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ABSTRACT

Linkage analysis involves performing significance tests at many loci located throughout the genome.
Traditional criteria for declaring a linkage statistically significant have been formulated with the goal of
controlling the rate at which any single false positive occurs, called the genomewise error rate (GWER). As
complex traits have become the focus of linkage analysis, it is increasingly common to expect that a
number of loci are truly linked to the trait. This is especially true in mapping quantitative trait loci (QTL),
where sometimes dozens of QTL may exist. Therefore, alternatives to the strict goal of preventing any
single false positive have recently been explored, such as the false discovery rate (FDR) criterion. Here, we
characterize some of the challenges that arise when defining relaxed significance criteria that allow for at
least one false positive linkage to occur. In particular, we show that the FDR suffers from several problems
when applied to linkage analysis of a single trait. We therefore conclude that the general applicability of
FDR for declaring significant linkages in the analysis of a single trait is dubious. Instead, we propose a
significance criterion that is more relaxed than the traditional GWER, but does not appear to suffer from
the problems of the FDR. A generalized version of the GWER is proposed, called GWERk, that allows one
to provide a more liberal balance between true positives and false positives at no additional cost in
computation or assumptions.

LINKAGE analysis is the process of identifying ge-
netic loci whose segregation patterns are associ-

ated with variation in a trait of interest. In a typical
linkage analysis, significance tests of linkage are per-
formed at loci positioned throughout the genome.
Performing many tests for linkage across the genome
presents a substantial multiple-testing problem. There-
fore, stringent criteria for declaring a linkage statisti-
cally significant have been formulated with the goal of
preventing any single false linkage from being declared
across a genome scan, called the genomewise error
rate (GWER). Typically, a significance cutoff is deter-
mined to ensure a GWER ,5%. Much work has been
done on accurately calculating significance cutoffs to
control the GWER, for both quantitative traits (Lander
and Botstein 1989; Churchill and Doerge 1994;
Doerge and Churchill 1996) and qualitative traits
(Morton 1955; Feingold et al. 1993; Dupuis et al.
1995).

Significance criteria for linkage analyses have been
successfully formulated for mapping Mendelian traits,
where a singlemajor gene contributes to the trait (Morton

1955). However, this has proved to be more challenging
for complex traits, where several loci are expected to
contribute to the trait (Lander and Kruglyak 1995).
As complex traits have become the focus of linkage

analysis, it is increasingly common to expect to identify
several distinct loci significant for linkage. This is es-
pecially true in mapping quantitative trait loci (QTL),
where sometimes dozens of QTL are expected to exist,
each making a moderate to small contribution to the
trait (Lynch and Walsh 1998).
To improve the power to identify several loci contrib-

uting to a single trait, one might be willing to allow a
small number of false positive linkages to be identified,
as long as the relative number of true positive linkages is
substantially higher. In this case, controlling the GWER
becomes undesirably conservative. Therefore, relaxed
criteria for controlling the number of false positives
have been explored, particularly the false discovery rate
(FDR) criterion (Weller et al. 1998; Mosig et al. 2001;
Fernando et al. 2004; Benjamini and Yekutieli 2005).
The FDR is defined to be the expected proportion of
false positive linkages among the total number of signifi-
cant linkages (Soric 1989; Benjamini and Hochberg

1995), offering an intuitively pleasing balance between
false positives and true positives.
In this article, we characterize some of the complica-

tions that arise when relaxing significance criteria for
genomewide linkage scans of a single trait. The main
complication results from the fact that there are two types
of dependence present among linkage statistics ob-
tained from a single chromosome. First, there is de-
pendence in the noise of the linkage statistics (i.e., the
random fluctuations of the statistics due to chance).
This dependence has been addressed for controlling
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the GWER by using both theory (Lander and Botstein
1989; Feingold et al. 1993; Dupuis et al. 1995) and nu-
merical resampling methods (Churchill and Doerge
1994; Doerge and Churchill 1996). Dependence
among the noise of test statistics has also been addressed
for controlling the FDR (Benjamini and Yekutieli 2001;
Storey and Tibshirani 2003; Storey et al. 2004), but
not explicitly for genomewide linkage scans.

The second type of dependence present in linkage
analysis is in the signal. It is easily shown that linkage
status among neighboring loci is shared. In other words,
the null hypothesis of no linkage to a trait gene is
uniformly either true or false for large groups of loci,
extending to every locus on a given chromosome ac-
cording to commonly used models. Since the FDR
involves a balance between true and false positives, this
dependence in signal turns out to be problematic for
interpreting the FDR in the context of linkage analysis,
mainly because true positives and false positives come in
large dependent clumps. When fixing a significance
threshold, we show that one can manipulate the FDR to
be any level one wants, without changing the location or
effect size of any trait gene. We show that the problems
lie in the FDR quantity itself, not in any of the ‘‘FDR-
controlling’’ methods available (e.g., Benjamini and
Hochberg 1995; Storey 2002) for estimating a proper
threshold. In other words, whereas dependence in the
noise of the statistics creates problems only for deriving
FDR-controlling procedures, large-scale dependence in
the signal creates problems in the applicability of the
FDR quantity itself.

The true ‘‘units of signal’’ in linkage analysis are the
trait genes. For significance measures such as the FDR
that take into account the number of ‘‘true discoveries,’’
it is necessary to implement some interpretablemeasure
of the unit of signal that is not easily manipulated. This
appears to be rather difficult in linkage analysis, where it
is often not possible to distinguish the actual number of
trait genes to which a locus is linked. Moreover, it is
common practice to call several loci significant, where
the understanding is that they all result from a common
trait. This does not appear to be taken into account in
the current formulation of FDR for linkage analysis,
leading to some of the problems we discuss here.

We propose a significance criterion more liberal than
the GWER, but that does not suffer from the problems
of the FDR. Specifically, we propose a generalizedGWER,
called the genomewise k-error rate (GWERk), that guards
against more than k false positive linkage results. A
major advantage of GWERk over FDR is that GWERk can
be controlled by considering only the full null case of no
linkage among any loci, allowing us to avoid the issues of
dependence in signal and defining units of signal; the
FDR cannot be meaningfully controlled using the full
null case, so one is forced to consider the dependence in
signal when employing the FDR. A numerical algorithm
based on that for controlling the GWER in the QTL-

mapping setting (Churchill and Doerge 1994) is
proposed for GWERk. Some simple numerical compar-
isons are made to illustrate the performance of these
various error measures.

The FDR has also recently been applied to the linkage
analysis of thousands of traits simultaneously, in partic-
ular, for thousands of ‘‘gene expression traits’’measured
by DNAmicroarrays (Yvert et al. 2003; Brem et al. 2005;
Storey et al. 2005). We briefly point out that the FDR
may be appropriately applied across many traits in such
a way that it does not suffer from the problems of apply-
ing the FDR across several loci for a single trait.

THE STRUCTURE OF A GENOMEWIDE
LINKAGE SCAN

We first describe the basic structure of the statistics
used for genomewide linkage scans. Although there are
important differences among the various methods for
linkage analysis performed on human and experimen-
tal cross data, they share certain properties that aremost
relevant to understanding the issues for relaxing the
criterion for significance. There is usually an underlying
model of the trait in terms of a single locus (or several
loci) contributing directly to the trait. For clarity we call
these loci ‘‘trait genes.’’ The trait can be more generally
modeled in terms of any given locus that is linked to one
of these trait genes. Therefore, a model of the trait in
terms of a locus being tested for linkage can be param-
eterized so that, for certain values of the parameter, the
tested locus is linked to one of the trait genes. Straight-
forward examples of thesemodels in various settings are
readily available (Lander and Botstein 1989; Feingold
et al. 1993; Lynch and Walsh 1998; Ott 1999).

Linkage statistics: We let the set of parameters for
such a model be denoted by u, where if u 2 V0, then the
null hypothesis of no linkage is true, and if u 2 V1, then
the alternative hypothesis is true. Different values of u
are possible at each locus tested. In testing for linkage, a
so-called LOD score is usually calculated at each tested
locus. Supposing that M loci are tested for linkage, the
LOD score at locus i can be written as

LODi ¼ log10
LðûiÞ
Lðû0iÞ

;

for i ¼ 1, 2, . . . ,M. Here, ûi is the unconstrained
maximum-likelihood estimate of ui , and û0i is the
maximum-likelihood estimate when u is limited to the
values of the null hypothesis, V0. The function LðuÞ is
the likelihood based on the set of observed data in the
study, making LODi the log (base 10) of the generalized
likelihood-ratio statistic.

As an example, consider the following model em-
ployed in Lander and Botstein (1989). Assume that
we observe quantitative trait values yj for individuals j ¼
1, . . . ,N in a backcross originating from two inbred
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lines. If there is a single QTL, we may write yj¼ a1 bgj1
ej, where gj is an indicator variable of the two possible
genotypes and ej is Normal random error due to
variation not explained by genetics. Let the genotype
of locus i in individual j be denoted by xij. When testing
locus i for linkage, a model may be constructed for yj in
terms of the xij, employing the unknown parameters a
and b, as well as the unknown recombination fraction
between locus i and the trait gene locus. Thismodelmay
be fit to the data by maximum likelihood under the
constraints of the null hypothesis and then under no
constraints. The log10 of the ratio of these two resulting
likelihoods as written above forms the LOD score.

The GWER and FDR: The GWER is the probability
that any single false positive occurs. For a given LOD
score threshold l, the GWER is defined as

GWER ¼ Prðany true null LODi $lÞ

¼ Pr max
fi:ui2V0g

LODi $l

� �
:

A convenient upper bound on this quantity is to assume
that all null hypotheses are true, resulting in GWER#

Prðmaxi LODi $l j allui 2 V0Þ. Therefore, most meth-
ods for controlling the GWER actually control the
quantity Prðmaxi LODi $l j all ui 2 V0Þ.

Define the function 1(LOD $ l) to be equal to zero
when LOD, l and equal to one when LOD$ l. When
employing the threshold l, the FDR can be written as

FDR ¼ E
false positives

false positives1 true positives

� �

¼ E

P
fi:ui2V0g 1ðLODi $lÞP

M
i¼1 1ðLODi $lÞ

� �
;

where the ratio is set to zero when the denominator is
zero (i.e., when no loci are called significant).

An important operating characteristic that affects the
interpretation and estimation of the GWER and FDR is
the dependence of the LOD scores. The well-known
Poisson process model of recombination employed
for .50 years implies that any two LOD scores on the
same chromosome are dependent—both in noise and
in signal. The LOD scores are dependent in noise in the
following sense: when there is no trait gene on a chro-
mosome, the LODi follow the same null distribution,
but they are also probabilistically dependent. This prob-
abilistic dependence has been mathematically charac-
terized, forming the basis of methods to construct genetic
maps (Lander and Green 1987), form LOD score cut-
offs to control the GWER (Morton 1955; Lander
and Botstein 1989; Feingold et al. 1993; Dupuis et al.
1995), and model the crossing-over process (McPeek
and Speed 1995). Letting Dij be the genetic distance
betweenmarkers i and j, it is straightforward to calculate
the covariance of LODi and LODj for a variety of sta-
tistics and study designs. The covariance can usually be

written as a function of genetic distiance, Cov(LODi,
LODj) ¼ f(Dij), for some function f. When the two loci
are located on different chromosomes, the genetic
distance is maximized and their covariance is equal to
zero. Inmost scenarios (e.g., in the simple example above),
the underlying model implies that f(Dij) decays expo-
nentially in Dij.
Another consequence of the Poisson process model

of recombination is that any two loci on the same chro-
mosome are dependent in signal; i.e., they share the
same linkage status. Under the commonly used models,
the linkage signal of a particular locus can be written as a
function of the genetic distance between the locus and
the trait gene, as well as the contribution from the trait
gene. This implies that if loci i and j are on the same
chromosome, then LODi follows the null distribution if
and only if LODj follows the null distribution. There-
fore, if loci i and j are called significant for linkage, then
locus i is a false positive if and only if locus j is a false pos-
itive. Note that for the full null GWER Prðmaxi LODi $

l j all ui 2 V0Þ, the dependence in signal is not a factor
because the calculation is done under the assumption
that all loci are not linked. The dependence in signal
plays a major role in the operating characteristics of the
FDR, and it presents difficulties in the interpretation of
the FDR in linkage analysis. Since every tested locus on a
QTL-containing chromosome is technically a true posi-
tive, this makes the ‘‘discovery’’ of a single QTL highly
redundant across these loci, causing themajor difficulty
in applying the FDR to a linkage scan of a single trait.

INTERPRETING THE FDR IN LINKAGE ANALYSIS

On the basis of this characterization of the structure
and dependence among LOD scores, we detail some
general problems in interpreting the FDR when applied
to a genomewide linkage scan. This is motivated by the
following numerical example.
A numerical example: Using R/qtl (Broman et al.

2003), we simulated an intercross experiment with a
single quantitative trait, where 250 F2 offspring were
observed. These offspring were modeled as diploid with
four pairs of autosomal chromosomes, each of length
100 cM. A single-trait gene was placed at 45 cM on chro-
mosome 1 (indicated by a solid inverted triangle in Figure
1) with additive and dominance effects each of size 0.25.
This example was purposely kept simple for illustration
purposes. Below, we also perform a number of simu-
lations according to the specifications of the mouse
genome.
We considered two scenarios, where the only differ-

ence between the two is in the number ofmarkers placed
on chromosome 1. In scenario A, we placed 10 equally
spaced markers on each chromosome; in scenario B, we
placed 50 equally spaced markers on chromosome 1
and 10 equally spaced markers on chromosomes 2–4.
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Scenario B is reminiscent of the common practice of
‘‘fine mapping,’’ in which a denser set of markers is
typed in a region with previously found suggestive or
significant linkage. Therefore, it is not unusual for a
study to purposely go from scenario A to scenario B.

A LOD score was calculated at each marker location
according to the standard Normal model maximum-
likelihood method for calculating LOD scores (Lynch
and Walsh 1998) as implemented in R/qtl. Note that
any marker on chromosome 1 is technically linked to
the trait locus. Therefore, any marker called significant
on chromosome 1 is a true discovery, and any marker
called significant elsewhere is a false discovery. Because
we can exactly identify true discoveries and false discov-
eries in this example, it is possible to calculate the exact
threshold needed to attain a given FDR level. Hence, we
then simulated these data 1000 times and calculated the
proper threshold in each scenario to attain FDR ¼ 5%.
In scenario A, a LOD score cutoff of 3.15 achieves
FDR ¼ 5%, and in scenario B a LOD score cutoff of
1.52 achieves FDR ¼ 5%.

Figure 1 shows the LOD score curves and the LOD
score significance cutoffs from scenarios A and B. It can
be seen that the LOD score curves on chromosome 1 are
very similar. This is not surprising given that LOD score
curves follow a specific distribution as the marker place-
ment becomes denser (Lander and Botstein 1989).
However, the LOD score significance cutoffs are dra-
matically different (3.15 vs. 1.52). In scenario A, no
marker outside of chromosome 1 is called significant,

whereas in scenario B, at least one marker on every
chromosome is called significant. Thus, while the true
signal does not differ, the FDR-based LOD score cutoffs
dramatically differ.

FDR applied at the marker level: The reason for the
substantial difference in LOD score cutoffs in the above
example is due to themanner in which true positive and
false positive counts are employed in the FDR setting.
Since every marker called significant on chromosome 1
is a true discovery, there are many more true discoveries
available on chromosome 1 in scenario B than in sce-
nario A. Therefore, when increasing the number of
markers on chromosome 1 in scenario B, we have simply
added many more true positives, even though the true
underlying signal structure has not changed at all.
Given that the FDR is concerned with the proportion
of false positives among all significant linkages, this
artificial increase of true positives allows for more false
positives to be tolerated elsewhere. In other words, it
allows one to substantially decrease the LOD score
significance cutoff. Therefore, even though the signal
structure is the same in the two scenarios, clearly shown
by the LOD score profiles, the FDR-based LOD score
cutoff changes radically due to the differing marker
placement.

For a LOD score cutoff l, let Cj(l) be the number
of loci called significant on chromosome j. Also, let L0

be the set of chromosomes with no trait gene and L1 be
the set with at least one trait gene. The FDR can then be
written as

Figure 1.—A simulated example showing that
marker placement has a strong effect on FDR-
based significance. Shown are the LOD score pro-
files under two scenarios, where the exact same
single QTL (denoted by the inverted triangle)
is present in each case. In scenario A, there are
10 equally spaced markers on each chromosome.
In scenario B, there are 50 equally spaced
markers on chromosome 1 and 10 on the remain-
ing chromosomes. The LOD score significance
cutoff was calculated so that FDR ¼ 5% in both
scenarios. In scenario A, the LOD score cutoff
is 3.15 (black dashed line), and in scenario B it
is 1.52 (gray dashed line). It can be seen that even
though the chromosome 1 LOD score profiles
are similar in the two scenarios (A, black; B, gray),
the LOD score significance cutoff is substantially
lower in scenario B. This occurs because all of the
markers adjacent to the QTL are counted as ‘‘true
discoveries,’’ even though their signal comes
from a single QTL.
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FDRðlÞ ¼ E
false positives

false positives1 true positives

� �

¼ E

P
j2L0

CjðlÞP
j2L0

CjðlÞ1
P

j2L1
CjðlÞ

" #
: ð1Þ

Therefore, when testing for linkage at the markers, it is
possible to make the FDR smaller by increasing the
numbers Cj(l) for j 2 L1. This can be accomplished
by simply increasing the relative numbers of markers
present on those chromosomes. In other words, ifP

j2L0
CjðlÞ remains about fixed, then the FDR can be

decreased by increasing
P

j2L1
CjðlÞ. It follows that

for a given LOD score cutoff, one can make the
FDR arbitrarily small by adding increasing numbers of
markers (or even just loci one chooses to test) to any
chromosome with a trait locus. This also allows one to
take arbitrarily small LOD score cutoffs while control-
ling the FDR at a particular level. In the above numerical
example, themoremarkers added to chromosome 1, the
lower the LOD score cutoff one can take while maintain-
ing FDR ¼ 5%. In practice, it appears to be common to
saturate an area of the genome with markers if there is a
suspected linkage, leading to this type of phenomenon.

Therefore, FDR-based significance applied to linkage
tests at a fixed set of markers is strongly influenced by
marker placement. This is an unfortunate property, as it
has been shown in several scenarios that for reasonably
dense markers, GWER-based significance is not very
susceptible tomarker placement (Lander andBotstein
1989; Feingold et al. 1993). The main reason for the
difference is that the full null GWER is affected only by
the dependence in the noise of the statistics, whereas
the FDR is also affected by the dependence in the signal
of the statistics. One could make the argument that this
problem can be avoided if (i) markers are evenly spaced
or (ii) each chromosome contains the same number of
markers. However, upon further inspection these may
still lead to problems in the interpretation of FDR. In
either case, the distribution of the Cj(l) for j 2 L1 is a
complicated formula involving the length of the chro-
mosome, the placement of markers, the dependence
structure of both signal and noise, the local recom-
bination rate around the trait locus, and the overall
signal strength at the trait gene. In light of Equation 1, it
is not clear that linkage signals due to distinct trait genes
are then represented in an interpretable manner. More
work would need to be done to understand the oper-
ating characteristics of the FDR in this context.

In the case where every location in the genome is
tested for linkage (e.g., interval mapping), the same
argument applies to that given above for equally spaced
markers. The distribution of the Cj(l) for j 2 L1 as the
number of loci tested becomes infinitely dense is again
complicated and not clearly representative of the unit of
signal that is most interpretable in the linkage setting.

Techniques such as composite interval mapping (Jansen
1993; Jansen and Stam 1994; Zeng 1993, 1994), which
take into account linkage signal among several loci on
each chromosome, may alleviate some of the dispersion
of true signal across any chromosome.However, in finite
sample sizes there is substantial collinearity between
nearby markers, and the signal is still dispersed over a
region of any significant chromosome. This can be seen
clearly in Figure 2 of Zeng (1994). Thus, interval map-
ping and its extensions are susceptible to these same
problems.
The most directly interpretable application of the

FDR is formulated in terms of counts of distinct linkage
signals called significant. A ‘‘distinct linkage signal’’
would be one caused by a single trait gene. It is well
known that the existence of more than one QTL can
make this characterization difficult (Martinez and
Curnow 1992; Haley and Knott 1992) in terms of
LOD score peaks. Peak definition is a major underlying
problem when using any significance criterion that
allows for a false positive to occur (see the generalized
gwer as an alternative to the fdr). However, it has
been shown that counting the presence of signal on a
chromosome basis does lead to reasonably interpretable
conclusions (Wright and Kong 1997). Therefore, it
appears that applying the FDR at the chromosome level
is more straightforward than trying to interpret the FDR
in the context of marker-based significance calls.
FDR applied at the chromosome level: Perhaps,

then, the FDR may be more straightforwardly applied
to testing each chromosome for the existence of
linkage. In this case, the maximum LOD score for each
chromosome would be calculated, and an FDR-based
significance cutoff would be applied to these. However,
this results in a small number of actual hypothesis tests;
for example, in humans this will involve testing 22 null
hypotheses of no linkage among the autosomal chro-
mosomes. It has been argued that the FDR is difficult to
interpret when the number of tests is small (Storey
2002, 2003). Given that the number of chromosomes
tested is usually on the order of a dozen or so, the utility
of FDR applied at a chromosome level becomes ques-
tionable. Moreover, it has been shown that to ‘‘control’’
the FDR in the Benjamini andHochberg (1995) sense,
one must be cautious in interpreting the FDR when
there is a substantial probability that nothing is called
significant (Zaykin et al. 1998). This has conclusively
been shown to be an issue when applying FDR-based
significance at the chromosome level (Zaykin et al.
1998). Therefore, it is not yet clear that the FDR is the
most desirable significance measure when linkage is
tested on a per chromosome basis.
Previous applications of the FDR: It appears that the

FDR has been applied mostly to linkage analysis at the
marker level (Weller et al. 1998; Mosig et al. 2001;
Jiang et al. 2004). For example, Mosig et al. (2001)
performed a genomewide linkage analysis, calculating
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a LOD score significance cutoff to control the FDR
in terms of markers. However, due to the well-known
difficulties of specifying the exact make-up of trait loci
on a chromosome with significant LOD scores, they
then interpreted the significance results at the chromo-
some level. This approach is problematic for two rea-
sons. First, the issues shown above that occur when the
FDR is applied at the marker level would be of concern
here. Second, we show below that the FDR at the chro-
mosome level may be much higher than that at the
marker level (see Table 1). Therefore, controlling the
FDR at, say, 5% among the markers may lead to an FDR
on the chromosome level at several times that rate. On
the other hand, applying the FDR at the chromosome
level with as few as nine chromosomes as described by
Bennewitz et al. (2004) may lead to the other potential
problems described above.

Similar concerns about the application of the FDR to
population-based association studies exist. If the tested
markers are isolated exclusively to a small candidate
region and are in strong linkage disequilibrium with
one another, then the FDR applied at the marker level,
rather than at the trait gene level, may still be suscep-
tible to interpretation issues due to a strong depen-
dence in noise and in signal. For example, Jiang et al.
(2004) genotyped 29 SNPs spanning 240 kb around the
candidate gene LEP and controlled the FDR at level 5%
using the Benjamini and Hochberg (1995) method.
The resulting significance cutoff was P-value #0.033

when testing all males via a transmission disequilibrium
test and P-value #0.031 when employing the family-
based association test to test all families with an affected
male child. The latter analysis led to 17 of 20 tested
markers showing significant associations. However, it is
not clear whether the significant markers are all being
affected by one common signal, making this effectively a
single test. In this case, the FDR is likely not the most
accurate representation of the error rate.

THE GENERALIZED GWER AS AN ALTERNATIVE
TO THE FDR

Definition of GWERk: As a potential alternative to the
FDR, we propose a generalized version of the GWER.
Rather than guarding against any single false positive
linkage from occurring, the generalized GWER allows
one to guard against exceeding more than k false
positive linkages, where k is chosen by the user. For
example, if we set k¼ 1, then the goal is to prevent more
than one false positive linkage from occurring. At the
cost of possibly incurring this single false positive, the
relaxed significance criterion may result in more true
positive linkages than what would have been found
when employing the traditional GWER. This is a similar
motivation to using the FDR, although several of the
drawbacks for the FDR do not appear to be present for
the generalized GWER.

We call the proposed significance measure the GWERk,
where k is the number of false significant findings that
one is willing to incur:

GWERk ¼ Prðno:of false positives. kÞ:

Note that GWER0 is equivalent to the traditional GWER,
so we label it as GWER0 for the remainder of the article.
Inmathematical terms, controlling theGWERk at levela
means that a significance threshold is determined so
that Pr(no. of false positives. k)#a. Several benefits of
controlling the GWERk are the following:

1. A threshold may be chosen so that GWERk is at a
reasonable level for multiple values of k. For example,
instead of relaxing the significance criterion so that
GWER0 is rather large, one can instead determine a
threshold so that GWER0 is larger than the usual
0.05, but GWER1 is still reasonably small.

2. As opposed to the FDR, only the dependence in noise
must be taken into account to control the GWERk,
obviating the need to deal with the much trickier
dependence in signal.

3. Existing algorithms for controlling GWER0 (e.g.,
Churchill and Doerge 1994) can be slightly
modified to control GWERk.

It should be pointed out that GWERk is different
from the ‘‘suggestive linkage’’ criterion of Lander and
Kruglyak (1995). Suggestive linkage is defined to be
the significance cutoff that yields exactly one expected

TABLE 1

A comparison of power and error rates when determining
LOD score cutoffs according to GWER0,

GWER1, and FDR

Error rate controlled

Scenario GWER0 GWER1

FDR
(by marker)

A LOD cutoff 3.374 2.376 2.179
GWER0 0.050 0.341 0.467
GWER1 0.002 0.050 0.120
FDR (by
markers)

0.008 0.035 0.050

FDR (by
chromosomes)

0.015 0.085 0.122

Power 0.662 0.841 0.872

B LOD cutoff 3.090 2.154 1.683
GWER0 0.050 0.341 0.661
GWER1 0.001 0.050 0.264
FDR (by markers) 0.006 0.026 0.050
FDR (by
chromosomes)

0.010 0.052 0.108

Power 0.489 0.718 0.831

Each column corresponds to controlling one of the three
error rates at 5%. Each row shows the value of each item un-
der the three respective significance criteria. Details of scenar-
ios A and B are given in the text.
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false positive linkage. Therefore, there may in fact be
high probability that more than one false positive occurs.
From our experience, the suggestive linkage criterion is
more liberal than, say, GWER1. Benjamini and Yekutieli
(2005) point out that suggestive linkage can lead to
GWER0 as high as 60%. We compute GWER0 for GWER1-
based cutoffs in Tables 1 and 2, where it can be seen that
GWER0 remains at reasonable levels. If GWERk is con-
sidered for several values of k at a particular significance
cutoff, then this may very well give more precise infor-
mation than the suggestive linkage criterion of Lander
and Kruglyak (1995).

A conservative threshold can be set so that GWERk

is controlled at some level a. For a given LOD score
threshold l, the GWERk is defined as

GWERk ¼ Prðmore than k true null LOD scores exceed lÞ:

A convenient upper bound on this quantity is to assume
that all null hypotheses are true, resulting in

GWERk #Prðmore than k LOD scores

exceed l jno linkage anywhereÞ: ð2Þ

Therefore, it is possible to control the GWERk by con-
trolling the quantity on the right-hand side of Equation
2, which we call the ‘‘full null GWERk.’’ The fact that
GWERk can be controlled by controlling the full null
GWERk is an important property. Due to the issues
discussed above for the FDR in linkage analysis, it is de-
sirable to avoid having to directly model the depen-
dence in signal in linkage analysis.

An algorithm for controlling GWERk in QTL map-
ping: By extending the procedure of Churchill and
Doerge (1994) for controlling GWER0, we propose an
algorithm to control the GWERk when mapping QTL.

(An analogous approach may be adapted for family-
based linkage studies.) The rationale of the procedure is
based on the fact that if there is any QTL effect in the
data set, one can break the association between the trait
values and the marker positions by randomly shuffling
the trait values, reassigning each trait value to a random
individual. In that way, one can obtain a set of full null
data. For each random permutation, one can calculate
LOD scores at the loci of interest to obtain a set of null
statistics. These simulated null statistics can then be
used to calculate the proper threshold to control the full
null GWERk. Our algorithm depends on defining
‘‘peaks’’ of LOD scores. We discuss this concept in more
detail below. In short, if peaks on LOD score curves are
defined unambiguously, then the proposed approach is
to call each of the peaks passing a certain threshold a
distinct significant linkage finding. However, we do not
propose any approach for inferring whether these
significant results are due to distinct trait genes.
We propose the following algorithm for controlling

the GWERk at level a:

1. Permute the phenotypic trait values among the
individuals and generate a set of null statistics; repeat
B times to get B sets of null statistics. To obtain stable
estimates, Churchill and Doerge (1994) suggested
choosing B $ 1000 for a ¼ 0.05 and as many as B ¼
10,000 for more extreme critical values, such as a ¼
0.01.

2. For each set of null statistics, obtain the peaks
statistics and order them. Take the (k1 1)th highest
peak statistic for each of the B null sets and store
them together. For example, if we take k¼ 0, we pick
the maximum test statistic for each null set. If we
choose k¼ 1, we take the second highest peak statistic
for each of the B permutations.

3. Sort theB (k1 1)thpeak statistics indescendingorder.
The 100(1 � a) percentile is the estimated GWERk

threshold value. For example, if we choose B ¼ 1000,
k ¼ 1, and a ¼ 0.05, we would take the 50th highest
value among all 1000 second-highest peak statistics.

Note that this algorithm can be performed at almost no
additional cost in computation compared to the one
proposed by Churchill and Doerge (1994).
Interpreting GWERk control: In the above algorithm,

we distinguished different significant findings by ‘‘peak
statistics’’ rather than by simply taking the highest raw
statistics. The main purpose of this is to avoid claiming
adjacent high statistics as distinct significant findings,
especially if they result from a single trait gene.However,
defining distinct peaks among the LOD scores is non-
trivial. It is well known that LOD score curves are not
always smooth. It is also difficult to specify the exact
location of the trait gene(s) on a chromosome with true
signal. The presence of multiple peaks on a chromosome
is generally taken as an indication of multiple QTL—
however, such peaks do not necessarily correspond to

TABLE 2

A demonstration that the proposed algorithm controls the
GWERk error rate

Controlled at 5% level

Scenario GWER0 GWER1

A LOD cutoff 3.479 2.584
GWER0 0.025 0.205
GWER1 0.000 0.025
FDR (by chromosomes) 0.006 0.046
Power 0.624 0.797

B LOD cutoff 3.481 2.585
GWER0 0.021 0.133
GWER1 0.001 0.010
FDR (by chromosomes) 0.005 0.021
Power 0.397 0.610

Each column corresponds to the procedure applied to con-
trolling GWER0 and GWER1, respectively, at the 5% rate. Each
row shows the value of each item under the two procedures.
Details of scenarios A and B are given in the main text.
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the correct QTL positions (Martinez and Curnow
1992; Haley and Knott 1992).

One the other hand, it is straightforward to simply
define the peaks to be the highest ones on each chro-
mosome. This has been shown to behave reasonably
because LOD scores on different chromosomes are in-
dependent (Wright and Kong 1997). Therefore, one
strategy is to take the maximum LOD score on each
chromosome as a peak, thereby controlling the GWERk

in terms of declaring the existence of linkage at the
chromosome level. As another strategy, one can divide
the chromosomes into bins according to absolute ge-
netic distances, say 20–30 cM, and obtain the maximum
LOD scores for these relatively independent intervals.
In this case, significant linkages must be interpreted as
merely occurring among these predefined intervals, not
necessarily due to distinct trait genes. Another alterna-
tive is to smooth the LOD score curve and set each local
maximum on the smoothed curve as a peak. In general,
the necessary component for controllingGWERk is to be
consistent in the definition of distinct linkage peaks,
both when formulating significance thresholds and
when reporting and analyzing significant loci. If the
significance results are interpreted as true signal being
present at each significant peak (not necessarily from
different trait genes, though), then the GWERk can be
successfully controlled.

NUMERICAL RESULTS

Comparing GWER0, GWERk, and FDR: To illustrate
the utility of GWERk, we performed two simulated ex-
amples where GWERk is shown to provide increased
power overGWER0without suffering from the problems
present for the FDR. These examples are based on the
specifications of the mouse genome (Dietrich et al.
1996), where the length and number of chromosomes
of the mouse genome were used in each. Using R/qtl
(Broman et al. 2003), we simulated 1000 backcross ex-
periments, each with a sample size of 250. We compared
the LOD score thresholds, power, and error rates in two
scenarios. In scenario A, we placed a singleQTL on each
of chromosomes 1–5. In scenario B, we placed a single
QTL on each of chromosomes 1–10. In both cases, we
placed 157 equally spaced markers (10 cM apart from
eachother)on the19chromosomesof themousegenome.
The QTL effects (defined to be half the difference be-
tween the homozygote and the heterozygote genotypes)
ranged from 0.3 to 0.5 in both cases.

Wefirst compared the different significancemeasures
using LOD score cutoffs that exactly give error rates of
5% for the GWER0, GWER1, and FDR. We were able to
exactly calculate these cutoffs by using the 1000 sets of
simulated data and knowledge of which LOD scores
correspond to true null hypotheses. In obtaining the
GWER1 LOD score cutoffs, we defined peaks to be the

highest on each respective chromosome. We applied
the FDR at the marker level in obtaining its correspond-
ing LOD score cutoffs.

Table 1 shows the results of the simulations in sce-
narios A and B. Some general trends can be seen. First,
the FDR at the chromosome level (i.e., the proportion of
chromosomes with a false positive marker among all
chromosomes with at least one significant marker) is
substantially higher than the marker-based FDR. Sec-
ond, although the FDRhas a lower threshold and suffers
from more false positives than the GWER1 threshold,
the power is not drastically different. Third, the power
of the GWER1 cutoff is much greater than that of the
GWER0 cutoff. Fourth, and perhaps most importantly,
the GWER1 coincides nicely with the FDR at the
chromosome level. This is not surprising given that
there are a relatively small number of chromosomes,
implying that a reasonable chromosome-based FDR level
would coincide with one or very few false positives oc-
curring. However, as we have argued, the GWERk is
more interpretable when the number of distinct testing
units (e.g., chromosomes) is relatively small.

Applying the proposed algorithm: We used these
same simulated data to apply our proposed algorithm to
control GWERk in practice. Through this simulation, we
are able to show a specific example where the error rate
is in fact controlled. Our algorithm in the previous
section was applied for GWER0 and GWER1 to all 1000
simulated data sets in each scenario with B ¼ 1000
permutations. We then counted the proportion of times
where there were .0 or 1 false positives, respectively. It
can be seen in Table 2 that the procedure successfully
controlled the error rates at level 0.05 in both scenarios
for both GWER0 and GWER1.

The difference between scenarios A and B is in the
number and locations of the QTL. However, under the
full null case they should produce similar LOD score
cutoffs. It can be seen in Table 2 that the estimated LOD
score cutoffs are equivalent (up to Monte Carlo error)
in both scenarios. Because of this, the realized error rates
are different, even though all are,0.05. For example, in
scenario A the realized GWER1 is 0.025 and in scenario
B it is 0.010. These are less than the user-chosen level of
0.05 because the calculations did not take into account
the fact that only a subset of the markers are truly null.
Therefore, the more true QTL there are, the more con-
servative the threshold will tend to be. At this cost, we are
able to obviate the issues brought on by there being
dependence in the signal.

Multiple QTL on a chromosome: To further illus-
trate the behavior of GWERk relative to GWER0 and
FDR, we simulated a backcross experiment with equally
placed markers on four chromosomes of equal length
(100 cM each) and 250 backcross individuals being
observed. Seven QTL with small effect size were placed
on chromosomes 1, 2 and 3. The effect sizes (half the dif-
ference between the homozygote and the heterozygote
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genotypes) are 0.1, 0.15, 0.1, 0.16, 0.2, 0.15, and 0.1,
respectively, to their ordering. The positions of theQTL
are shown in Figure 2, and the LOD cutoffs that control
GWER0, GWER1, and FDR at level 0.05 are also plotted
in Figure 2. To calculate the appropriate thresholds, we
simulated 1000 such data sets and used our knowledge
of which loci are true nulls or not.

It can be seen that controlling the FDR at the marker
level yields a low LOD score cutoff, also incurring a
number of false positive findings. Controlling GWER0 is
too conservative in this case, and three QTL weremissed.
Controlling GWER1 using peak LOD scores from pre-
defined 30-cM intervals detected all seven QTL without
inducing any false significant findings. Clearly, this ex-
ample was chosen to show the existence of scenarios
where GWER1 yields a superior LOD score cutoff. In
general, the performance would vary, depending on the
scenario. However, the main point we illustrate here is
that GWERk offers a flexible error measure that may
result in increased true positives over the traditional
GWER0, but is not susceptible to spuriously low cutoffs
due to dependence in signal as is sometimes encoun-
tered with the FDR.

FDR FOR LINKAGE ANALYSIS OF MANY TRAITS
SIMULTANEOUSLY

The FDR has also recently been employed when per-
forming linkage analysis on thousands of traits simulta-
neously. In particular, QTL for each of thousands of
‘‘gene expression traits’’ measured by DNA microarrays

have been simultaneously detected using FDR as the
significance criterion (Yvertet al. 2003; Brem et al. 2005;
Storey et al. 2005). In this setting, the FDR may be
appropriately applied so that it does not suffer from the
problems we have considered when analyzing a single
trait.
In Storey et al. (2005) and Brem et al. (2005) we de-

veloped and applied a procedure for mapping multiple
loci simultaneously for each expression trait. For each
trait, the top linked locus is selected. At this point a
P-value may be calculated for each trait–locus pair and
the FDR applied to these P-values. Only one locus has
been selected for each scan, so applying the FDR across
the traits does not suffer from the problems we have
mentioned. The dependence here would be depen-
dence in linkage signal across traits. One could argue
that dependence in signal across gene expression traits
should also be of concern. However, in the genomewide
expression setting, the dependence of signal is one of
themain properties one hopes to discover. For example,
it is common to attempt to identify common functions
among genes found to be significant in an expression
experiment (Zhong et al. 2004). Therefore, multiple
genes under some sort of common transcriptional regu-
lation mechanism (giving them dependence in signal)
may actually be considered as distinct discoveries. In
a linkage scan of a single trait, the dependence in signal
across loci on the same chromosome is obvious and not
of interest.
Beyond this, Storey et al. (2005) and Brem et al.

(2005) developed a method to select multiple loci for
each trait, employing a new FDR technique that tests a
more complicated null hypothesis than the usual one of
no linkage among any loci. The loci were selected se-
quentially for each trait, and the previously selected loci
were included when assessing the significance for each
new locus, thereby removing any dependence in signal.
Therefore, the previous justification for employing the
FDR for thousands of traits applies here as well: FDR is
applied across traits, and the only dependence in signal
here is that across traits.

DISCUSSION

Wehave considered the problemof relaxing theGWER
significance criterion that has traditionally been applied
in genomewide linkage scans. One criterion that
has recently been suggested and applied in the litera-
ture is the FDR (Weller et al. 1998; Mosig et al. 2001;
Fernando et al. 2004; Benjamini and Yekutieli 2005).
In particular, by invoking an earlier result (Benjamini
and Yekutieli 2001), Benjamini and Yekutieli (2005)
have pointed out that the algorithm of Benjamini and
Hochberg (1995) controls the FDR under the depen-
dence induced by a Poisson process model of recombi-
nation. However, here we have not been concerned with

Figure 2.—A simulated example (details inMultiple QTL on
a chromosome) showing that GWERk may yield LOD score sig-
nificance cutoffs that differ substantially from GWER0 and
FDR. Shown are the LOD score profiles across four chromo-
somes for one of the simulated data sets. The QTL are indi-
cated by the inverted solid triangles. The LOD score cutoffs
corresponding to controlling GWER0, GWER1, and FDR at
level 5% are shown. It can be seen that the GWER1 criterion
manages to find all seven QTL, whereas the GWER0 criterion
does not. Furthermore, the FDR yields a number of false pos-
itives because of its substantially lower LOD score cutoff.
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FDR-controlling procedures. Instead, we have discussed
the actual FDR quantity itself.

Fernando et al. (2004) claim to have overcome the
dependence issues present in linkage analysis by slightly
modifying the definition of FDR. However, under their
assumptions the so-called ‘‘proportion of false positives’’
(PFP) definition has previously been shown to be
equivalent to the positive FDR (Storey 2003). More-
over, a close inspection of their estimate reveals that it
is equivalent, in terms of dependence issues, to one
proposed earlier for FDR (e.g., Storey 2002). In other
words, even though Fernando et al. (2004) motivate
their estimate in terms of the PFP, it is still susceptible to
the dependence concerns for direct estimates of the
FDR. Most importantly, it can straightforwardly be
shown that the issues surrounding the dependence in
signal that we have discussed here are also detrimental
to the PFP.

We have shown here that it is difficult to interpret the
FDR when applied to genomewide linkage scans.
Specifically, since neighboring loci share linkage status,
the FDR counts multiple true discoveries as being
distinct even though they result from the same under-
lying trait gene. This allows the FDR to be unfairly ma-
nipulated bymarker placement. In general, the number
of true discoveries associated with each trait gene de-
pends on a complicated function of several variables
that obfuscate the meaning of a particular FDR level.
Some of these issues can be mitigated by applying the
FDR in the context of testing each chromosome for
linkage. However, in this case one does not expect a
large number of significant findings, making the appli-
cation of FDR less attractive and susceptible to problems
already raised (Zaykin et al. 1998).

The FDR allows some false positives in order to
increase the number of true positives. With this goal
in mind, we have proposed a generalized version of the
GWER that is applicable to linkage analyses where it is
expected that several trait genes exist. The GWERk is the
probability that more than k false positive linkages are
found. Therefore, the user can apply this significance
criterion at the appropriate value of k or at several values
of k. We have also proposed an algorithm to control
GWERk for QTL mapping. We showed through several
numerical examples that our algorithm successfully
controls GWERk in standard situations.

We have discussed some general issues that arise
when considering significance criteria more relaxed
than the traditional GWER. These issues appear to
derive mostly from the fact that the traditional GWER is
concerned with the largest null LOD score across the
genome, whereas relaxed criteria must consider several
LOD score peaks. This problem presents the long-
standing challenge of distinguishing distinct linkage
signals among high LOD scores present on the same
chromosome. We have shown that a straightforward
interpretation of the GWERk occurs when applying this

significance criterion to the highest LOD score on each
chromosome.
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