, we may have records on several FV
traits. Commonly, these have the same control variable
t. Examples are morphological characters that change
with age (Gomulkiewicz & Kirkpatrick 1992), or feed
intake and live weight of animals (e.g. Veerkamp &
Thompson 1999). Each trait is then modelled by a set
of RR regression coefficients, and we need to estimate
covariance matrices among RR coefficients of size
equal to the total number of coefficients across all traits.
Even for small numbers of traits and low orders of fit,
this can result in substantial numbers of parameters to
be estimated. Reduced rank estimation, as described in
(§7), then becomes all the more appealing. The
coefficients of the CFs for individual traits are then
given by the diagonal blocks of the estimated covari-
ance matrices, while the off-diagonal blocks determine
the cross-covariance functions between traits (Meyer &
Hill 1997).

This encompasses the scenario where we have a
mixture of FV traits and traits that have a single record
only. At the genetic level, we can simply treat the latter
as ‘curves’, which are described by a single RR
coefficient. At the environmental level, we cannot
separate temporary from permanent environmental
effects for the traits with single records. Hence we need
to parametrize the mixed model, so that only the sum of
environmental effects and their covariances are
required. In a REML framework of estimation, this is
readily done by fitting an equivalent model that
incorporates permanent environmental effects in the
residual; see Meyer (20016) for details. For Bayesian
analyses via Gibbs sampling, constraints on parameters
have been used for this purpose (Schnyder ez al. 2002).

(b) Multiple control variables

In other cases, we may have more than one control
variable, for instance, time or age and an environmental
variable, such as temperature, season or level of
production in a herd. Alternatively, we may have spatial
data, described by longitude and latitude. Unless we
can assume the different control variables to act
independently, we need to model the resulting surface
by regressing on bivariate basis functions. The CFs are
then functions of four variables. More control variables
are conceptually possible, but are intrinsically difficult
and have not been considered. Again, the number of
parameters to be estimated increases rapidly with
increasing dimension. Moreover, computational
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difficulties and incidence of numerical problems are
likely to be exacerbated. As above, direct estimation of
the leading eigenfunctions only may make analyses
more tractable.

(¢) Reaction norms
A particular application of the FV approach involves
the so-called reaction norms, i.e. the curves that
describe how a phenotype is expressed as a function
of an environmental variable. These have long been
considered in evolutionary biology, where both stan-
dard (Via & Lande 1985) and FV traits have been
studied (Gomulkiewicz & Kirkpatrick 1992; Kirkpa-
trick 1993). Only recently, however, have reaction
norms attracted interest in modelling of data from
livestock improvement programmes, in particular,
in relation to genotype Xenvironment interactions
(de Jong & Bijma 2002). This concept assumes that a
given genotype has a different phenotype in different
environments, i.e. that it has phenotypic ‘plasticity’
(Falconer 1952). Considering non-FV traits, import-
ance of and models for variation in environmental
variability linked to genetic effects have recently been
examined by Hill (2002) and Hill & Zhang (2004).
Reaction norms are readily modelled in an RR
framework, if a suitable environmental variable can be
identified. Corresponding RR analyses have recently
been carried out for data from livestock improvement
programmes (e.g. Kolmodin er al. 2002; Calus &
Veerkamp 2003). Optimization of selection pro-
grammes considering environmental sensitivity
described by a reaction norm has been considered by
Kirkpatrick & Bataillon (1999), de Jong & Bijma
(2002), Kolmodin er al. (2003) and Kolmodin &
Bijma (2004).

10. CONCLUSIONS

I believe the random regression and covariance func-
tion methods will completely replace the use of specific
time point correlations (Hill 1998, p.34)

Random regression models provide a powerful
and—with hindsight—obvious framework for quanti-
tative genetic analyses of data that represent curves. In
essence, they are straightforward extensions of the
linear models invoked for traits that are points. Hence,
standard quantitative genetic theory applies, requiring
only minor extensions to accommodate the ‘infinite-
dimensional’ nature of function valued traits.

Moreover, models that are linear in the regression
coefficients are readily accommodated in the linear
mixed model, which is a standard for quantitative
genetic analyses, especially for data from livestock
improvement programmes. Consequently, regular
methods for multivariate estimation in the mixed
model can be used, i.e. best linear unbiased prediction
for the estimation of breeding values and REML or
Bayesian procedures for the estimation of covariance
functions, again only needing minor modifications.

Of particular interest is the truncated expansion of
trajectories, based on the leading eigenfunctions of the
corresponding covariance function. For highly corre-
lated traits, the first few eigenfunctions are likely to
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explain the bulk of variation and thus give a sufficiently
accurate approximation of the trajectory. This can
result in very parsimonious models. As shown, this
representation can be accommodated in the mixed-
model-based analyses, and is thus likely to see
increasing use in the analysis of function valued traits
in future.
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