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Recent advances in human genomics have made it possible to better understand the genetic basis of
disease. In addition, genetic association studies can also elucidate the mechanisms by which ‘non-
genetic’ exogenous and endogenous exposures influence the risk of disease. This is true both of
studies that assess the marginal effect of a single gene and studies that look at the joint effect of genes
and environmental exposures. For example, gene variants that are known to alter enzyme function or
level can serve as surrogates for long-term biomarker levels that are impractical or impossible to
measure on many subjects. Evidence that genetic variants modify the effect of an established risk
factor may help specify the risk factor’s biologically active components. We illustrate these ideas with
several examples and discuss design and analysis challenges, particularly for studies of gene–
environment interaction. We argue that to increase the power to detect interaction effects and limit
the number of false positive results, large sample sizes will be needed, which are currently only
available through planned collaborative efforts. Such collaborations also ensure a common approach
to measuring variation at a genetic locus, avoiding a problem that has led to difficulties when
comparing results from genetic association studies.
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1. INTRODUCTION
Tremendous advances in genomics, population gen-

etics and genotyping technology over the last few years
have dramatically improved our ability to test for

associations between genes and disease in order to

better understand how genetic variation correlates with

variation in risk of disease. What is perhaps less
immediately clear is that genetic association studies

can also tell us something about traditional environ-

mental risk factors such as exposure to carcinogens

(e.g. smoking), lifestyle (e.g. physical activity) and
physical characteristics (e.g. body mass index).

For example, if a particular exposure is difficult to

measure accurately or too expensive to measure on a

large number of subjects, we can study a gene that

influences an intermediate phenotype that lies on the
causal pathway between the exposure and disease.

Finding an association between that gene and disease

will help build the case for a causal role for the

environmental exposure. We can also use what we
know about genes to help dissect exposures that are

complex mixtures of diverse components. There are

many chemicals in cigarette smoke or in well-cooked

red meat—which of them drives risk of colorectal

cancer? By looking to see whether disease risk in
exposure categories differs by genotype for a gene that

encodes an enzyme that metabolizes a specific sub-

strate, we can infer that that particular substrate plays a
ntribution of 12 to a Discussion Meeting Issue ‘Genetic
and human health’.
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causal role in the risk of disease. Further, if we believe
that individuals who carry a particular variant are more
sensitive to the environmental exposure, we might
focus on carriers to test whether that exposure is
associated with disease risk (or focus on exposed
subjects to test whether carriers of a particular
genotype are at increased risk). Knowing how risk of
disease varies across strata defined by genotype and
exposure may also help suggest individualized treat-
ment of disease. Pharmacogenetics is a particular
example of this where ‘exposure’ is the drug dose.
Finally, it has been suggested that detailed knowledge
of the risks to particular gene-exposure strata could be
used to provide personalized prevention, although
genetic information may have poor predictive value
for the modest effects anticipated in complex disease
and the widespread use of genetic testing raises social
and ethical concerns.

To further illustrate these ideas, we start with a brief
review of the concept of ‘gene–environment inter-
action’, which we use loosely to mean the joint effect of
genes and environment. We then comment briefly on
statistical versus biological interaction modelling. We
review available study designs for genetic association
studies with particular emphasis on estimating joint
gene–environment effects and close with a discussion of
future trends.
2. GENE–ENVIRONMENT INTERACTION
The modern concept of gene–environment interaction
dates back at least to the beginning of the twentieth
century, before the discovery of DNA. In a 1902
q 2005 The Royal Society
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Figure 1. Four qualitative patterns of gene–environment
interaction described by (and numbered after) Haldane
(1938). The y-axis represents a trait value (e.g. mean height,
disease prevalence or expected survival); the x-axis represents
two environmental conditions.

1610 P. Kraft & D. Hunter Epidemiology and genetic association
landmark paper arguing that differences in chemical
metabolism were inherited according to the principles
of Mendelian genetics, Archibald Garrod noted that
“such slight peculiarities of metabolism will necessarily
be hard to trace by methods of direct analysis and will
readily be masked by the influences of diet and of
disease” (Garrod 1902, p.1620). He also suggested a
genetic basis for “idiosyncrasies as regards drugs and
the various degrees of natural immunity against
infections” (Garrod 1902, p.1620).

In his popular 1938 book debunking eugenic
sterilization policies then in vogue in Western Europe
and the United States, J. B. S. Haldane presented simple
conceptual models for the ‘interaction of nature and
nurture,’ shown in figure 1 (Haldane 1938). Under
interaction model I, one of two genetically distinct
populations (A and B) always has a higher trait value
(mean height, weight, disease incidence, etc.) than the
other, regardless of environment. Haldane gave the
example of two breeds of dogs, mastiffs and dachshunds,
under lean (X) and plentiful diets (Y)—the mastiff will
be heavier than the dachshund in either environment.
Under interaction model II, however, the relative
position of the two populations changes depending on
the environment. Haldane again turned to animal
husbandry to illustrate. “Let A be Jersey cattle and B
Highland cattle. Let X be a Wiltshire dairy meadow and
Ya Scottish moor. On the English pasture the Jersey cow
will give a great deal more milk than the highland cow.
But on the Scottish pasture the order will probably be
reversed. The Highland cow will give less milk than in
England. But the Jersey cow will give still less. In fact, it
is very likely that she will give none at all.”

Over the next fifty years many human diseases were
discovered to follow the patterns outlined by Haldane,
as reviewed in part by Khoury et al. (1988). For example
(model I.b), exposure to sunlight increases the risk of
skin cancer in all people, but the increase in risk is
greater in xeroderma pigmentosa (XPD) patients. It is
clear that gene–environment interaction is ubiquitous in
the development of human traits, including disease,
although most of the effects will be far more subtle than
Haldane’s farm animals or XPD and skin cancer.
3. STATISTICAL MEASURES AND TESTS OF
INTERACTION
For simple dichotomous genotypes (e.g. carrier versus
non-carrier) and exposures (e.g. ever/never smoker) it is
practical and useful to calculate stratum-specific trait
summaries: for continuous traits, mean trait values for
each gene–environment cross-classification (table 1);
for binary traits, absolute incidence rates (if available) or
relative measures such as relative risks or odds ratios
(table 2). This presentation has the advantage of being
‘closest to the data’ (in the case of table 2 actually
reporting the raw data) while allowing the reader to
quickly assess the joint action of genes and environment
(Botto & Khoury 2004). Formal statistical tests for
gene–environment interaction—which are actually
tests for departure from a specific statistical model
for interaction—are less useful here, as (i) the test
depends on the trait measurement scale (e.g. raw or
log-transformed measurements for continuous traits;
Phil. Trans. R. Soc. B (2005)
incidence or relative risks for binary traits; Greenland &

Rothman 1998; Botto & Khoury 2004) and (ii) formal

rejection or retention of a statistical model may yield

little insight, as multiple (potentially contradictory)

biological models can be consistent with the same

statistical model for interaction (Thompson 1991;
Cordell 2002).

It is impractical to fit such stratified models for more

finely cross-classified data (multiple exposure

categories, multi-allelic markers such as haplotypes of

linked single nucleotide polymorphisms (SNPs) or

multiple genes) as many strata will have few obser-

vations, leading to highly variable (or inestimable)

strata (Robins & Greenland 1986; Botto & Khoury

2004). Here it seems some sort of statistical modelling

will be indispensable. For example, a hierarchical

model, which treats the ‘first-level’ stratum-specific

parameters as random variables and then regresses
these on ‘second-stage’ variables (e.g. groupings of

genes based on function or decompositions of environ-

mental exposures into their biologically active com-

ponents) could be fit (Aragaki et al. 1997; Hung et al.
2004). Various levels of detail can be included in the

second-stage model, improving the model fit if the

details are accurate but harming the model fit if they are

not. Alternatively, a space of potential working models

based on simple ‘main effects plus cross-product

interaction’ parameterizations can be explored and

summarized using Bayesian model-selection and

model-averaging techniques (Conti et al. 2003). The

principal aim of both these approaches is to minimize
prediction error (i.e. to reduce over-fitting) while

producing parsimonious and useful summaries of the

data; they do not necessarily aim to estimate

parameters with direct biological meaning. Another

approach (dubbed ‘toxikinetic modelling’) builds very

detailed models for the joint action of genes and

environmental exposures (perhaps including external

information on substrate-specific kinetics for different

enzyme isoforms; Conti et al. 2003; Cortessis &

Thomas 2004); parameter estimates have an immedi-

ate biological interpretation but are necessarily model-

specific.



Table 1. Mean trait values by gene–environment stratum.
(Dichotomous exposure (1, exposed) and genotype coding
(1, carrier of minor allele); Ȳ is mean trait in gene–environment
stratum ij; s.d.ij is the standard deviation of the trait.)

genotype

exposure

0 1

0 �Y00 (s.d.00) �Y01 (s.d.01)
1 �Y10 (s.d.10) �Y11 (s.d.11)

Table 2. Odds ratios from an unmatched case–control study
by gene–environment stratum.
(After Botto & Khoury (2004). Odds ratios are calculated
relative to unexposed non-carriers (EZ0, GZ0). For
example, the usual cross product estimate for OR10 is
n10m00/(n00m10). CIij is the confidence interval for ORij.)

case control OR

GZ0, EZ0 n00 m00 1 (ref )
GZ0, EZ1 n01 m01 OR01 (CI01)
GZ1, EZ0 n10 m10 OR10 (CI10)
GZ1, EZ1 n11 m11 OR11 (CI11)

G

E IP D

G

E DIP1

IP2

(a)

(b)

Figure 2. A cartoon depiction of ‘Mendelian randomization’
after Thomas & Conti (2004). In scenario (a), finding an
(induced) association between the gene (G) and disease (D)
supports the hypothesis for a causal relationship between
environmental exposure (E) and disease. In scenario (b), an
association between the gene and disease gives no infor-
mation about the causality of the exposure. IP, internal
phenotype.
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If the primary scientific question is not ‘how do this

gene and this environmental exposure jointly affect trait

distribution?’ but simply ‘does this gene or this

environmental exposure affect trait distribution?’ then

it will often suffice to test the marginal association

between a gene and disease—even if the principal focus

is on the environmental factor. This is the idea behind

‘Mendelian randomization’, illustrated in figure 2a
(Clayton & McKeigue 2001; Brennan 2004; Thomas &

Conti 2004). If an environmental exposure influences

the risk of disease through an internal phenotype that is

itself influenced by variation in a known gene, then the

association between the exposure and disease can be

tested by examining the association between the gene

and the disease. This approach—apparently first

proposed to test the causal relationship between

serum cholesterol and cancer by studying variants in

the apolipoprotein A (APOE ) gene (Katan 1986;

Keavney 2004)—has several potential advantages:

accurate measurements of the environmental exposure

may be unavailable or prohibitively expensive, and

genotypes are not susceptible to recall bias and other

forms of confounding seen in case–control studies.

However, other sources of bias are possible in genetic

association studies (Thomas & Conti 2004). If

differences in allele frequencies and disease rates are

correlated across subpopulations, a significant associ-

ation need not imply a causal relationship between the

gene (or the environmental exposure) and disease (this

is known as population stratification bias; Thomas &

Witte 2002; Wacholder et al. 2002). Further, the gene

may influence several internal phenotypes, so the

association between variation in the gene and disease

may not be due to the same internal phenotype being

affected by the environmental exposure (see figure 2b);

again, a significant association between the gene and

the trait may not indicate a causal role for the exposure

(mediated through the internal phenotype).
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4. AVAILABLE STUDY DESIGNS
Until recently, many studies of genetic susceptibility to
disease have collected limited (if any) information on
environmental exposures. Similarly, traditional epide-
miologic studies have collected detailed information on
exposure but have not collected blood samples or other
sources of DNA that would allow joint study of genes
and environment. Now, with a greater focus on
multifactoral and common complex diseases, there is
increased awareness of the need to collect high-quality
information on both genes and environmental
exposures in a population-based context (Thomas
2000).

Table 3 summarizes the three main genetic associ-
ation designs—retrospective case–control, prospective
cohort and family-based—in terms of characteristics
relevant to the study of gene–environment interaction:
their susceptibility to population stratification bias,
recall bias, survivor bias, the availability of prospec-
tively collected plasma phenotypes (or other relevant
biomarkers) and the required sample sizes. We briefly
summarize these designs and their characteristics here;
more detailed comparisons have been provided by
Caparaso et al. (1999), Langholz et al. (1999) and
Garcia-Closas et al. (2004).
(a) Family-based designs

Family-based association designs use the assumed
Mendelian transmission of alleles from parents to
offspring to test and estimate the association between
genes and traits (Laird et al. 2000; Weinberg & Umbach
2000). Because they condition on observed parental
genotypes (or an appropriate sufficient statistic in case
the parental genotypes are missing, as in case–sibling
control studies) and rely on departures from Mendelian
transmission, they are immune to population stratifica-
tion bias (if appropriately analysed). In some realistic



Table 3. Select characteristics of well-established designs for gene–environment interaction.

characteristic

study design

family-based case–control cohort

potential for population stra-
tification bias

nil if appropriately analysed varies; able to be minimized
via good design, genomic
control

varies but generally less than
retrospective case–control
study; able to be minimized
via good design, genomic
control

potential for recall bias moderate to high moderate to high nil
potential for survivor bias moderate to high moderate to high nil to moderate if DNA is not

obtained on all cases and
controls at base-line

ability to use plasma pheno-
types in cases

no no yes

required sample sizes achiev-
able?

common disease: yes common disease: yes common disease: yes with
adequate follow up

rare disease: yes rare disease: yes rare disease: no, unless mul-
tiple studies are pooled
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situations, family-based tests of gene–environment
interaction may be more powerful than analogous
tests in population-based studies (Gauderman 2001).
However, it may be more difficult to collect genetic
information on parents (especially for late-onset
disease) or find appropriate sibling controls (Witte
et al. 1999; Weinberg & Umbach 2000), and family-
based tests generally have less power for genetic main
effects than a population-based case–control study with
the same number of genotyped subjects.

Since information on environmental exposures (and
genotypes) is usually collected retrospectively, family-
based studies share problems of recall bias and survivor
bias with retrospective case–control studies.
(b) Case–control designs
In retrospective case–control studies, data on environ-
mental exposures and samples for DNA and biomarker
studies are obtained after diagnosis of disease in the
cases. Selection bias occurs when controls do not
represent the population in which the cases occurred
(e.g. hospital-based controls); survival bias occurs when
the cases that can be interviewed or genotyped differ
systematically from those who cannot (e.g. cases with a
particularly lethal genetic form of the disease die before
they can be enrolled in the study). Population stratifica-
tion bias can arise if the ethnicity of the controls is
substantially different from that of the cases and the
allele frequencies of the variants being tested also vary by
ethnicity. In many cases, large bias due to population
stratification can be eliminated by following basic
principles of good study design and matching on self-
reported ethnicity (Wacholder et al. 2000, 2002; Cardon
& Palmer 2003; Reiner et al. 2005). However, this may
not suffice for recently mixed populations, such as
African or Hispanic Americans (Kittles et al. 2002;
Thomas & Witte 2002), and even in relatively
homogeneous populations such as non-Hispanic Euro-
pean Americans small biases cannot be ruled out
(Freedman et al. 2004)—which is relevant as the effects
of many genes underlying complex traits may them-
selves be small. ‘Genomic control’ methods that test and
adjust for population stratification are available,
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although they require subjects be genotyped on a second
panel of putatively anonymous markers (Devlin &
Roeder 1999; Pritchard et al. 2000; Reich & Goldstein
2001; Tang et al. 2005)—preferably ‘ancestry informa-
tive markers,’ markers that are known to have different
allele frequency in ancestral populations, for example,
Spanish, Native Americans and Africans from Hispanic
Americans (Bonilla et al. 2004).

The major problem with respect to gene–environ-
ment interactions is likely to be misclassified infor-
mation on environmental exposures. ‘Recall bias’ can
arise if cases report their pre-diagnosis exposure
histories differently after their diagnosis relative to
what they would have reported prior to diagnosis.
Although this form of misclassification may not bias the
estimates of certain gene–environment interaction
parameters (Garcia-Closas et al. 1998), it will certainly
bias the estimates of environmental ‘main effects’ and
reduce the power to detect interactions.

Finally, it is difficult to assess the effect of such
biomarkers (which might in principle represent better
measurements of long-term environmental exposure,
e.g. plasma nutrient levels) on disease risk, or the effect
of genes on biomarker levels in cases because any
biomarkers are collected after disease diagnosis and
temporality is impossible to establish—did altered
biomarker levels lead to disease or vice versa?
(c) Cohort designs

For prospective cohort studies, information on
environmental exposures is collected at the base-line
(and ideally at repeated subsequent follow-up inter-
vals) on a large number of disease-free subjects. DNA
and biomarker information should also be collected at
base-line, although DNA for nested case–control
studies could be obtained from cases (and matched
controls) as soon as possible after diagnosis for existing
prospective studies without banked samples (although
this creates the potential for survivor bias). Effective
follow-up and the prospective collection of data on
genes and environmental exposures should minimize or
eliminate selection, survivor and recall biases. If follow-
up and participation in nested case–control studies
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does not differ by ethnicity, then the potential for
population stratification bias is reduced relative to
retrospective case–control studies, although it may still
be a concern in some populations and require the use of
appropriate genomic control methods.

The principal difficulty with prospective studies is
the large number of subjects who must be enrolled at
the base-line in order to ensure an adequate number of
cases for reliable analysis. This limits cohorts to the
study of relatively common diseases such as myocardial
infarction or the more common cancers. Prospective
studies would not yield sufficient power to study rare
diseases. Furthermore, prospective studies may be less
practical when the focus is on a particular subtype of
disease, for example, tumours with similar gene
expression profiles (Carr et al. 2004). Not only are
these subtypes by definition less common, but it may
also be difficult to obtain the fresh tissue necessary to
classify cases.

(d) General design concerns

Whether formally testing for gene–environment inter-
action, estimating stratum-specific parameters or using
statistical learning machinery to explore unsuspected
gene–environment combinations, sample size is a
major limiting factor in the study of gene–environment
interaction. A rule of thumb says that the sample size
necessary to depart from a multiplicative model for the
joint effect of two variables (on the odds ratio or relative
risk scale) is at least four times the sample size needed
to evaluate the main effect of either of the variables
(Smith & Day 1984). Given that environmental
exposures are almost certainly measured with some
error, the necessary sample sizes will be even larger
(Garcia-Closas et al. 1999; Wong et al. 2003, 2004).
Lack of power is already a key reason why so many
studies of main genetic effects fail to replicate results
and are probably false positives (Hirschhorn &
Altshuler 2002; Wacholder et al. 2004); with current
sample sizes in the order of a few hundred, only the
strongest interaction effects are likely to be replicable
and most ‘significant’ interactions will be false
positives.

As ongoing prospective cohort studies will not be
able to accrue sufficient numbers of cases for rare
diseases, well-designed case–control studies remain
the only option for the assessment of gene–environ-
ment interaction for rare diseases; case–control
studies are also a cost-effective option for common
diseases. One way to increase the power of cohort
studies is to pool data across several studies. For
example, the NCI Breast and Prostate Cancer Cohort
Consortium (BPC3) is currently examining gene–
environment interactions in over 6000 cases of breast
cancer and 8000 cases of prostate cancer, pooled
across 10 prospective studies with over 800 000
people under follow-up and over 7 million person-
years of follow-up already accrued (http://epi.grants.
cancer.gov/BPC3/cohorts.html). An additional benefit
of such an approach is the increased coordination
among participating studies, across disciplinary lines
(linking genomics and epidemiology) and among the
epidemiologic community in general. To ensure
across-study comparability of the genetic variants
Phil. Trans. R. Soc. B (2005)
measured, participating studies will have to choose a
common set to genotype. This is particularly
important given the interest in ‘tagging’ SNPs, as
results from equally efficient but distinct sets of tag
SNPs may be difficult to synthesize. Further, to the
extent that the tag SNPs and the data used to choose
them are made public (as the BPC3 has; http://www.
uscnorris.com/MECGenetics/), other researchers can
use this information, saving time and resources and
ensuring greater comparability. Combining infor-
mation across several ongoing cohorts can mitigate
the main weakness of prospective studies (lack of
incident cases) while capitalizing on the methodo-
logical strengths of the prospective design.
5. AN APPLICATION: ASSESSING COMPLEX
MIXTURES
An important problem in environmental epidemiology
is deciding which components of ‘complex mixtures’
(air pollution, diet, cigarette smoke, etc.) are causally
related to disease. This is difficult to study observa-
tionally, as the components in their most relevant form
are almost always found together and are highly
correlated, making it difficult to statistically separate
their effects. If, however, the effect of exposure changes
according to variation in a particular gene that lies on
the exposure-disease pathway, then an argument could
be made that those components affected by that gene’s
function are causally related to disease (see figure 3).
For example, cooking protein at high heat forms
heterocyclic amines, which are carcinogenic in animal
models. Heterocyclic amines are sometimes present in
grilled and pan-fried meats (Sinha et al. 1998). While
red meat intake has been quite consistently associated
with the risk of colorectal cancer, red meat is a complex
mixture of fatty acids, haem iron, and protein; which of
these components underlies the increased risk is
unknown. Exposure to heterocyclic amines is one
hypothesis but obtaining detailed information on
meat preparation is difficult in epidemiologic studies.
Some (Roberts-Thomson et al. 1996; Chen et al. 1998;
Kampman et al. 1999; Le Marchand et al. 2002) but
not all (Barrett et al. 2003) studies have found the
association of red meat intake with colorectal neoplasia
is stronger in carriers of the ‘rapid’ NAT2 alleles. These
alleles are associated with the faster metabolism of a
variety of substrates, including heterocyclic amines.
Aragaki et al. (1997) went further and attempted to
explicitly estimate the effects of various heterocyclic
amines, using external information about the chemical
composition of different meats and the substrate-
specific kinetics of various NAT2 alleles in a hierarch-
ical model. Thus, an interaction between a complex
environmental exposure and a gene with a relatively
well-characterized function can ‘point the finger’ at the
causal component(s) of the exposure—perhaps leading
to the identification of unsuspected causal components
(Rothman et al. 2001).
6. FUTURE PROSPECTS
Investment in studies of the joint and independent
action of genes and environmental exposures is likely to
pay off in terms of increased knowledge about disease

http://epi.grants.cancer.gov/BPC3/cohorts.html
http://epi.grants.cancer.gov/BPC3/cohorts.html
http://www.uscnorris.com/MECGenetics/
http://www.uscnorris.com/MECGenetics/
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Figure 3. Using gene–environment interactions to dissect
complex mixtures (e.g. smoking, air pollution and diet). In
panel (a), an association between the exposure and disease is
observed but which of the many components of exposure (Xi)
play causal roles is unknown. In panel (b), an interaction
between the exposure and a polymorphism (G) known
to metabolize one of the components of the exposure
is observed. In the example cited in the text, the exposure is
dietary red meat, the disease is colorectal cancer, X3 is
heterocyclic amines and G is NAT2.
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biology, which in turn will lead to better treatments
(e.g. by suggesting drug targets) or preventive measures
(e.g. by discovering the causal components of an
environmental exposure). Beyond these indirect ben-
efits, it has been suggested that studies of gene–
environment interaction may directly yield targeted
‘personalized prevention’ strategies. According to one
scenario that has made it into the popular press, a
patient will soon hand his or her personal physician a
card that contains information on hundreds or
thousands of genetic variants and the physician will
then base treatment or prevention advice on a
combination of this genetic information, the patient’s
clinical history, lifestyle, occupational exposures and so
on. This scenario assumes that the relevant gene–
environment interactions will have been proposed,
replicated and validated—and all that very soon—so
that this advice is evidence-based and efficacious.
However, as sketched in this article, we are only
beginning to understand gene–environment inter-
actions for a few diseases and the challenges to
understanding these interactions in the context of
common, complex disease are formidable. Affordably
sequencing an individual’s genome may be the easy
part.

Furthermore, the concept of personalized preven-
tion may also conflict with the view that population-
wide interventions are usually more effective in
reducing the incidence of common diseases than
interventions targeting high-risk individuals (Rose
1985). The idea that inherited susceptibility is a
major determinant of disease risk could increase latent
feelings of genetic determinism and actually undermine
support for ‘broad brush’ preventive recommendations
that are the cornerstone of many public health
campaigns or investment in general public health
infrastructure (in much the same way discussions of
Phil. Trans. R. Soc. B (2005)
potentially real but quite subtle differences in patterns
of standardized test performance or brain function
between men and women can undermine support for
policies that remove historical barriers to women’s
participation in scientific research). Extending genetic
testing beyond counselling-intensive, high-penetrance
disorders raises complex issues, and past experiences,
such as screening programmes for sickle cell anaemia in
southern U.S. states (Scott & Castro 1979), urge
caution. The psychological and social consequences of
genotyping individuals in order to make preventive
recommendations are still uncertain and require
research—to say nothing of the financial costs and
benefits. At a minimum, a DNA-based screening test
should not become widely used until there is a proven
intervention that takes advantage of the genetic
information.

Integrating information on inherited genetic vari-
ation into epidemiologic studies promises to be a
powerful tool for improving the study of disease
aetiology. The ramifications of this information for
public health policy and clinical decision-making are
uncertain and will require a measured, evidenced-
based approach.
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