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The impacts of climate change on crop productivity are often assessed using simulations from a
numerical climate model as an input to a crop simulation model. The precision of these predictions
reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and
crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard
deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by
perturbation of parameters in each model. The climate sensitivity parameter (l, the equilibrium
response of global mean surface temperature to doubled CO2) was used to define the control
climate. Observed 1966–1989 mean yields of groundnut (Arachis hypogaea L.) in India were
simulated well by the crop model using the control climate and climates with values of l near the
control value.

The simulations were used to measure the contribution to uncertainty of key crop and climate
model parameters. The standard deviation of yield was more affected by perturbation of climate
parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate
uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop
transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2

climates. The response of crop development to mean temperature contributed little uncertainty in
the present-day simulations but was among the largest contributors under doubled CO2. The
ensemble methods used here to quantify physical and biological uncertainty offer a method to
improve model estimates of the impacts of climate change.
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1. INTRODUCTION
Global food production is expected to change con-

siderably due to climate change over the coming

century (Parry et al. 2004). Assessments of the impacts

of climate change on the productivity of crops employ

crop models to predict crop yields under scenarios of

climate change that are provided from general circula-

tion models (GCMs). Often, predictions of the impact

of climate on crop yields will vary according to which

GCM and/or crop model is used. For example,

Matthews & Wassmann (2003) predicted rice pro-

ductivity across Asia under doubled current atmos-

pheric carbon dioxide (CO2) concentrations using two

crop models and three GCMs. The magnitude of yield

changes that were predicted differed between the crop

models, and the sign of the yield change was affected by
tribution of 17 to a Discussion Meeting Issue ‘Food crops in
ing climate’.

r for correspondence (ajc@met.reading.ac.uk).

2085
the GCM scenario. The reasons for such differences

among crop and climate model predictions need to be

investigated further in order to improve our assessment

of the impacts of climate change.

Uncertainty in climate change impacts assessments

comes from a number of sources. Future emissions of

greenhouse gases must be estimated, and the response

of both the atmosphere and the impact in question have

associated uncertainties. There is no consensus in the

literature to date on how best to quantify these

uncertainties. In the case of agricultural yield, the

range of values across sites and/or climate change

scenarios is often used (e.g. IPCC 2001a; Tubiello et al.
2002; Trnka et al. 2004). As a result of the differences

in methods, uncertainty ranges are not directly

comparable. Different studies take account of different

uncertainties. For example, Reilly & Schimmelpfennig

(1999) projected changes of K98 to C16% for maize

in Africa (range across sites and climate scenarios);

Jones & Thornton (2003) projected a change of K17%

for maize in Zimbabwe. In addition, the large range of
q 2005 The Royal Society
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possible crops and locations means that the number of
directly comparable studies is small. Hence, any
consensus from the literature on likely future agricul-
tural yield is being reached by random sampling of the
many uncertainties.

This study is a first step towards quantifying the
uncertainty in agricultural yield projections by looking
at the fundamental biological and physical processes
involved. The methods used are consistent with the
recommendations of Katz (2002): assessing uncer-
tainty of individual model components separately, and
applying uncertainty analysis to simpler impacts
models in order that the mechanisms by which
uncertainty propagates can begin to be understood.

(a) Physical, biological and anthropogenic

uncertainty

Physical uncertainty, for given levels of greenhouse gas
and aerosol emissions, comes from a number of sources
(IPCC 2001b). First, imperfect knowledge of the
impact of emissions on the radiation balance means
that the extra heat input to the atmosphere is not
known precisely. It is not only atmospheric compo-
sition that plays a role; but changing land use will also
impact the radiative budget. Second, there is a range of
plausible atmospheric responses to the change in
radiative forcing. Estimates of this range are con-
strained by limited computer resources. This is most
evident in the relatively coarse spatial resolution of
GCMs.

Anthropogenic uncertainty is the result of imperfect
knowledge of crop management decisions such as the
choice of crop and variety, irrigation and fertilizer
application and planting date. For example, improve-
ments in yields over time due to the release of new
varieties usually results in a monotonically increasing
trend in yield. As with all management-related factors,
this may vary in both space and time (e.g. Kulkarni &
Pandit 1988; Moss & Shonkwiler 1993). Despite these
uncertainties it is still possible to simulate yields with
some accuracy using observed large-area gridded data
(e.g. Challinor et al. 2004).

Biological uncertainty results from the range of
plausible responses of the crop to the climate. It is not
only climate over the season that has an impact on crop
growth and development; the statistics and timing of
the weather within the season are also crucial (e.g.
Wright et al. 1991; Wheeler et al. 2000). The
uncertainties associated with the simulation of these
processes depend upon the spatial scale of the
investigation (e.g. Hansen & Jones 2000). For example,
the impact of terrain slope may be small when averaged
over large areas, but considerable at smaller scales.
Even over large areas, the relationship between crop
yield and climate is complex and can change over time:
Challinor et al. (2005b) found that the relationship
between June and September rainfall and groundnut
yield for a 0.58 grid cell in Andhra Pradesh, India,
changed between the periods 1966–1977 and
1978–1989; the correlation coefficient increased from
K0.13 to C0.58.

There is also a direct response of the crop to
increased carbon dioxide. A review of 18 crop species
under controlled environments (Kimball & Idso 1983)
Phil. Trans. R. Soc. B (2005)
suggested that water use efficiency may double with a
doubling of CO2. Based on controlled environment
studies of groundnut (Stronach et al. 1994; Clifford
et al. 2000), transpiration efficiency for doubled CO2

could increase by between 24 and 100%. Controlled
environment experiments also show that changes in
water use under doubled CO2 at the canopy level are of
the order of 10–30% for C3 crops (e.g. Allen Jr et al.
2003; Kimball & Idso 1983), with the greater
reductions being associated with greater increases in
transpiration efficiency. Free-air CO2 enrichment
(FACE) experiments (see e.g. Ainsworth & Long
2005) have shown that in a field environment, the
reduction in water use may be nearer to 3–7% (Kimball
et al. 2002). These experiments inform the simulation
of the CO2 fertilization effect (e.g. Tubiello & Ewert
2002). The modelling study of Ewert et al. (2002)
assumed a linear reduction in crop transpiration up to
10% at doubled CO2.

Simulation models provide a tool for the quantifi-
cation of variables and their associated uncertainty.
The uncertainty in the response of the atmosphere to a
doubling of CO2 has been assessed by comparing the
results of different GCMs (IPCC 2001b) and by
varying parameters within a single GCM (Murphy
et al. 2004). Hence, uncertainty due to both model
structure and model inputs can be assessed. There are
fewer examples of this type of comparison within the
crop modelling literature, perhaps because there is
already significant uncertainty in the climate change
scenarios used as inputs. Mearns et al. (1999) found
significant differences in the response of two process-
based crop models to a doubling of CO2.

(b) Scope of this study

This study focuses principally on the bio-physical
uncertainty in estimates of groundnut (i.e. peanut;
Arachis hypogaea L.) yield with CO2 at both present-
day levels and at double present-day levels. A single
GCM and a single process-based large-area crop model
are used to estimate the uncertainty in yield simulation
in both of these climates. The response of yield to a
doubling of CO2, and its associated uncertainty, is also
examined. The uncertainty due to model formulation
is not treated, since the focus is on the uncertainty due
to the range of plausible parameter values in both the
crop and the climate models. Parameters are varied one
at a time, so that interactions between parameters,
which are likely to be nonlinear, are not considered.
Similarly, interactions between crop and climate model
uncertainties are not examined; rather, this is a first
estimate of the relative magnitude of the crop and
climate modelling uncertainties. Further studies with
multiple parameter perturbations are planned.

In order for the yields resulting from the parameter
perturbations to be directly comparable, the range of
parameter values used should be directly comparable.
For the crop model, this was achieved using an
objective model performance statistic, based on crop
yield, to define the parameter perturbations. A similar
method is not possible in the climate model case for
three reasons: (i) the computational expense of climate
models limits the number of simulations, (ii) compari-
son with observations is hampered by limited data



Table 1. The climate simulations used in this study (Murphy
et al. 2004). The GCM parameters shown were perturbed,
resulting in different values of the climate sensitivity
parameter, l.

simulation
name parameter l ( 8C)

C sea ice albedo 3.60G0.05
l1 cloud droplet to rain conversion

rate
2.91G0.06

l2 ice fall speed 4.10G0.05
l3 entrainment rate coefficient 6.98G0.04
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Figure 1. Histogram of the values of the climate sensitivity
parameter (l) resulting from the 53 climate ensemble
members. Labels show the location of the simulations used
in this study: the control simulation (C ) and three
perturbations (l1–l3).
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availability on the grid scale of the climate model and
(iii) there are many output variables (rainfall, tempera-
ture, humidity) of interest, so that a relative importance
would have to be given to each. Hence, in the climate
model case expert opinion has been sought as to the
likely maximum and minimum realistic parameter
values (Murphy et al. 2004). While the methods used
for the two models are not identical, they are
comparable, since they both aim to produce the best
possible estimates of the upper and lower limits on
parameter values. However, it is worth noting that the
comparisons of crop and climate model uncertainty in
this study are contingent on the choice of parameter
perturbations.

In one case only, multiple parameter perturbations
were carried out: two sets of parameters describing the
response of the crop to high temperature stress were
used with each climate ensemble member. This
enabled the assessment, in each climate, of the
importance of the sensitivity of the crop to high
temperature stress. Also note that some crop model
parameters, and their ranges, were changed from the
present-day values in order to reflect the impact of
doubled CO2 on physiology. The crop and climate
model parameter perturbations are described in detail
in §2b.

The study region encompasses the major ground-
nut-growing areas of India. It was chosen because the
same study region has been successfully used in
previous studies (see §2a). Climates across the region
vary: water-limited environments in southern and
northwestern parts contrast with eastern regions,
where groundnut yield is much less limited by water
(Challinor et al. 2003).
2. METHOD: QUANTIFICATION OF PHYSICAL
AND BIOLOGICAL UNCERTAINTY
(a) Modelling methods

(i) The general large-area model for annual crops
The general large-area model for annual crops
(GLAM; Challinor et al. 2004) has been designed
specifically for use within a combined crop and climate
forecasting system; it capitalizes on the predictability
suggested by large-area relationships between climate
and crop yield (Challinor et al. 2003). GLAM is a
process-based model that is easily adaptable to most
annual crops. The model operates on a daily timestep
using 20 crop-specific parameters and five additional
parameters, which vary spatially. Three of these
additional parameters describe the soil hydrological
properties and the other two relate to the yield gap and
the planting window. Temperature, radiation, rainfall
and humidity are used to simulate yields at a given
technology level; increases in yield due to the mean
impact of improvements in crop variety and manage-
ment techniques are not simulated. The planting date
is determined by the model as the first day within a
defined planting window in which the soil moisture
exceeds a specified threshold.

GLAM has successfully been used to simulate
groundnut yield in India using observed gridded data
(Challinor et al. 2004), reanalysis data (Challinor et al.
2005b) and probabilistic seasonal hindcast output from
Phil. Trans. R. Soc. B (2005)
GCMs (Challinor et al. 2005a). The soil data for these
studies, and for the current study, come from
FAO/UNESCO (1974) and the data on planting
dates from Reddy (1988). The planting window was
given a broad width of one month, with crisis sowing
being simulated once this period has passed. The
planting window was not changed for the doubled CO2

simulations; the vast majority of changes in simulated
planting date (mean and standard deviation) between
the two climates were less than 6 days, much smaller
than the planting window itself.

GLAM uses a yield gap parameter (YGP) which acts
on the maximum rate of change of leaf area index. This
is a simple method of simulating the impact of pests,
diseases and non-optimal management on the crop.
YGP is also the parameter used for calibration and it
can correct for climate bias (Challinor et al. 2005a). To
the extent that it can account for bias in the input
rainfall, it can also account for bias in available soil
water, and hence bias in the soils parameterization.

The crop model has also been integrated with a
land–surface model and the results have shown skill in
reproducing the interannual variability of groundnut
yield in India and other parts of the tropics (Osborne
2005).

(ii) Climate simulations
The climate simulations used are those of Murphy et al.
(2004). In that study, HadAM3 was coupled to a mixed



Table 2. GLAM parameter perturbations for the simulations of present-day climate.
(The three sets of runs carried out for each parameter used the non-perturbed value and the non-perturbed value plus, and
minus, the perturbation.)

parameter units impact non-perturbed perturbation

rate of change of harvest index dayK1 biomass partitioning 0.007 0.001
extinction coefficient — available radiation 0.55a 0.17
optimum temperature 8C development; response to mean temperature 28.0 1.8
transpiration efficiency Pa response of biomass to water 1.51a 0.47
high temperature stress parameters — response to temperature extremes no response TOL or SEN

a Indicates that non-perturbed values differ from those of Challinor et al. (2004). In both cases these differences are less than or equal to 10%.
The TOL and SEN parameter sets, representing tolerant and sensitive varieties, respectively, are taken directly from Challinor et al. (in press).

Table 3. GLAM parameters used in the doubled CO2

simulations.
(Either the standard or high-TE parameter set was used. The
additional parameters and ranges listed in table 2 were also
used for these simulations.)

parameter units impact standard high-TE

transpiration
efficiency

Pa water use
efficiency

1.87 3.02

max. trans-
piration
rate

cm dayK1 absolute
water use

0.285 0.210

2088 A. J. Challinor and others Uncertainty in crop yield simulation
layer ocean and equilibrium present-day and doubled
CO2 simulations were carried out. For both of these
cases parameters were varied one at a time, relative to
the standard (control) set of parameters. The 29
parameters chosen for this represent key sub-grid
physical processes as either logical switches, variable
coefficients or thresholds. Parameters were varied one
at a time with a minimum and maximum value being
used for variable coefficients. These values were chosen
by seeking expert opinion (see §1b). This procedure
resulted in 53 perturbed physics simulations for both
present-day and doubled CO2 climates. The climate
sensitivity parameter (l), defined as the equilibrium
response of global mean surface temperature to
doubled CO2, was calculated for each pair (present-
day and doubled CO2) of simulations.

Data retrieval and transfer limitations meant that at
the time of the study there were only a 12 of the 53
simulations available. From these 12, four were chosen
such that a broad range of values of l was represented.
The chosen simulations perturbed parameters from the
large-scale cloud, sea-ice or convection schemes
(table 1). A histogram of the values of l from all 53
simulations is presented in figure 1. The control
simulation (C) was chosen to have a value of l within
the most populated interval of this histogram. The
simulations designated l1 and l2 have values that are
close to the control, and l3 was chosen as a more
extreme and less probable value.

(b) Choice of crop model parameters

(i) Crop model calibration
The yield data for calibration of the model came from
the district-level database of agricultural returns
compiled by the International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT), Patancheru,
India. Districts range in size from less than 1 to
46 800 km2, although there are only two districts which
are less than 690 km2 in area. The average of all district
sizes is 8300 km2. The yield time-series (1966–1989)
for each individual district were linearly detrended to
1966 levels, in order to remove the influence of
improved varieties and management methods. Yield
data were then upscaled to the crop model grid using an
area-weighted mean by assuming that the area under
cultivation is spread evenly throughout each district.

The calibration procedure varied YGP in steps of
0.05 between 0.05 and 1, as for previous studies (e.g.
Challinor et al. 2005a). Optimal values were defined as
those which minimized the difference between the
Phil. Trans. R. Soc. B (2005)
simulated 20 year mean yield at that site and the
observed 1966–1989 mean yields described above. This
procedure was carried for each of the simulations with

the non-perturbed set of crop model parameters (l1, l2,
l3 and C) in the present-day climate. In this way the

impact of climate biases was minimized (see §2a).
(ii) Perturbation of crop model parameters in
the present-day climate
The perturbation of parameters for GLAM used

similar methods to those for the climate simulations:
parameters were varied one at a time to either a
minimum or a maximum value, so that an ensemble of

realizations of yield was produced. The parameters
chosen were those that previous studies showed to have

a large impact on yield when varied within the ranges
determined by independent observations (see
Challinor et al. 2004). The list of parameters, which

is presented in table 2, was chosen to give a broad
representation of uncertainty in the response of the

crop to climate (i.e. response to mean and high
temperatures, radiation and water) and in the rep-
resentation of crop physiology itself.

Perturbed parameter values were determined using
the simulations of Challinor et al. (2005b). As part of

that study GLAM parameter values were calculated
which minimized root mean square error for time-
series of groundnut yield across India. These values

vary spatially and it is the standard deviation of that
variability, added to and subtracted from the mean that

forms the perturbed parameter values for the present-
day climate simulations. All of the perturbations fall
within observational constraints (see Challinor et al.
2004). The non-perturbed parameter values are those
of Challinor et al. (2004) except where noted otherwise.
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Figure 2. Twenty year mean of the simulated yields for the four present-day climate perturbations, normalized by the observed
values.
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Figure 3. Percentage difference in mean yield between the control present-day simulation (C) and two perturbed present-day
simulations.
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(iii) Perturbation of crop model parameters in the doubled
CO2 climate
The same perturbations as in the present-day climate

were used for the doubled CO2 climate, with one
Phil. Trans. R. Soc. B (2005)
exception: the transpiration efficiency (TE) was

changed in order to simulate the direct response of

the crop to increased CO2 levels. Associated changes

in water use were also made. The two GLAM
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additional parameter perturbations used in the
doubled CO2 simulations (referred to as standard
and high-TE) are listed in table 3. The parameter
values given are derived from the studies reviewed in
§1a. The reduction in transpiration was implemented
via a reduction of the calibrated present-day climate
maximum transpiration rate (0.3 cm dayK1; Challinor
et al. 2004). Use of this parameter ensures that the
reduction in transpiration of water-stressed crops is
less than that on well watered crops, as is seen in
observations (Kimball et al. 2002).

The chosen parameter values reported in table 3
correspond to a change in transpiration efficiency from
the calibrated present-day non-perturbed climate value
(table 2), of C24 and C100%. The maximum
transpiration rates chosen for each of these values
were 5 and 30% less than the present-day climate value,
respectively (table 3). This ensures physiological
consistency between these two parameters by excluding
the combinations where transpiration efficiency and
maximum transpiration rate are both high.

The indirect impact of CO2 concentration changes
is simulated by GLAM through the usual pathways:
changes in temperature, rainfall, humidity and
radiation will affect the crop simulations (Challinor
et al. 2004). The high temperature stress parameteri-
zation for GLAM (Challinor et al. in press) simulates
the impact on pod-set, and subsequently yield, of high
temperatures during the period when the crop is
flowering. This parameterization was designed with
climate change in mind, since high temperature stress
events are likely to be more frequent in future
climates (Wheeler et al. 2000). The use of varieties
which are either tolerant (TOL) or sensitive (SEN) to
heat stress (table 2) can be thought of either as
representing uncertainty in the response of the crop to
these events, or as potential adaptive choices for
farmers.

(c) Analysis methods

The perturbations to physical and biological para-
meters in present-day and doubled CO2 climates
described above allow a preliminary assessment of
contributions to uncertainty in yield simulation. Using
the present-day climate simulations, differences
between crop yields from perturbed and control runs
indicate which bio-physical parameters currently con-
tribute most to uncertainty. A similar analysis using
only doubled CO2 simulations indicates whether or not
these contributions are likely to change. Finally,
differences between the control present-day simulation
and doubled CO2 simulations provide estimates of the
climate change signal.

Yield simulations where the crop failed to meet its
thermal time requirement (see §2a) were omitted from
all analyses. This leads to the removal in some cases of
one grid cell in the north of the domain.

Four statistics were used to summarize the
uncertainty associated with crop and climate model
parameters (§3b). Two of these are based on the
difference in mean yield between the control simu-
lation and that of the other simulations. The
remaining two are based on percentage differences
in the standard deviation of yield. For each of these
Phil. Trans. R. Soc. B (2005)
two cases the variability across grid cells was
quantified in two ways, both chosen to minimize
sensitivity to extreme values: first, the median value is
a measure of spatially systematic differences between
simulations; second, the inter-quartile range (IQR) is
a measure of the non-systematic differences (i.e. the
spatial variability of the response to the parameter
perturbation). All four statistics produce one value
per parameter perturbation.
3. RESULTS
(a) Calibration and simulation in present-day

climate

The calibration procedure (§2b) resulted in values of
YGP that were broadly similar across the control, l1
and l2 simulations, with l3 showing greater differ-
ences. For l1, seven out of 35 grid cells had values that
differed from those of the control simulation by more
than 0.05. For l2, this figure was 10, and for l3 was 17.
In addition, the values were on the whole greater in
magnitude in the l3 case: the majority were greater
than 0.5.

Figure 2 shows the level of agreement between the
four simulations with non-perturbed crop model
parameters and the observed mean yield. Results are
presented only for grid cells where there is a minimum
total of 20 district-level observations contributing to
the observed mean yield. This avoids the fitting of
YGP to give apparently accurate simulations based
only on a few data points. It results in the omission of
the eastern-most grid cell. The l3 simulation has a
notably higher error in the simulation of mean yield
than the other three simulations. The high error in the
two grid cells in the northwest in all four runs is due to
low seasonal precipitation totals (less than 140 mm in
all cases).

Given the ability of GLAM to simulate groundnut
yield in India using observed gridded data (Challinor
et al. 2004), the relatively poor performance of l3
suggests that, at least for parts of India, this climate is
less consistent than the other three climates with
observed groundnut cultivation in India.

(b) Quantification of uncertainty

The results presented in this section use percentage
differences between perturbed parameter simulations
and control simulations, as described in §2c. A map of
differences in mean yields for one climate model
perturbation and one crop model perturbation is
presented in figure 3. The relative importance of the
two perturbations for mean yield varies spatially.
Figure 4 shows frequency plots, sampled across
space, of the differences in the present-day mean and
standard deviation of yield for two further crop
parameter perturbations and two climate model
perturbations. The crop model parameter pertur-
bations have a more narrow and displaced curve,
indicating a more spatially systematic impact on yield
(this can also be seen in figure 3).

Table 4 summarizes the statistics of the remaining
frequency plots (not shown) for the present-day
climate. The crop parameter perturbations tend to
have lower IQR than the climate parameter



Table 4. Statistics of the percentage difference in the present-day climate between the perturbed-parameter simulations and the
control simulation.
(The median and the inter-quartile range across grid cells are shown for both the 20 year mean yield ( Ȳ ) and the standard
deviation over that period (sY).)

median inter-quartile range

variable �Y sY
�Y sY

rate of change of harvest index K14 and 14 K14 and 14 0 and 0 0 and 0
extinction coefficient K24 and 17 K27 and 19 19 and 18 17 and 18
optimal temperature K1 and 6 0 and 2 3 and 20 4 and 24
transpiration efficiency K30 and 26 K28 and 24 2 and 5 7 and 13
l1, l2, l3 K11 to 5 5 to 46 14 to 49 48 to 284
l1, l2 K2 and 5 5 and 18 14 and19 48 and 54
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Figure 4. Frequency plots of the percentage difference in two yield statistics between the control present-day simulation (C ) and
four perturbed present-day simulations. Two simulations (thin lines) are for perturbed transpiration efficiency. The remaining
two simulations are for perturbed climate: the thick solid line is l1 and the thick dashed line is l2.

Table 5. Statistics of the percentage difference in the doubled CO2 climate between the perturbed-parameter simulations and the
control simulation.
(The median and the inter-quartile range across grid cells are shown for both the 20 year mean yield ( Ȳ ) and the standard
deviation over that period (sY).)

median inter-quartile range

variable �Y sY
�Y sY

rate of change of harvest index K14 and 14 K14 and 14 0 and 0 0 and 0
extinction coefficient K22 and 13 K23 and 13 17 and 20 22 and 24
optimal temperature K19 and 43 K19 and 60 23 and 24 55 and 62
transpiration efficiency 25 24 13 39
l1, l2, l3 K2 to 23 K22 to 58 25 to 66 40 to 438
l1, l2 K2 and 6 K22 and 34 25 and 31 40 and 70
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perturbations, indicating, as in figure 4, that any impact

on yield is relatively systematic across space. This

distinction is less clear in the case of mean yield ( �Y) if

l3 is excluded from the analysis. The magnitude of the

systematic impact on mean yield (as measured by the

median difference �Y in across grid cells) is greater for

some crop parameters than it is across climate

perturbations. For standard deviation in yield (sY)

this is not the case, although transpiration efficiency

and extinction coefficient do contribute significant

uncertainty. In all cases, the climate uncertainty is

greater for sY than for �Y and it is reduced if l3 is

excluded from the analysis.
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Table 5 presents the equivalent results for the

doubled CO2 climate. These results are broadly

similar to those of the present-day climate with some

notable exceptions: optimal temperature is more

important in determining the distribution of yield

over both time and space (i.e. the IQR and median

for both sY and �Y increase considerably for this

parameter). Transpiration efficiency is more import-

ant in determining the variability in sY and �Y across

space (i.e. the IQR is higher). Finally, the uncer-

tainty associated with climate simulation is higher in

this climate than in the present-day climate for all

four statistics.
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Figure 5. The 20 year mean of the percentage of setting pods for the two simulated heat tolerance characteristics, (a) tolerant
and (b) sensitive, in the doubled CO2 l3 simulations.
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(c) Yield changes under doubled CO2

In all four present-day climate simulations, there is very
little incidence of high temperature stress (see §2b): all
four simulations show less than four grid cells with
more than 1 year where pod-set is less than 60% (the
value below which yield is affected in the TOL case).
For the doubled CO2 case, this figure rises in all four
simulations. For the C, l1 and l2 this increase is
modest: 2–5 grid cells are affected. However, in l3,
most grid cells become affected, and the mean
percentage of pods setting becomes seriously reduced.
Figure 5 shows the extent of this reduction for both a
SEN and TOL groundnut variety. Most of India is
affected, although less area is affected in the TOL case
than in the SEN case. The magnitude of the impact is
greater for SEN than for TOL, showing the increased
vulnerability of yield to high temperature stress when
this type of variety is used.

Figure 6 presents the impact of the doubled CO2

climate on the mean and standard deviation of yield for
both the control and the l3 simulations. The difference
between these two cases is marked; in particular, the
sign of the change in standard deviation is different over
large parts of India. Among the reasons for this might
be the increase in the standard deviation of precipi-
tation over most of India in l3. The corresponding
changes in the control case are much less marked.
A detailed analysis of causality is beyond the scope of
this study.

A great deal of analysis of the impact of doubling
CO2 could be carried out using the simulations in this
study. For the purposes of this paper, further analysis is
restricted to some general observations. Changes in
mean yield from present-day values in the l1 and l2
simulations are broadly similar to the control case.
Changes in the standard deviation of yield are higher in
l2 than in the control. The increase in transpiration
efficiency in the high-TE simulation compensates for
the reduction in yields seen over central India in the
control case (figure 6), resulting in little change in
mean yield in that region. Finally, the choice of optimal
temperature, noted in §3b as being critical for the
doubled CO2 climate, has an impact comparable to the
choice of climate (l3 or control).
4. DISCUSSION AND CONCLUSIONS
The results presented above highlight the importance
of uncertainty when estimating the response of both
the mean and variability of crop yield to doubled CO2.
The relative importance of the contributions of crop
and climate model uncertainties can vary spatially
(figure 3). The contribution of climate uncertainty,
particularly to the uncertainty in the estimation of yield
variability, can be considerable. Also, the contribution
of climate uncertainty was shown to be higher in the
double CO2 climate than in the present-day climate
(tables 4 and 5). The impact of the more extreme, less
probable, response to CO2 (l3) on the standard
deviation of yield is large, and acts through two
mechanisms: climate variability (figure 6) and high
temperature stress (figure 5). The impact of climate
uncertainty is smaller when this climate simulation is
excluded from the analysis.
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The importance of further constraining some of the
GLAM parameters in present-day and doubled CO2

climates has also emerged from this study. The
transpiration efficiency is the principal source of
uncertainty in the present-day climate, while the
temperature increases associated with doubled CO2

make the determination of optimal temperature
important in that climate. This has relevance beyond
that of crop yield simulation using this particular crop
model: an understanding of the response of crop
duration to increasing temperature is important in
any yield impact assessment. The magnitude of the
CO2 fertilization effect (mediated in GLAM via the
transpiration efficiency) is also important under
doubled CO2, and can make the difference between
yield increases and yield decreases (§3c). Further
experiments under realistic field conditions
(e.g. FACE) are needed in order to constrain estimates
of CO2 fertilization (see Long et al. 2005).

Ensemble methods such as those used in this study
provide a way to quantify physical and biological
uncertainty. The methods can be extended to quantify
anthropogenic uncertainty and/or look at adaptation
strategies, by examining the use of different crops and
management techniques (see also Dessai & Hulme
2004). More rigorous probabilistic results can be
obtained by using larger ensembles. Also, the observa-
tional constraints on the parameter perturbations can
be accounted for by comparing the resulting climate
and crop quantities (yield, specific leaf area, biomass)
to observations. There is already evidence to suggest
that the probabilistic nature of climate forecasting on
seasonal time-scales can be exploited to provide useful
information on crop productivity (e.g. Hansen & Indeje
2004; Cantelaube & Terres 2005; Challinor et al.
2005a; Marletto et al. 2005). Accepting and quantify-
ing the uncertainty associated with climate change may
bring similar skill, and has the further advantage of
identifying key sources of uncertainty. These methods
clearly have the potential to improve vastly on the
single-scenario methods commonly used to identify
climate change impacts. Application of these methods
to other impacts and/or climate models would help to
build a sound consensus on the uncertainty associated
with climate change impacts.

The authors wish to thank Richard Betts and the QUMP
team at the Hadley Centre, UK, and Jo Brown at the
University of Reading.
REFERENCES
Ainsworth, E. A. & Long, S. P. 2005 What have we learned

from 15 years of free-air CO2 enrichment (FACE)?
A meta-analytic review of the responses of photosynthesis,
canopy properties and plant production to rising CO2.
New Phytol. 165, 351–372. (doi:10.1111/j.1469-8137.
2004.01224.x.)

Allen Jr, L. H., Pan, D., Boote, K. J., Pickering, N. B. &
Jones, J. W. 2003 Carbon dioxide and temperature effects
on evapotranspiration and water use efficiency of soybean.
Agron. J. 95, 1071–1081.

Cantelaube, P. & Terres, J. M. 2005 Use of seasonal weather
forecasts in crop yield modelling. Tellus 57A, 476–487.

Challinor, A. J., Slingo, J. M., Wheeler, T. R., Craufurd, P. Q.
& Grimes, D. I. F. 2003 Towards a combined

http://dx.doi.org/doi:10.1111/j.1469-8137.2004.01224.x
http://dx.doi.org/doi:10.1111/j.1469-8137.2004.01224.x


2094 A. J. Challinor and others Uncertainty in crop yield simulation
seasonal weather and crop productivity forecasting system:
determination of the spatial correlation scale.
J. Appl. Meteorol. 42, 175–192. (doi:10.1175/1520-0450
(2003)042!0175:TACSWAO2.0.CO;2.)

Challinor, A. J., Wheeler, T. R., Slingo, J. M., Craufurd, P. Q.
& Grimes, D. I. F. 2004 Design and optimisation of a
large-area process-based model for annual crops. Agric.
Forest Meteorol. 124, 99–120. (doi:10.1016/j.agrformet.
2004.01.002.)

Challinor, A. J., Slingo, J. M., Wheeler, T. R. & Doblas-
Reyes, F. J. 2005a Probabilistic hindcasts of crop yield
over western India. Tellus 57A, 498–512.

Challinor, A. J., Wheeler, T. R., Slingo, J. M., Craufurd, P. Q.
& Grimes, D. I. F. 2005b Simulation of crop yields using
the era40 re-analysis: limits to skill and non-stationarity in
weather–yield relationships. J. Appl. Meteorol. 44,
516–531. (doi:10.1175/JAM2212.1.)

Challinor, A. J., Wheeler, T. R. & Slingo, J. M. In press.
Simulation of the impact of high temperature stress on the
yield of an annual crop. Agric. Forest Meteorol.

Clifford, S. C., Stronach, I. M., Black, C. R., Singleton-
Jones, P. R., Azam-Ali, S. N. & Crout, N. M. J. 2000
Effects of elevated CO2, drought and temperature on the
water relations and gas exchange of groundnut (Arachis
hypogaea) stands grown in controlled environment glass-
houses. Physiol. Plantarum 110, 78–88. (doi:10.1034/j.
1399-3054.2000.110111.x.)

Dessai, S. & Hulme, M. 2004 Does climate adaptation policy
need probabilities? Climate Policy 4, 107–128.

Ewert, F. et al. 2002 Effects of elevated CO2 and drought on
wheat: testing crop simulation models for different
experimental and climatic conditions. Agric. Ecosyst.
Environ. 93, 249–266. (doi:10.1016/S0167-8809(01)
00352-8.)

FAO/UNESCO. 1974 FAO/UNESCO soil map of the world,
1:5,000,000, ten volumes.

Hansen, J. W. & Indeje, M. 2004 Linking dynamic seasonal
climate forecasts with crop simulation for maize yield
prediction in semi-arid kenya. Agric. Forest Meteorol. 125,
143–157. (doi:10.1016/j.agrformet.2004.02.006.)

Hansen, J. W. & Jones, J. W. 2000 Scaling-up crop models for
climatic variability applications. Agric. Syst. 65, 43–72.
(doi:10.1016/S0308-521X(00)00025-1.)

IPCC 2001a Climate change 2001: impacts, adaptation, and
vulnerability. Contribution of working group II to the third
assessment report of the intergovernmental panel on
climate change. Cambridge, MA: Cambridge University
Press pp 1032.

IPCC 2001b Climate change 2001: the scientific basis.
Contribution of working group I to the third assessment
report of the intergovernmental panel on climate change.
Cambridge, MA: Cambridge University Press pp 881.

Jones, P. G. & Thornton, P. K. 2003 The potential impacts of
climate change on maize production in Africa and Latin
America in 2055. Global Environ. Change—Hum. Policy
Dimensions 13, 51–59.

Katz, R. W. 2002 Techniques for estimating uncertainty in
climate change scenarios and impact studies. Climate Res.
20, 167–185.

Kimball, B. A. & Idso, S. B. 1983 Increasing atmospheric
CO2: effects on crop yield, water use and climate. Agric.
Water Manag. 7, 55–72. (doi:10.1016/0378-
3774(83)90075-6.)

Kimball, B. A., Kobayashi, K. & Bindi, M. 2002 Responses of
agricultural crops to free-air CO2 enrichment. Adv. Agron.
77, 293–368.

Kulkarni, B. S. & Pandit, S. N. N. 1988 A discrete step in the
technology trend for sorghum yields in parbhani, India.
Agric. Forest Meteorol. 42, 156–165. (doi:10.1016/0168-
1923(88)90074-3.)
Phil. Trans. R. Soc. B (2005)
Long, S. P., Ainsworth, E. A., Leakey, A. & Morgan, P. B. 2005
Global food insecurity. Treatment of major food crops to
elevated carbon dioxide and ozone under large-scale fully
open-air conditions suggest models may seriously over-
estimate future yields. Phil. Trans. R. Soc. B 360,
2011–2020. (doi:10.1098/rstb.2005.1749.)

Marletto, V., Zinoni, F., Criscuolo, L., Fontana, G.,
Marchesi, S., Morgillo, A., Soetendael, M. V., Ceotto,
E. & Andersen, U. 2005 Evaluation of downscaled
DEMETER multi-model ensemble seasonal hindcasts in
a Northern Italy location by means of a model of wheat
growth and soil water balance. Tellus 57A, 488–497.

Matthews, R. B. & Wassmann, R. 2003 Modelling the
impacts of climate change and methane emission
reductions on rice production: a review. Eur. J. Agron.
19, 573–598. (doi:10.1016/S1161-0301(03)00005-4.)

Mearns, L. O., Mavromatis, T. & Tsvetsinskaya, E. 1999
Comparative response of EPIC and CERES crop models
to high and low spatial resolution climate change
scenarios. J. Geophys. Res. 104, 6623–6646. (doi:10.
1029/1998JD200061.)

Moss, C. B. & Shonkwiler, S. 1993 Estimating yield
distributions with a stochastic trend and nonnormal
errors. Am. J. Agric. Econ. 75, 1056–1062.

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones,
G. S., Webb, M. J., Collins, M. & Stainforth, D. A. 2004
Quantification of modelling uncertainties in a large
ensemble of climate change simulations. Nature 430,
768–772. (doi:10.1038/nature02771.)

Osborne, T. M. 2005 Towards an integrated approach to
simulating crop–climate interactions. Ph.D. thesis, Uni-
versity of Reading.

Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. &
Fischer, G. 2004 Effects of climate change on global food
production under SRES emissions and socio-economic
scenarios. Global Environ. Change—Hum. Policy Dimen-
sions 14, 53–67.

Reddy, P. S. (ed.) 1988 Groundnut. Krishi Anusandhan
Bhavan, Pusa, New Delhi, India: Indian Council of
Agricultural Research.

Reilly, J. M. & Schimmelpfennig, D. 1999 Agricultural
impact assessment, vulnerability, and the scope for
adaptation. Climatic Change 43, 745–788. (doi:10.1023/
A:1005553518621.)

Stronach, I. M., Clifford, S. C., Mohamed, A. D., Singleton-
Jones, P. R., Azam-Ali, S. N. & Crout, N. M. J. 1994 The
effects of elevated carbon dioxide temperature and soil
moisture on the water use of stands of groundnut (Arachis
hypogaea L.). J. Exp. Bot. 280, 1633–1638.

Trnka, M., Dubrovsky, M., Semerádová, D. & Žalud, Z. 2004
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