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ABSTRACT

Recent large-scale sequencing studies have revealed that cancer genomes contain variable numbers of
somatic point mutations distributed across many genes. These somatic mutations most likely include passen-
ger mutations that are not cancer causing and pathogenic driver mutations in cancer genes. Establishing a
significant presence of driver mutations in such data sets is of biological interest. Whereas current techniques
from phylogeny are applicable to large data sets composed of singly mutated samples, recently exemplified
with a p53 mutation database, methods for smaller data sets containing individual samples with multiple
mutations need to be developed. By constructing distinct models of both the mutation process and selection
pressure upon the cancer samples, exact statistical tests to examine this problem are devised. Tests to
examine the significance of selection toward missense, nonsense, and splice site mutations are derived, along
with tests assessing variation in selection between functional domains. Maximum-likelihood methods facil-
itate parameter estimation, including levels of selection pressure and minimum numbers of pathogenic mu-
tations. These methods are illustrated with 25 breast cancers screened across the coding sequences of 518
kinase genes, revealing 90 base substitutions in 71 genes. Significant selection pressure upon truncating
mutations was established. Furthermore, an estimated minimum of 29.8 mutations were pathogenic.

RECENTLY, a number of large-scale screens for
somatic mutations in human cancers have been

started. The primary aim of these screens is to identify
the driver mutations in cancer genes that are causally
implicated in cancer development (Futreal et al. 2004).
Identification of these cancer genes provides major in-
sights into the biology of neoplastic change. Moreover,
the proteins encoded by some of these mutated cancer
genes have recently proven to be tractable targets for new
anticancer drug development. However, analysis of the
results of genomic screens for somatic mutations can be
complicated by a background noise of mutations that
confer no clonal growth advantage (passenger muta-
tions). For the identification of some driver mutations
and cancer genes, the problems caused by background
passenger mutations are minor. In a cancer gene that is
frequently involved in cancer development, the somatic
mutation frequency per nucleotide of coding sequence
in a set of cancer samples is clearly higher than in other
genes and is often characterized by distinctive patterns of
mutation type and/or position. For example, mutations
observed in BRAF mostly cluster in exons 11 and 15, with
a large subset of these consisting of the single mutation
V600E (Davies et al. 2002). However, such features will

not easily be detected in cancer genes that are infre-
quently involved in cancer causation, unless very large
numbers of cancer samples are analyzed. For example, in
a recent screen of 518 kinase genes of 25 breast cancers
(Stephens et al. 2005), 90 base substitutions were dis-
covered in 71 genes. The number of mutations per gene
was highly correlated with the coding sequence length,
and no gene with a clear elevation in its mutation rate per
coding nucleotide presented itself as a candidate cancer
gene. Since 14 of these mutations were silent and hence
likely to be passenger mutations (see Table 1) this opens
the question of determining whether any of the re-
maining 76 mutations are pathogenic, which would
provide evidence that some of the 71 mutated genes are
involved in the formation of cancer.

A similar problem was considered by Yang et al.
(2003). Phylogenetic techniques from evolution ana-
lyses were adapted to analyze a large database containing
p53 mutations, and missense and nonsense mutations
were successfully shown to have different effects across
distinct functional domains of biological interest. How-
ever, this data set is marked by characteristics that
distinguish it from the protein kinase data set provided
in Stephens et al. (2005), implying that alternative ana-
lyses may be more appropriate for the latter. Samples
in the p53 data set typically contain a single mutation
and were modeled as such in Yang et al. (2003). This is
not the case for the protein kinase data set, where some
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cancers with mutator phenotypes contain several muta-
tions, which need to be modeled accordingly. The pro-
tein kinase data set is of moderate size, meaning exact
tests are more desirable than the asymptotic likelihood-
ratio tests applied to the large p53 data set.

Current methods (Yang et al. 2003) can establish the
existence of pathogenic mutations, without indicating
the proportion of nonsynonymous mutations that are
pathogenic rather than passenger in nature. This param-
eter is a desirable quantity as it is indicative of the
proportion of mutated genes that are implicated in the
development of oncogenesis. The methods described
below incorporate these differences into the modeling
techniques.

Finally we note that current methods (Yang et al.
2003) incorporate selection toward certain mutation
types as multiplicative weighting factors in codon sub-
stitution models. We present a method whereby selec-
tion is explicitly described as a process separate from
mutation, from which the full model of observables can
be constructed accordingly. This allows any model of
selection in cancer to be developed and explored.

In this article we use a similar approach to phylogenetic
methods to evaluate the evidence that the observed data
set contains pathogenic mutations. The basic principle
behind this approach is that silent (synonymous) so-
matic mutations are passenger mutations. Although a
minority of apparently synonymous mutations may en-
code exonic splice enhancers or other cryptic elements
that affect the translated product of a DNA sequence, in
general this assumption is likely to be correct. The set
of silent mutations can therefore be used as a control
group to estimate the number of nonsilent mutations
that would be expected to occur by chance, under the
null hypothesis of no association between mutations
and cancer development. Tests of significance can then
be derived by comparing the observed number of non-
silent (nonsynonymous) mutations to the expected
number. It is also possible to derive estimates of the
minimum proportion of mutations likely to be patho-
genic. We also show that there is a strong analogy with
standard analyses of epidemiological case–control or
cohort studies to evaluate risk factors.

To develop the approach, we consider an experiment
in which a number of tumors are screened through a
particular coding sequence. Suppose that l silent muta-
tions and n nonsilent mutations are observed, with
t ¼ l 1n mutations in total. We further assume that
there are T possible mutations across the sequence (T
is three times the length of the sequence), of which L
are silent and N are nonsilent. Thus a randomly po-
sitioned mutation will be silent with probability p0 ¼
L=T . If tumor samples exhibit no preference toward
either silent or nonsilent mutations, then p0 also rep-
resents the probability that a randomly chosen mutation
from a tumor sample will be silent. The odds ratio
n=l 3 p0=ð1 � p0Þ is a measure of the strength of the

association or selection toward nonsilent mutations.
Values greater than unity would indicate positive selec-
tion (that is, nonsilent mutations occurring more often
than would be expected by chance and, therefore, to
some degree related to cancer development), while
values less than unity would indicate negative selection
(nonsilent mutations occurring less often than ex-
pected, perhaps because they result in cell death).
However, any deviation from unity may be due to the
random nature of mutation rather than to any un-
derlying positive or negative selection by cancer. Alter-
natively, if any of the N nonsilent mutations either
promote or inhibit the development of cancer, the
probability p that a randomly chosen mutation observed
in cancer is silent may differ from p0. These two scenarios
can be summarized by null and alternative hypotheses
H0: p ¼ p0 and H1: p 6¼ p0. Note that p is unobservable,
so inference statistics are required to compare the hy-
potheses. The significance level of a suitable statistic,
such as the odds ratio, would enable such a comparison.
To obtain this, the expected distribution of the odds
ratio under the null hypothesis is required. If we con-
dition upon the total number of observed mutations t
we note that under the null hypothesis H0 the number of
silent mutations lwould be drawn from a Binomial (t, p0)
distribution. The expected distribution can then be
estimated by simulating l from this distribution and cal-
culating numerous odds ratios (p0 is a function of DNA
sequence and so fixed throughout). Comparing the ob-
served odds ratio to this distribution will then provide a
significance level. This will help determine whether any
of the observed nonsilent mutations are likely to have
contributed to oncogenesis in the sampled tumors.

In practice, however, this approach is too simplistic.
There are six different categories of base substitution,
namely C:G . G:C, C:G . A:T, C:G . T:A, A:T . T:A,
A:T . C:G, and A:T . G:C, where, for example, C:G .

A:T implies that a cytosine nucleotide is replaced by an
adenine on one DNA strand and a guanine is replaced
by a thymine on the complementary strand. Note that
although there are, theoretically, 12 possible single-base
changes, these reduce to the 6 types listed above, as each
mutation cannot be distinguished from the correspond-
ing mutation on the complementary strand. The con-
sequence of a specific mutation at a specific position will
depend on the genetic code, and so the probability that
a random point mutation is silent will therefore be a
function of precise DNA sequence being examined. It
will also vary depending upon the mutation type. For ex-
ample, across the coding sequences of 518 kinase genes
studied in Stephens et al. (2005), the proportion of
possible C:G . A:T substitutions that lead to a silent
mutation is 0.18, whereas the corresponding probability
for a C:G . T:A mutation is 0.36. In addition, different
mutation types will occur at different rates, depending
on the cell type and its environment. In statistical terms,
therefore, mutation type is a confounding factor that

Pathogenicity of Somatic Mutations 2189



must be adjusted for. This is accomplished most simply
by considering each mutation type as a separate stratum.

The mutation rate may depend not only on the mu-
tated base but also on the neighboring sequence. For
example, C:G . T:A mutations occur at an increased
rate due to deamination of cytosine at CpG dinucleo-
tides. In principle, such neighborhood effects can be
handled by introducing larger numbers of strata, al-
though the required number of strata may be large (for
example, if all combinations of bases on both sides of
the mutated base are considered, there are 192 possible
mutation types). Such finer stratification will reduce the
risk of bias but will also reduce power. For example, a
C:G . G:C mutation at the central nucleotide of an
ApGpG trinucleotide cannot be silent. Any selection
pressure on such mutations will elevate the mutation
rate of this stratum. However, this cannot be distin-
guished formally from an inherently different mutation
rate at these sequences, so such mutations are un-
informative. In practice, a compromise between repre-
sentative stratification and statistical power is required.
Deamination at CpG dinucleotides is well established,
and a strong C:G . {T:A, A:T, or G:C} mutation rate at
TpC dinucleotides was observed in Stephens et al.
(2005). For our main analyses, we have used the 11
strata given in Table 1.

The degree of selection by cancer upon specific muta-
tions may depend on the type of amino acid change
adopted by the protein. In particular, nonsense and
splice site mutations can lead to a truncated or reduced
protein, respectively, or indeed to total absence of pro-
tein through nonsense-mediated decay, which may re-
move domains of functional importance. If any such
mutations occur in the presence of loss of heterozygosity
(LOH) on the homologous chromosome, function will
be lost. This is the mechanism by which many tumor
suppressor genes are involved in carcinogenesis. For
example, the mutation data set of the RB1 tumor sup-
pressor gene examined in Valverde et al. (2005) con-
tains more nonsense and splice mutations than are
typical for the pattern of mutations observed in hered-
itary diseases. Conversely, a dominant change in func-
tion is more likely to be achieved through missense
mutations. Furthermore, proteins containing multiple
domains of functional necessity are less likely to tolerate
deletions induced by nonsense and splice variants, as
exemplified by the p53 gene, where most of the re-
corded variants are missense, as can be found in the data-
base described by Béroud and Soussi (2003). These
potential differences in selection by cancer can be in-
corporated by separating nonsilent mutations into mis-
sense, nonsense, and splice site categories.

The nucleotides most likely to induce splice variants
under mutation are 1, 2, or 5 bp 39 to an exon or 1 or 2 bp
59 to an exon. Although other nucleotides may be sources
of splice variants under mutation, they have been ignored
in this analysis.

This idea may be extended to consider separately
different types of amino acid substitutions. For exam-
ple, conservative and nonconservative changes could be
differentiated. Alternatively, the heterogeneity of var-
iants could be distinguished to reflect the idea that
pathogenic homozygous variants are likely to occur in
recessive cancer genes, whereas pathogenic heterozy-
gous variants will occur in dominant cancer genes.

The functional domains of the genes under in-
vestigation may also be subject to different selection
pressures. For example, tumor cells may not tolerate
mutations within some highly conserved regions, possi-
bly inducing apoptosis, which will be selected against by
cancer. Alternatively, mutations in functional domains
key to mitotic pathways may enhance the clonal growth
rate, such as within the kinase domains of certain pro-
tein kinases. These mutations will be under positive
selection pressure by cancer. Establishing differences in
selection across distinct functional domains within the
screened genes thus becomes a question of biological
interest.

This article is organized as follows. The next section
introduces the Poisson processes used to model the
random nature of mutations under no selection pres-
sure. To describe the pattern of mutations observed in
tumor samples, the subsequent section models the selec-
tion pressure of cancer upon mutations, from which
methods to estimate the numbers of pathogenic muta-
tions are introduced. Likelihood-ratio and score statistics
are then developed to assess whether selection pressure
upon the screened genome exists and hence whether a
subset of the observed mutations is implicated in the
development of cancer. Next, these methods are adapted
to test for variation in selection across different func-
tional domains. Finally, these techniques are illustrated
and discussed with the breast cancer data set of Stephens
et al. (2005).

MODELING MUTATIONS

Various models of the mutation process have been
defined and explored, frequently to model the evolu-
tionary development of species (see Goldman and
Yang 1994 for an example) but also to model cancer
(Yang et al. 2003). These models are known as codon
substitution models and account for potential factors in
mutation processes. These include differences in muta-
tion rates between transversions and transitions, as well
as between silent and nonsilent mutations. Selection
pressures are generally incorporated as multiplicative
factors. These models are based on continuous-time
Markov (Poisson) processes, reflecting the hypothesis
that mutations are random events that occur indepen-
dently of one another. Although there is some evidence
that mutations are not entirely random in nature (Hall

1990), Poisson processes provide a natural basis from
which to derive an analytic approach.
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Suppose we have J tumor samples to analyze. Suppose
furthermore that tumor sample j has undergone mj

mitoses and that, at the rth mitosis, the number of muta-
tions in the screened coding sequence (CDS) of type k is
a Possion process with rate rrjk , where the mutation type k
represents 1 of 11 strata indicated in Table 1. The num-
ber of mitoses and mutation rates may vary among sam-
ples, and the mutation rates may vary between mitoses.
It is assumed throughout that these intensities are small
and that all processes are independent. Note that these
mutation intensities are unobservable. Furthermore,
although these are of biological interest, the main mo-
tivation of the present analysis is to evaluate the evi-
dence for pathogenicity. In the current context, the
mutation intensities are nuisance parameters to be elim-
inated by estimation or conditioning.

For each mutation type k we calculate the number of
base pairs in the CDS that can give rise to silent, mis-
sense, nonsense, or splice mutations. These counts are
denoted Lk ;Mk ;Nk , and Sk , respectively, with totals Tk ¼
Lk 1Mk 1Nk 1 Sk . These observables can be calculated
precisely from the sequence of DNA in the region
screened, available from any database containing the
human genome sequence, and the genetic code. The
values for the kinase data set of Stephens et al. (2005)
are provided in the top half of Table 1.

Some genes may have multiple transcripts, possibly
out of frame, making such counts ambiguous. In such
cases average counts weighted by protein frequency
would be appropriate, if possible. However, for applica-
tion to the protein kinase genes in Stephens et al.
(2005), multiple transcripts varied little and no frame-
shifts were observed, so only the longest transcript was
used in application of these methods.

Single-nucleotide polymorphisms (SNPs) in the sam-
ples will result in some differences between the sample
CDSs and a database reference CDS. These are normally
detected when wild-type samples are screened against
the cancers to distinguish SNPs from somatic mutations.
In principle, values of Lk, Mk, Nk, and Sk could be ad-
justed to take account of these SNPs. However, since
they typically occur at an average frequency of about one
every kilobase, errors involved in using the reference
sequence were assumed negligible.

The aim of this article is to distinguish pathogenic
mutations from passenger ones. It is thus natural to
divide each of missense, nonsense, and splice mutations
into two groups, those associated with cancer (driver or
pathogenic) and those not associated with the growth
rate of cells (passenger or neutral). As such, we parti-
tion the counts Mk ¼ Mc

k 1Mc
k , Nk ¼ N c

k 1N c
k , and Sk ¼

Sc
k 1 Sc

k , where superscript c indicates a count across
bases pathogenic under mutation, and c indicates
counts across bases neutral to cancer. Although only
the totals Mk , Nk , and Sk can be observed, the division of
counts into pathogenic and neutral counts serves the
problem twofold. First, selection pressure induced by

cancer will apply only to the pathogenically mutable
bases. Second, this will allow us to estimate the number
of pathogenic mutations.

Suppose that ljk , mjk ¼ mc
jk 1mc

jk , njk ¼ nc
jk 1nc

jk , and
sjk ¼ scjk 1 scjk are the numbers of silent, missense, non-
sense, and splice site mutations actually observed in
sample j. Again, the missense, nonsense, and splice site
counts are partitioned into pathogenic or passenger mu-
tations. The total counts are denoted tjk ¼ ljk 1mjk 1

njk 1 sjk . Then assuming that mutations are indepen-
dent random events, the counts ljk ;m

c
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ,

and scjk will be drawn from independent Poisson dis-
tributions with expectations Lkrjk ;M

c
k rjk ;M

c
k rjk ;N

c
k rjk ;

N c
k rjk ; S

c
krjk , and Sckrjk , respectively, where rjk ¼

P
r r

r
jk

represents the overall intensity across all mitoses of
sample j for mutation type k. Although each mutation
may change Lk ;M

c
k ;M

c
k ;N

c
k ;N

c
k ; S

c
k , or Sc

k slightly, the
total number of mutations is typically small enough
that these sizes can be regarded as fixed. For example,
the breast kinase screen of Stephens et al. (2005) detected
only 90 base substitutions out of 3.2 3 107 bp screened.

In the absence of any selection pressure, the proba-
bility of observing a given set of mutations in sample j
then takes the form of the following product of Poisson
distributions:

Prðfljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11Þ

¼
Y
k

e�Tkrjkr
tjk
jk

L
ljk
k ðMc

k Þ
mc

jk ðMc
k Þ

mc
jk ðN c

k Þ
nc
jk ðN c

k Þ
nc
jk ðSck Þ

scjk ðSc
k Þ

scjk

ljk!m
c
jk!m

c
jk!n

c
jk!n

c
jk!s

c
jk!s

c
jk!

:

ð1Þ

Note that the ratios ajk ¼ rjk=
P

k9rjk9 represent the
probability that a random mutation is of type k. These
values are commonly referred to as the mutation spectra.

MODELING SELECTION

To model the effects of selection, Equation 1 needs to
be modified to incorporate the effect that a specific
distribution of mutations will have upon the develop-
ment of cancer. This effect is modeled as a probability
as there are multiple sources of uncertainty in the
development of cancer for a specific distribution of mu-
tations. First, the positioning of the pathogenic muta-
tions within the region of screened genome will vary
between samples. As some positions of pathogenic
mutation are likely to confer more clonal growth ad-
vantage than others, any values describing selection
pressures should be viewed as an average across the
screened genome. Also, unless the entire coding genome
is analyzed, samples will possibly contain undetected
pathogenic mutations within unscreened regions that
confer varying degrees of growth advantage to the cells.
Finally, we note that there will be natural variation in
the effects of mutations from person to person; gene
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expression levels may vary between samples, for exam-
ple. For these reasons, it is natural to model the devel-
opment of cancer for a given mutation set stochastically
rather than deterministically.

If Cj denotes the event that a given cell lineage j
develops cancer, the distribution of observed mutations
can be resolved through Bayes’ theorem into the fol-
lowing product,

Prðfljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11 jCjÞ

}Prðfljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11Þ

3PrðCj j fljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11Þ:

The final term PrðCj j fljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11Þ

models the probability that a DNA sample with the
given set of mutations across the region screened will be
cancerous.

The form of these latter terms will depend on the
assumed model of cancer. Some models, for example,
assume that a fixed number of mutations are observed.
This is a general fixed parameter in Little and Wright

(2003). The work of Yang et al. (2003) fit numerous
models to data arising from experiments where one or a
few genes are screened across numerous samples, ex-
emplified by their analysis upon a p53 mutation data set.
However, the typical data set considered here contains
the results of a screen across several genes in relatively
few tumor samples, such as that described in Stephens
et al. (2005). As such, we assume that for all samples,
each additional pathogenic mutation of a given cate-
gory confers the same relative increase in the probability
of developing cancer. Although this may not be strictly
true, it provides an intuitive model for developing tests
and estimates. The final term will thus be of the form,

PrðCj j flkj ;mc
kj ;m

c
kj ;n

c
kj ;n

c
kj ; s

c
kj ; s

c
kjgk¼1;...;11Þ}h

mc
j m

nc
j n

scj ;

ð2Þ

where mc
j ¼

P
k m

c
jk ;n

c
j ¼

P
k n

c
jk , and scj ¼

P
k s

c
jk denote

the total numbers of pathogenic missense, nonsense,
and splice mutations in sample j, respectively.

We note that this probability is independent of muta-
tion counts within each mutation type, k. This may be
expected, as the likelihood of developing cancer is likely
to depend upon the category of amino acid change (i.e.,
missense, nonsense, or splice) rather than the type of
source mutation, k.

The terms h;m, and n represent the relative change
in probability of developing a tumor conferred by a
pathogenic missense, nonsense, or splice mutation,
respectively. Values greater than unity indicate an in-
crease in this likelihood, whereas values less than unity
represent a decrease. These terms are analogous to rate
ratios or relative risks in epidemiology, where the mu-
tations are analogous to exposures. The resulting likeli-
hood is then of the form

Prðfljk ;mc
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk ; s

c
jkgk¼1;...;11 jCjÞ

¼
Y
k

e�rjk ðLk 1hMc
k 1mN c

k 1 nSck 1Mc
k 1N c

k 1 Sck Þ

3 r
tjk
jk

L
ljk
k ðhMc

k Þ
mc

jk ðmN c
k Þ

nc
jk ðnSc

k Þ
scjk ðMc

k Þ
mc
jk ðN c

k Þ
nc
jk ðSc

k Þ
nc
jk

ljk!m
c
jk!m

c
jk!n

c
jk!n

c
jk!s

c
jk!s

c
jk!

:

ð3Þ

This is equivalent to a product of independent Pois-
son distributions where ljk ;m

c
jk ;m

c
jk ;n

c
jk ;n

c
jk ; s

c
jk , and scjk

have intensities given by rjkLk ; rjkhM
c
k ; rjkM

c
k ; rjkmN

c
k ;

rjkN
c
k ; rjknS

c
k , and rjkS

c
k , respectively. If lk ;mk ;nk , and sk

denote the total number of silent, missense, nonsense,
and splice variants across all samples, we have lk ¼P

j ljk ;mk ¼
P

jðmc
jk 1mc

jkÞ;nk ¼
P

jðnc
jk 1nc

jkÞ, and sk ¼P
jðscjk 1 scjkÞ. As mutations are independent events, the

counts lk ;mk ;nk , and sk will also follow independent
Poisson distributions, with intensities given by rkLk ; rk �
ðhMc

k 1Mc
k Þ; rkðmN c

k 1N c
k Þ, and rkðnSc

k 1 Sc
k Þ, respec-

tively, where rk ¼
P

j rjk . This can be summarized by

Prðflk ;mk ;nk ; skgk¼1;...;11 j fCjgj¼1;...; J Þ

¼
Y
k

e�rkðLk 1Mkfk 1Nkck 1 SkzkÞrtkk

3
Llk
k ðMkfkÞmk ðNkckÞnk ðSkzkÞsk

lk!mk!nk!sk!
; ð4Þ

where fk ¼ ðhMc
k 1Mc

k Þ=Mk , ck ¼ ðmN c
k 1N c

k Þ=Nk , and
zk ¼ ðnSc

k 1 Sck Þ=Sk are the rate ratios and represent selec-
tion pressures. Values fk ;ck ; zk . 1 increase the probabil-
ity of observing pathogenic mutations and thus represent
positive selection pressure, whereasfk ;ck ; zk , 1 indicate
negative selection pressure.

It is worth observing that although the parameters h,
m, and n, used to define the probability that a cell lineage
adopts cancer (Equation 2), are independent of muta-
tion type k, differences in the proportions of potentially
pathogenic mutations (i.e., Mc

k =Mk , N c
k =Nk , or Sc

k=Sk),
could still lead to selection pressures fk ; ck ; zk that
depend upon k. We also note that, in the present con-
text, these parameters are assumed to be the same for all
mutations of each type. In practice this may not be true,
in which case they can be regarded as a representative
‘‘average’’ effect. Later, we consider approaches to eval-
uating variation in these parameters, for example, by
domain.

ESTIMATING THE NUMBER OF
PATHOGENIC MUTATIONS

One question that naturally arises is how to estimate
the proportions of observed mutations that are actually
pathogenic. These are denoted rm ¼ mc

k=mk ; rn ¼ nc
k=nk ,

and rs ¼ sck=sk for missense, nonsense, and splice var-
iants, respectively, which can be estimated by taking the
ratio of the relevant rates from Equation 3. This gives
r̂m ¼ hMc

k =ðhMc
k 1Mc

k Þ ¼ 1 �Mc
k =ðfkMkÞ for missense
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mutations, with similar estimates r̂n ¼ 1 � N c
k =ðckNkÞ

and r̂ s ¼ 1 � Sc
k=ðzkSkÞ for nonsense and splice site muta-

tions. In practice, of course these cannot be determined
since the counts Mc

k ;N
c
k , and Sc

k are unobservable. How-
ever, in the limit where Mc

k/Mk ;N
c
k/Nk , and Sc

k/Sk
(i.e., most base pairs are neutral under mutation) and
assuming positive selection, these probabilities con-
verge to 1 � 1=fk ; 1 � 1=ck , and 1 � 1=zk , respectively.
Since these expressions are also the fractions of muta-
tions that occur in excess of expectation under no
selection, this is perhaps the natural answer to the ques-
tion as to what fraction of mutations can be attributed to
the cancer. However, because Mc

k #Mk ;N
c
k #Nk , and

Sc
k # Sk , these expressions are lower bounds on the pro-

portion of mutations actually involved in the disease pro-
cess. At the opposite extreme one might have Mc

k/0;
N c
k/0, and Sck/0, implying that all nonsilent muta-

tions are (more weakly) pathogenic. More strictly, there-
fore, provided selection pressure is positive, the estimated
proportions of missense, nonsense, and splice site muta-
tions that are pathogenic are described by the inequalities

1 � 1=fk # r̂m # 1;

1 � 1=ck # r̂n # 1;

1 � 1=zk # r̂ s # 1:

These ranges reflect the idea that one cannot distin-
guish between a small number of mutations conferring
strong selection and a larger number of mutations
conferring weak selection.

In the case of negative selection, no information upon
rm; rn, or rs can be provided. However, since h;m; n. 0,
lower bounds for any negative selection pressures fk .

Mc
k =Mk ;ck .N c

k =Nk , and zk . Sc
k=Sk result. Therefore,

under negative selection pressure, fk ;ck , and zk provide
upper bounds on the proportion of base pairs that are
selected against by cancer.

TESTS OF SELECTION

So far we have developed a model (summarized by
Equation 4) for mutations across a section of screened

genome, which incorporates selection pressures. The
observable parameters include the silent, missense, non-
sense, and splice site mutation counts lk ;mk ;nk , and sk ,
along with base pair counts Lk ;Mk ;Nk , and Sk , respec-
tively. The unobservable parameters include the selec-
tion pressures, represented in the model by the terms
fk, ck, and zk , and the parameters rk , which represent a
mutation rate for each type k.

The principal aim of the analysis is to examine evi-
dence for selection. That is, determine if any of fk, ck,
and zk are distinct from unity, indicating that a subset of
the point mutations detected across the screened ge-
nome are related to the genesis of cancer in the sampled
tumors. Unfortunately the selection pressures cannot
be directly measured, and we have to rely on the ob-
servables to derive estimates, denoted f̂ k , ĉ k , and ẑ k .
Although these estimates may differ from unity, the pop-
ulation values fk, ck, and zk could still be unity, differ-
ences arising due to natural random fluctuation in the
observed mutation counts, rather than a genuine un-
derlying effect. This is an inference problem, typically
examined by considering two alternatives, the null hy-
pothesis (neutral selection) and an alternative hypoth-
esis (selection by cancer), where a significance value
provides a measure of the strength of evidence support-
ing the alternative hypothesis.

For the problem in hand, there are many possible
alternative hypotheses, and it is desirable to know which
one is most likely. We can express the possible scenarios
in terms of the four hypotheses described in Table 2. H0

is the global null hypothesis of no selection pressure. H3

is the most general alternative, allowing for positive or
negative selection pressures, heterogeneous across mu-
tation types. The alternatives H1 and H2 assume that the
selection pressures, as measured by f, c, and z, are com-
mon across mutation types. These reflect the notion
that different mutation types are equally likely to be
associated with disease. H1 differs from H2 in further
assuming that the selection pressures for missense,
nonsense, and splice site mutations are equal.

To develop estimates of the selection pressures and
statistical tests to evaluate the above hypotheses, we must

TABLE 2

Properties of the four hypotheses H0, H1, H2, and H3

Model
Nesting

structure

Selection
pressures

across strata

Selection
pressures across

mutation category
No. selection

pressures Description

H0 H0 Unity Unity 0 "k; fk ¼ ck ¼ zk ¼ 1
H1 H1�H0 Equal Equal 1 "k; fk ¼ ck ¼ zk ¼ f

H2 H2�H1�H0 Equal Distinct 3 "k; fk ¼ f; ck ¼ c; zk ¼ z

H3 H3�H2�H1�H0 Distinct Distinct 33 fk ; ck ; zk ; k ¼ 1; . . . ; 11

Nesting structures of the four models, variation in selection pressure between strata (mutation type), and variation between
mutation categories (missense, nonsense, or splice) are indicated. The number of resulting selection pressures follows. Parameter-
izations are indicated in the final column.
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first eliminate the unknown nuisance parameters rk . A
natural approach is to argue conditionally on the total
number of mutations tk of each type. These are the
minimal sufficient statistics for rk, which are conse-
quently eliminated. This leads (from Equation 4) to a
product of multinomial distributions:

Prðflk ;mk ;nk ; skgk¼1;...;11 j ftkgk¼1;...;11Þ

¼
Y
k

tk!

lk!mk!nk!sk!

Llk
k ðMkfkÞmk ðNkckÞnk ðSkzkÞsk

ðLk 1Mkfk 1Nkck 1 SkzkÞtk
: ð5Þ

Again, it is interesting to note that there is a strong
analogy with the analysis of cohort studies in epidemi-
ology. The mutation types are equivalent to different
strata in a cohort analysis, while the terms Lk,Mk,Nk, and
Sk are equivalent to the ‘‘person years’’ at risk.

Several different tests for selection can now be devel-
oped, on the basis of the possible alternative hypothe-
ses. Likelihood methods provide a natural framework
for hypothesis tests, and maximum-likelihood estima-
tion can also be used to estimate the various parameters.
One standard approach to hypothesis testing is to use a
likelihood-ratio test (LRT), on the basis of the ratio of
the maximum likelihoods under the two hypotheses.
In large samples LRT statistics are distributed, asymp-
totically, as chi-square distributions, provided that the
hypotheses are nested. However, the likelihood ratio
may not be analytically tractable, in which case numer-
ical methods may need to be applied. An alternative
class of test statistics is score tests, based on the first
derivative U of the log-likelihood at the null. The score
statistic is of the form V ¼ U TV �1U , where V is the co-
variance of U, and this also has an asymptotic chi-square
distribution, provided that the null hypothesis is nested
in the alternative hypothesis. The LRT and score test
also have similar efficiency (Cox and Hinkley 1974). If
the data set is small (e.g., Stephens et al. 2005), or hy-
potheses are not nested, the chi-square approximations
may not be reliable. In these cases, the significance
levels may be estimated by simulation, using permuta-
tion arguments in which mutations are randomly per-
muted among tumors. Permutation arguments could be
applied to LRTs but are more easily applied to score tests
since they can often be computed without iteration. Fur-
ther details of these methods can be found in Sorensen
and Gianola (2002).

These statistics can be used to test the null hypothesis
H0 against alternatives H1, H2, or H3. Which test is to be
preferred depends on the likely alternative hypothesis
and comes down to a trade-off between generality of the
alternative and number of unknown parameters in the
test (respectively 1, 3, and 33). In general, our prefer-
ence is for a primary test of H0 vs. H2 rather than H0 vs.
H1, since this reflects the fact that missense, nonsense,
and splice mutations are likely to behave differently.
This is reinforced by results of Yang et al. (2003), where

differences between missense and nonsense selection
pressures were observed. A test to compare H1 vs. H2

would also help resolve this issue. The more general test
of H0 vs. H3 would be expected to lack power given the
large number of parameters, unless there is strong
reason to suspect a marked tendency for mutations of
a particular type to be pathogenic. One would then want
to conduct a separate test of H2 vs. H3 to evaluate
whether there is evidence of heterogeneity in selection
pressure across mutation types.

We note that the hypotheses H0, H1, H2, and H3 are
nested, as indicated in Table 2. The LRT comparing any
pair of hypotheses then has a standard chi-square dis-
tribution, provided data sets are of sufficient size. The
likelihoods used in this ratio are derived from the con-
ditional likelihood in Equation 5, maximized with re-
spect to all free parameters (selection pressures) within
each hypothesis. The number of degrees of freedom
required to implement the LRT is simply the difference
between the numbers of free parameters for each hy-
pothesis, as indicated in Table 2. However, for data sets
of moderate size, the resulting significance levels may
not be accurate, so exact score tests can be derived to
provide more reliable information.

The score test for comparison of H0 vs. H2 is based on
the first derivatives U of the log-likelihood with respect
to the selection pressures f, c, and z, evaluated at the
null hypothesis f ¼ c ¼ z ¼ 1. Then using Equation 5,
this leads to a test statistic of the form V ¼ U TV �1U ,
where

U ¼
�X

k

ðmk � tkMk=TkÞ;
X
k

ðnk � tkNk=TkÞ;

X
k

ðsk � tkSk=TkÞ
�
;

and covariance

V ¼

P
k
tk
MkðTk �MkÞ

T 2
k

�
P
k
tk
MkNk

T 2
k

�
P
k
tk
MkSk
T 2
k

�
P
k
tk
NkMk

T 2
k

P
k
tk
NkðTk � NkÞ

T 2
k

�
P
k
tk
NkSk
T 2
k

�
P
k
tk
SkMk

T 2
k

�
P
k
tk
SkNk

T 2
k

P
k
tk
SkðTk � SkÞ

T 2
k

2
6666666664

3
7777777775
:

In the epidemiological literature this is just the
Mantel–Haenszel test for cohort studies. The termsP

k tkMk=Tk ;
P

k tkNk=Tk , and
P

k tkSk=Tk can be
thought of as the expected numbers of missense, non-
sense, and splice site mutations under the null hypoth-
esis of no selection, given the total number of mutations
observed. Exact significance levels can be computed by
simulating the null distribution of the test statistic,
randomly reallocating the tk mutations of type k to the
four categories in the ratios Lk:Mk:Nk:Sk.
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A similar test for H0 vs. H1 can be constructed by
combining missense, nonsense, and splice site muta-
tions into a single category for each mutation type.

For the more general test of H0 vs. H3,

U ¼ fðmk � tkMk=TkÞ; ðnk � tkNk=TkÞ; ðsk � tkSk=TkÞgk¼1;...;11

and

V ¼4k

tk
MkðTk �MkÞ

T 2
k

�tk
MkNk

T 2
k

�tk
MkSk
T 2
k

�tk
NkMk

T 2
k

tk
NkðTk �NkÞ

T 2
k

�tk
NkSk
T 2
k

�tk
SkMk

T 2
k

�tk
SkNk

T 2
k

tk
SkðTk � SkÞ

T 2
k

2
666666664

3
777777775
:

For this comparison the relevant likelihoods can be
maximized without iteration, so that exact tests based
on a LRT are also straightforward. The likelihood-ratio
statistic in this case can be obtained by maximizing the
conditional likelihood in Equation 5 with respect to all
the selection pressures:

LRðflk ;mk ;nk ; skgk¼1;...;11Þ

¼
Y
k

ðlk=tkÞlk ðmk=tkÞmk ðnk=tkÞnk ðsk=tkÞsk
ðLk=TkÞlk ðMk=TkÞmk ðNk=TkÞnk ðSk=TkÞsk

:

It is also desirable to derive comparisons between the
different alternatives. The most straightforward test for
H1 vs. H3 or H2 vs. H3 is a likelihood-ratio test. In this
case there is no straightforward exact test and numeri-
cal iterative methods are required (only H2 vs. H3 was
implemented in application). However, an exact test for
H1 vs. H2 can be achieved with the methods described in
functional domains below. Viabilities of likelihood-
ratio and score tests for comparisons between the dif-
ferent hypotheses are summarized in Table 3.

We note that the tests described above can be applied
individually to missense, nonsense, or splice site mu-
tations. For example, one may want to examine the sig-

nificance of the selection pressure upon nonsense
mutations ck , irrespective of the missense and splice
site selection pressures fk and zk . That is, test null hy-
pothesis H0: ck ¼ 1 against H1: ck 6¼ 1. This can be
achieved by simply removing all terms involving mk ;
Mk ; sk ; Sk from the expressions above, redefining the
totals tk ¼ lk 1nk ;Tk ¼ Lk 1Nk in terms of silent and
nonsense counts only, and proceeding as before. Tests
specific to missense or splice variants are achieved
similarly.

Parameter estimation under the various alternative
hypotheses can be found by implementing maximum-
likelihood methods. Under the most general model H3,
these are given (from Equation 5) by the usual odds
ratios:

f̂ k ¼
mk

lk

Lk

Mk
; ĉ k ¼

nk

lk

Lk

Nk
; ẑ k ¼

sk
lk

Lk

Sk
:

Under the more restrictive models H1 and H2,
maximum-likelihood estimates can be obtained only
iteratively. However, from Equation 4, counts lk ;mk ;nk ,
and sk are Poisson with means rkLk, rkMkfk, rkNkck, and
rkSkzk, respectively. Thus estimation for the various un-
known parameters, including the nuisance parameters,
can be obtained by implementing Poisson regression
with a log link function in one of the standard packages
capable of fitting generalized linear models (for exam-
ple, Matlab, Stata, or S plus). The terms log(Lk), log(Mk),
log(Nk), and log(Sk) are handled as offsets in the anal-
ysis. Confidence intervals for the parameters, based on
standard asymptotic arguments, are also produced by
these routines.

Theterms m̂c
k ¼ mkð1 � 1=f̂ kÞ; n̂c

k ¼ nkð1 � 1=ĉ kÞ, and
ŝck ¼ skð1 � 1=ẑ kÞ estimate the minimum number of
pathogenic missense, nonsense, and splice site muta-
tions, respectively (assuming positive selection pres-
sure). That is, they estimate the minimum number of
mutations attributable to the disease process. It may
be preferable to replace f̂ k , ĉ k , and ẑ k by common
estimates across mutation types (i.e., assume hypothesis
H2) if there is no evidence of heterogeneity.

Although the main interest is in the selection param-
eters associating mutation with disease, it is also possible
to make simultaneous inferences about the mutation
spectra ak ¼ rk=

P
k rk . The maximum-likelihood esti-

mates for r̂k from Equation 4 are given by r̂k ¼
tk=ðLk 1Mkf̂ k 1Nkĉ k 1 Sk ẑ kÞ. These mutation rates are
generated naturally in the Poisson regression analyses.
The estimates âk ¼ r̂k=

P
k r̂k can then be calculated for

any of the alternative hypotheses.
Finally, we observe that a parameter of common bio-

logical interest is the probability that a mutation is silent.
By writing PrðSilentÞ ¼

P
k PrðSilent j kÞPrðkÞ, this can

readily be estimated by

Pr̂ðSilentÞ ¼
X
k

Lkâk

Lk 1Mkf̂ k 1Nkĉ k 1 Sk ẑ k
: ð6Þ

TABLE 3

Preferential comparisons between hypotheses
H0, H1, H2, and H3

H0 H1 H2 H3

H0 — Score Score Score, LRT
H1 Score — Scorea LRTb

H2 Score Scorea — LRTb

H3 Score, LRT LRTb LRTb —

All comparisons can be implemented as exact tests.
a The more general score statistic described in the domains

section is required.
b The exact test requires an optimization routine to maximize

the likelihood, as the likelihood ratio does not take a closed
form.
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Note that this estimated probability is a function of DNA
sequence, selection pressure, and mutation spectra,
under the alternative hypotheses. This will correct for
any biases arising from the heuristic ratio

P
k lk=

P
k tk .

FUNCTIONAL DOMAINS

The above models can be extended to evaluate the
possibility of differential selection according to addi-
tional covariates. This might include, specifically, func-
tional domains or subsets of genes. Suppose that the
DNA sequence screened is divided into H domains of
interest. Suppose furthermore that we are interested in
detecting differential selection toward missense muta-
tions between these domains. Nonsense and splice site
variants are (for the moment) ignored. The rate of
silent mutations per nucleotide will be constant across
these domains by the hypothesis of neutral selection.
We are therefore interested only in missense mutations
throughout these domains. By defining domain-specific
selection pressures, mutation counts, and base pair
counts, the density Prðfmkhgk¼1;...;11;h¼1;...;H Þ can be ex-
pressed as the following product of Poisson distributions:

Prðfmkhgk¼1;...;11;h¼1;...;H Þ ¼
Y
kh

ðrkMkhfkhÞmkh

mkh!
e�rkMkhfkh :

This term is essentially Equation 4 restricted to just
missense mutations, where all terms except rk have an
additional subscript h referring to the domain. The
mutation rates rk are assumed constant across domains,
implying that significant differences in mutation counts
between domains are due to variation in selection
pressure alone.

Assuming independence of mutations between do-
mains, the total number of mutations across all domains
for each mutation type k will also have a Poisson dis-
tribution, with the rate equal to the sum of individual
rates across domains, so that

Prðfmkgk¼1;...;11Þ ¼
Y
k

ðrk
P

h MkhfkhÞmk

mk!
e�rk

P
h
Mkhfkh :

As we wish to compare domain-specific selection
pressures irrespective of the overall selection pressure,
it is natural to consider the distribution of the domain-
and type-specific mutation counts, conditional on the
total type-specific counts:

Prðfmkhgk¼1;...;11;h¼1;...;H j fmkgk¼1;...;11Þ

¼
Y
k

mk!Q
h mkh!

Q
hðMkhfkhÞmkh

ð
P

h MkhfkhÞmk
: ð7Þ

We now assume that either model H1 or H2 applies.
That is, we assume in what follows that selection pres-
sures are unrelated to mutation type k. Thus we can

write fkh ¼ fh ¼ fuh. We impose the additional con-
straint

P
h uh ¼ H to ensure that the overall selection

pressure f is uniquely specified. By summing across
domains we note that f ¼ ð1=H Þ

P
h fh represents the

mean selection pressure across domains. Note further-
more that the null hypothesis of constant selection
across domains is represented by uh ¼ 1. The condi-
tional likelihood in Equation 7 then reduces to

Prðfmkhgk¼1;...;11;h¼1;...;H j fmkgk¼1;...;11Þ

¼
Y
k

mk!Q
h mkh!

Q
hðMkhuhÞmkh

ð
P

h MkhuhÞmk
;

which is dependent only on the interaction parameters
uh and not on the nuisance parameter f. Although this
expression contains H unknown parameters, the con-
straint

P
h uh ¼ H means that there are only H � 1 d.f.

We thus define the following H � 1 parameters,

lh ¼
uh

uH
; h ¼ 1; . . . ;H � 1:

These substitute into the conditional likelihood through
the inverse transformation,

uh ¼

Hlh

11
P

h9 lh9
; h,H ;

H

11
P

h9 lh9
; h ¼ H :

8>><
>>:

A likelihood-ratio test may be used to the test for
differences by domain, but it will require iteration and
a score test again provides a simpler alternative. The
test statistic is of the form V ¼ UTV�1U, where U
denotes the partial differentials of the log-likelihood
D ¼ logðPrðfmkhgk¼1;...;11;h¼1;...;H j fmkgk¼1;...;11ÞÞ evaluated
at the null hypothesis,

Uh ¼
@D

@lh

����
lh¼1

¼
X

1#h9#H

@D

@uh9

����
uh9¼1

@uh9
@lh

����
lh¼1

¼
X
k

ðmkh � mkMkh=MkÞ; h ¼ 1; . . . ;H � 1:

This is a natural statistic, summing the difference be-
tween observed and expected counts across the muta-
tion types k. The term V ¼ CovðU Þ is then a matrix of
multinomial covariances summed across the mutation
types; that is,

Vij ¼

P
k
mk

MkiðMk �MkiÞ
M 2

k

; i ¼ j ¼ 1; . . . ;H � 1;

�
P
k
mk

MkiMkj

M 2
k

; i 6¼ j ¼ 1; . . . ;H � 1:

8>>><
>>>:

To apply the test, the null distribution of the statistic V

is generated by simulating the counts mkh across the
domains in the ratios Mk1:Mk2: . . . :MkH.

2196 C. Greenman et al.



Score statistics for domain effects upon nonsense or
splice site variants can be constructed analogously.

We note that this approach can be used to derive an
analogous test of H1 vs. H2, by regarding missense,
nonsense, and splice site mutations as arising from three
distinct domains. That is Mk1 ¼ Mk ;Mk2 ¼ Nk ;Mk3 ¼ Sk .

If Um;Un;Us and Vm;Vn;Vs represent the statistics
for missense, nonsense, and splice terms, a test V ¼ U T �
V �1 U for domain effects for all mutations can be con-
structed, where U ¼ fUm;Un;Usg and V ¼ Vm4Vn4Vs.

A test for domain effects under hypothesis H1 can be
constructing by combining the missense, nonsense, and
splice site information into single counts for each muta-
tion and domain type, kh.

Under alternative hypothesis H3 the selection pres-
sures fkh can be redefined in terms of the domain-
averaged pressure and interaction terms. That is, fkh ¼
fkukh , where

P
h ukh ¼ H . The likelihood in Equation

7 again has a redundancy of parameters. Defining
the transformation zkh ¼ ukh=ukH ; h ¼ 1; . . . ;H � 1; k ¼
1; . . . ;K gives K ðH � 1Þ parameters. The likelihood-
ratio statistic in this case can be calculated directly as

LR ¼
Q

khðmkh=MkhÞmkhQ
kðmk=MkÞmk

;

from which a LRT can be applied to test for missense
mutation domain effects. Nonsense and splice site var-
iants are tested similarly. A combined single test for all
missense, nonsense, and splice site domain effects fol-
lows by multiplying their respective likelihood ratios to-
gether into one statistic.

Finally, we note that these tests will lack power if the
number of domains is large, unless domains can be
grouped in a biologically meaningful manner.

APPLICATION TO PROTEIN KINASE
GENE MUTATIONS IN BREAST CANCER

These methods were applied to the screen of 25
breast tumors through �32 Mb of DNA from 518 pro-
tein kinase genes (Stephens et al. 2005). The results of
this experiment are summarized in Table 1, and the

results of various tests are given in Table 4. Significance
levels for score tests were based on 100,000 Monte Carlo
simulations, except for the H2 vs. H3 comparisons,
which were based on either asymptotic assumptions or
exact LRTs using 10,000 simulations, due to the time
constraints of iterative methods. Parameter estimates
are given in Table 5.

There was no significant evidence of heterogeneity in
selection pressure by mutation type, as determined by
the test of H2 vs. H3 (P ¼ 0.64). H2 provided a superior
fit than H1 (P ¼ 0.00096), indicating variation in selec-
tion pressure between missense, nonsense, and splice
site effects. The proposed test of H0 vs. H2 provided
strong evidence of selection (P ¼ 0.00029). In fact, the
selection pressure estimates were similar for nonsense
and splice mutations (ĉ ¼ 4:48; ẑ ¼ 4:59) but substan-
tially lower for missense mutations (f̂ ¼ 1:37), al-
though the value for missense mutations is still greater
than unity. The nonsense selection pressure was signif-
icantly different from unity (P ¼ 0.0013). Similarly,

TABLE 4

Significance levels comparing hypotheses H0, H1, H2, and H3

Mutation types H0 vs. H1 H0 vs. H2 H0 vs. H3 H1 vs. H2 H2 vs. H3

All nonsynonymous point mutations 0.0943 0.00029 0.0046 0.00096 0.6368a

Missense mutations NA 0.2684 0.3905 NA 0.0829b

Nonsense mutations NA 0.0013 0.0105 NA 0.4164b

Splice site mutations NA 0.0068 0.0067 NA 0.0824b

Significances are split into missense, nonsense, splice, and combined effects. Exact tests were based upon
100,000 Monte Carlo simulations, unless otherwise indicated.

a An asymptotic likelihood-ratio test.
b Based upon 10,000 simulations.

TABLE 5

Parameter estimates

Parameter Missense Nonsense Splice

Selection pressure
estimates f̂; ĉ, and ẑ

1.37 4.48 4.59

Selection pressure
confidence
intervals (95%)

0.76–2.49 2.00–9.99 1.75–12.02

No. of mutations m;n;
and s

58 12 6

Estimated minimum
no. of pathogenic
mutations m̂c ; n̂c ;
and ŝc

15.8 9.3 4.7

Selection pressure estimates under hypothesis H2 with 95%
confidence intervals. The minimum numbers of pathogenic
mutations are provided for missense, nonsense, and splice
site, variants. Mutation counts are summed across mutation
types k.

Pathogenicity of Somatic Mutations 2197



the splice site selection pressure was significant (P ¼
0.0068), but the missense selection pressure was not
(P ¼ 0.27). These observations suggest that the breast
cancers exhibit stronger selection toward the protein-
truncating mutations.

From Table 5, an estimated minimum of 29.8 of the 76
nonsynonymous mutations are pathogenic (39%), in-
cluding 9.3 of the 12 nonsense mutations. In fact, 10
of the nonsense mutations arose from one sample,
PD0119 (see Stephens et al. 2005 for details), suggest-
ing that, at least for this tumor, cells accumulate growth
advantage from multiple mutations, similar to the
model of colorectal cancer evolution given by Little
and Wright (2003).

The silent rate under the null hypothesis was esti-
mated using Equation 6 to be 0.2460, suggesting that
the silent:nonsilent ratio in the absence of selection will
typically be �1:3. Different mutation spectra or genome
composition could substantially alter this, however.

Protein kinase domains are involved in the phosphor-
ylation of proteins in signaling pathway cascades. These
are highly conserved, implying that mutations within
these regions are likely to affect protein function. Such
mutations may enhance cell division and offer good can-
didate oncogenic variants. Conversely, the cell may not
tolerate mutations in such important regions, possibly
inducing apoptosis, in which case protein-changing
mutations will be avoided. Either scenario is indicative
of selection pressures that vary according to the relative
position of mutations with respect to the kinase do-
mains. As such, all genes were split into three regions:
prekinase, kinase, and postkinase, with each region hav-
ing a separate selection parameter. Further details of
the set of kinase genes can by found in the supplemen-
tary information in Stephens et al. (2005). The exact
positioning of these domains within the coding sequence
can be found from a variety of database sources such as
Ensembl (see Hubbard et al. 2005). Significant deviation
of these parameters between the domains was then
examined. The selection pressure for nonsense muta-
tions varied significantly by position (P ¼ 0.0053), with
9/12 mutations lying 39 to the kinase domain. This
variation might suggest truncation of a regulatory do-

main or domains, while leaving the kinase domain in-
tact, free to drive the cancer.

In summary, these methods provide a straightforward
and robust statistical approach to evaluating the impact
of mutations identified in genomic screens on the devel-
opment of cancer. Practical application to the kinase
data has shown that the methods were able to demon-
strate significant selection that varied among missense,
nonsense, and splice variants. The use of such methods
will be increasingly important in large-scale screens for
somatic mutations in cancer.
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