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ABSTRACT

The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and
as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms
arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct
inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between
offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving
breeding values, population variances and covariances between relatives, are not equivalent when
maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-
dependent and generation-dependent effects that result in differences in the way additive and dominance
effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting
and maternal genetic effects add extra terms to covariances between relatives and that model
misspecification may over- or underestimate true covariances or lead to extremely variable parameter
estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating

quantitative genetic variance components.

gene is imprinted when its level of expression is

dependent on the sex of the parent from which it
was inherited. Imprinted loci are characterized by the
reduced or absence of expression of either the paternally
or maternally derived allele at a particular developmen-
tal stage or in a specific tissue type (BARTOLOMEI and
TILGHMAN 1997). Some 83 transcriptional units are
currently known to be imprinted in mammals (MORISON
et al. 2005). Complete inactivation of an imprinted gene
results in functional haploidy, with only one of the two
copies of a gene expressed. For example, insulin-like
growth factor 2 (Igf2) is expressed only from the paternal
allele in most fetal tissues of eutherian and marsupial
mammals (DECHIARA ef al. 1991; O’NEILL et al. 2000).
More generally, however, imprinting results in the func-
tional nonequivalence of reciprocal heterozygotes, where
inheriting an A, allele from one’s mother and an Ay al-
lele from one’s father gives a different phenotype, on av-
erage, than the reverse inheritance pattern.

Maternal effects arise when the genetic and environ-
mental characteristics of a mother influence the phe-
notype of her offspring, beyond the direct inheritance
of alleles. These effects contribute to resemblance be-
tween offspring of the same mother, and between
mothers and their offspring, and are extensively recog-
nized in traits such as offspring growth, production, and
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disease risk (WADE 1998). For example, significant ma-
ternal effects for early growth in mice were detected in
a QTL mapping study (WoLF et al. 2002). Maternal
genetic effects contribute an extra term in addition to
an offspring’s own genotypic value, dependent on the
genotype of the mother (LyNcH and WALsH 1998). This
effect on offspring phenotype is also termed an indirect
genetic effect, as the maternal phenotype (itself de-
termined by genetic factors) acts as an environmental
influence on offspring phenotype (MOORE et al. 1998).
Such indirect genetic effects increase resemblances
between mothers and offspring and between siblings.
Maternal effects may also arise independently of genetic
factors. For example, Huck et al. (1987) demonstrated
that food restriction in the early life of golden hamsters,
Mesocricetus auratus, leads to reduced numbers and
female-biased sex ratios in litters borne later in life.
Further, a nongenetic influence need not be restricted
to a maternal environmental effect—the father’s envi-
ronmental conditions may also contribute to the char-
acteristics of offspring (SHAw and ByERrs 1998).

For quantitative traits, it may be difficult to distin-
guish maternal genetic effects from imprinting effects.
For example, both maternal effects and genomic im-
printing can increase the covariance between the geno-
typic values of mothers and their offspring (KEMPTHORNE
1957; SPENCER 2002). It is therefore of interest to de-
rive a quantitative genetic model to incorporate both
imprinting and maternal genetic effects (hereafter
termed maternal effects) to discover if these distinct
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TABLE 1

Definition of parameters and notation used in text

Parameter or

term Definition

AA; Individual with maternally inherited A; allele and paternally inherited A; allele
Ajjut A;A; offspring with an A,A; mother

Gijnt Genotypic value of Ay

friju Frequency of A;; in population

gd i Genotypic deviation for Ay, the difference between the genotypic value (Gy) and the population mean
bvg, ; by, Breeding value of female A;A; genotype; breeding value of male A;A; genotype
ddg,,,;ddy,,, Dominance deviation for female A; dominance deviation for male Ay,

ol Total genetic variance of population

0%, OA Additive genetic variance for females; additive genetic variance for males

0} Op, Dominance genetic variance for females; dominance genetic variance for males

Covariance between breeding values (additive effects) and dominance deviations for females and for males

Covariance between offspring and mother (female parent) genotypic values; covariance between offspring
and father (male parent) genotypic values

OFs Covariance between full-sib genotypic values

Ous,; Ous,, Covariance between genotypic values of half-sibs sharing a female parent and of those sharing a
male parent

€ & Additive effect of inheriting an A, allele from the mother; additive effect of inheriting an A;
allele from the father

Wy Wy Additive effect of having a mother who received an Ay allele from her mother; additive effect of having a
mother who received an A; allele from her father

Gy.. Average genotypic value of A;A; genotype

G u Average genetic value of individuals with an AzA; mother

Nijs Ors5 Siju Dominance effect of A;A; genotype; dominance effect for individual with A;A; mother; combined
offspring-mother genotype dominance effect

02(8) ; UZ@ Offspring genotype additive genetic variation; maternal genotype additive genetic variation

b Tpee)s Tns) Offsprin.g genotype dominance genetic variaqce; maternal‘geno.type dominance genetic variation;
combined offspring—-mother genotype dominance genetic variation

0aA; OAD

Covariance between additive and additive effects; covariance between additive and dominance effects

causative processes lead to differences in population
statistics.

THE MODEL

We combine standard quantitative genetic models for
additive maternal genetic effects (KEMPTHORNE 1957)
and genomic imprinting (SPENCER 2002) to calculate
breeding values, genetic variances, and covariances be-
tween relatives. Following the approach of SPENCER
(2002), consider an autosomal two-allele locus with al-
leles A; and Ay atfrequency p; and ps, respectively, in the
population. We write the maternally inherited allele
first, such that AsA; has a maternally inherited As allele
and a paternally inherited A, allele. Let A;j; represent
an AA; offspring with an A;A;mother and Gy, represent
the genotypic value of Ay,. Note that important param-
eters and notation introduced in this text are also
summarized in Table 1.

Table 2 shows all possible genotypic values for off-
spring, given the genotype of their mother. Here 0, a(1 +
k1), a(1 + ko), and 2a represent genotypic contribu-
tions from A;A;, AgA;, A1As, and AgAy offspring and 0,
b(1 + my), b(1 + me), and 2b represent genotypic
contributions from A;A;, AsAy, A1Ag, and AsAs mothers.

For example, an AyA; offspring with an A; Ao mother has
a genotypic value G119 = a(l + k) + 6(1 + me), with
a(l + k) representing the contribution from its own
genotype and b(1 + my) representing the contribution
to genotypic value from its mother’s genotype. Follow-
ing SPENCER (2002), genomic imprinting is included
in the model by assigning separate genotypic contribu-
tions for the reciprocal heterozygotes AsA; and A;As by
use of the parameters k; and ke and m; and ms. Note that
in the absence of imprinting k; = ks and m; = my, while
in the absence of maternal effects b= 0 (and hence m; =
mo = 0 also).

The classical definition for imprinting, complete inac-
tivation of one allele, corresponds to k; = —land k, =1
and m; = —land my = 1 (complete silencing of the ma-
ternal allele) or %k =landk = —1landm; = 1and
me = —1 (complete silencing of the paternal allele).
More recently, however, imprinting has been treated as a
quantitative trait, which implies that maternal or pater-
nal alleles may be only partially inactivated (see, e.g.,
SanNpovict et al. 2003, 2005; Naumova and CROTEAU
2004), and £, ko, m;, and me may take any value in the
range [—1, 1].

Table 3 shows the complete array of offspring ge-
notypes and their frequency in the population from
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TABLE 2

Genotypic values for offspring dependent on the genotype of their mother

Mother
Offspring A1A1 A2A1 A1A2 AQAQ
Ay Gin =0 Giigr = 0(1 + my) Ging = b(1 + mo) None
AQAI None G2121 = a(l + kl) + b(l + ml) 62112 == a(l + kl) + l)(l + mQ) G2122 == Cl(l + kl) + 2b
A Ay Gioin = a(l + k) Gigor = a(l + ko) + b(L + my)  Giore = a(l + ko) + b(1 + my)  None
AQAQ None G2221 =2a + b(l + ml) G2212 =2a + b(l + 7)7,2) 62222 =2a + 2b

each possible parent mating combination. Returning to
Tables 2 and 3, note that a number of mother—offspring
combinations are not possible without introducing
mutation—for example, it is not possible for an A;A,;
mother to produce an AgA; offspring.

With the help of Table 3, the mean genotypic value
over the population is

.

offspring genotypes

= (a2 + pi(k + k) + b2 + pr(m + mg))). (1)

genotypic value X proportion X frequency of mating

When maternal effects are zero (thatis, 5= 0), the mean
genotypic value is identical to that under imprinting
alone (SPENCER 2002). Similarly with no imprinting
(k1 = ke = k and my = me = m) the mean reduces to
po=2ps(a(l + kpy) + b(1 + mp,)), the equivalentexpres-
sion in KEMPTHORNE’s (1957) model.

We follow a number of approaches in calculating
breeding values, components of variance, and covari-
ances between relatives. Doing so illustrates that various
assumptions made in these approaches are not valid in
the presence of imprinting and maternal effects.

Approach 1: We first follow the approach of FALCONER
and Mackay (1996) and KEmMPTHORNE (1957), using
genotypic values of parents and offspring to calcu-
late population breeding values, dominance deviations,
components of variance, and covariances between
relatives.

We begin by calculating the frequency, fr;z; of each
genotype, Ay, (Table 4), by summing over the product
of mating frequencies and proportion of offspring for
each Ay, from Table 3. For example (from Table 3),

1,22 1 1,2,2 1, 43
frigor = 3pips +apips + by
1, 2
= ps-

We now calculate genotypic deviations (gd;;,) for each
Ay the difference between the genotypic value (Gy)
and the population mean; the values are shown in Table
4. Note that genotypic deviations are calculated sepa-
rately for each A;;; and should not be averaged over
mothers.

Breeding values for each A;A; genotype are defined
as twice the difference between the mean genotypic

value of that class’s offspring and the population mean
(FALCONER and Mackay 1996). Progeny means are
included in Table 4. Unlike genotypic values and
deviations, progeny means and breeding values need
not be calculated separately for genotypes with different
maternal genotypes (i.e., for all A, but do need to be
calculated separately for males (bv,;) and females
(bvs). Breeding values are different for males and
females because all offspring of a dam share the same
maternal effect while offspring of a sire have four
different maternal contributions. Finally, male and
female dominance deviations (dd,; and ddgp), the
difference between the genotypic deviation and the
breeding value for each genotype, may be derived
(Table 4).

Genetic variance components: The genetic variance
of the population (0%) is the variance of the genotypic
deviations,

2 _ Cod2
06 = E :fn]klgdijkl
il

= pipeld®((k — ke)* + pipo(kn + k)?)
+ 0% ((my — my)? + pipo(m + mg)?)
+ 2apoun + 2B¢B,, + (B + Bl
= pipal@prpa(h + ke)® + 0 prpo(mi + mo)®
+of +og, +B7 By, + (B Bl (2)

where, for simplicity, we define the terms

af = a(l+ kipt — kopo),
om = a(l + kepr — ki),
Be = b(1 + mypr — mopo),

and
Bm = b(l + WLQIb] — mlpg)

In the absence of maternal effects (b = 0), the total
variance is equivalent to that under imprinting alone
(SPENCER 2002).

Note that when k; = ks = kand m; = mo = m, so that
imprinting is absent, Equations 1 and 2 reduce to

= 2p(a(l + kpr) + b(1 + mpr)) (3)
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TABLE 3

Mating table of all possible offspring genotypes under imprinting and maternal effects

Mother (AzA;) Father Offspring (A;4;)  Offspring genotypic value (Gy;)  Proportion of offspring  Frequency of mating

A1 A A A A A 0 1 Pt
A A As Ay A A 0 3 Pipe
A Ay a(l+ ky) !
A Ay Ay A/ 0 3 pipe
AyAy a(1+ ky) 3
AL Ay A9 Ay A Ag a(l + k‘z) 1 Pizl’zf
AgA, A A A A b(1+ my) 3 i po
Aoy a(l+k)+b(1+m) :
A Ay Ag Ay ALA b(1+m) % s
AsA; a(l+ k) + b(1+ my) :
A As a(l+ ky) + b(1 + my) :
Ag Ay 2a+ b(1+ my) :
AsAy A Ay AA b(1+ my) : Pips
As Ay a(l+ k) + b(1 + my) :
A Ay a(l+ ko) + 6(1 4+ my) :
Ao Ao 2a+ b(1+ m) :
Ag A, A9 As A As a(l+ ko) + (1 + my) % mps
AsAs 2a+ b(1+ my) 3
Ay Ag ALA ALA b(l + 7’02) % /’?[12
Ao Ay a(l+ k) + b(1 + my) 3
A Ag AgA, Al A b(1 + my) ! PP
Ao Ay a(l+ k) + b(1 + my) :
A1 As a(l + ky) + b(1 + my) i
AsAs 2a + b(1 + my) !
AqAs A1 As A A b(1 + my) : pips
As Ay a(l + k) + b(1+ mo) %
AAg a(1 + ko) + b(1 + my) i
AsAs 2a+ b(1 + my) !
A Ag Ao Ay A As a(1+ k) + b(1 + mp) ! npi
Ay Ay 2a+ b(1 + my) !
AgAg A Ay A Ay a(l+k)+2b 1 pivs
As Ao Ao Ay Ao Ay a(l+ k) +2b 3 s
Ao Ao 2a+ 2b 3
Ao As A As AsAy a(l+ k) +2b 3 mps
AsAs 2a+ 2b :
AsAs AsAs Ag Ay 2a+ 2b 1 P
and \ 2 \
oy = ipibVE
0% = 2 po[2p1 po(@2RE + 02m?) + o + af + B, (4) A MEZ:IMJ &
where a = a(1 + k(py — o)) and B = b(1 + m(pr — po)). =216 ((m1 = o) + 21 po(my + o))
These are equivalent to the values of KEMPTHORNE + (af + B + B)?] (5)

(1957), using our notation (see Table 5 for the mating
table showing all possible offspring genotypes for mater-
nal effects in the absence of imprinting and Table 6 for
genotypic values, breeding values, and dominance
deviations under maternal effects alone). 9 2 by
The additive genetic variances for females (03 ) and A = Zﬂp i£jPVim,
males (0% ) are the respective variances of their breed- Ve 0
ing values: = 2p1ppony. (6)

and
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TABLE 4

(Continued)

Ao Ay

A As

As Ay

ArAy

Genotype

ddp,,,,, = api(kips + ke(=2 + p2))

—apy(hipo + ke (=2 + po))

— bpa(2+ pr (o + mo));

ddmuzu

ddp,,,,, = api (ki (1 + po) — ko)

—aps(k (L + po) — ko)
—bp2(2 + pr (mu + mo));

ddp,,,,

Male dominance

+o(pr — o+ m(1— pipe)

+o(pr — po+ (1 — pipe)

deviation

— maprp);

dd,,,, = apr (kipe + k(=2 + o))

—apo(kipe + k(=2 + po))
+b(pr — o+ m (1= prpe)

ddyp,,,,

— maprp);

ddy,,,, = apy (ki (1 + po) — kapn)

—apy (i (1 + p2) — ko)
T o(pr — po + m (1= prpe)

ddyp,,,,

Fo(pr — o — mpipe

— mapr);
—aps(hipe + ko (=2 + po))
T o(pr — po — miprpe

— maprr); +o(pr — o — i po

—apo (ki (1 + po) — kopn)
+ b(pr — p2 — muprpa

+ma(l = pripo));

ddung,,, = apr (lipa + ke (=2 + p2))

ddmmz

+ma(l = prio));

apy (ki (1 + p2) — kapn)

ddy,,..

dcln"‘\\m

= bpr(=2+ pa(m + ma))

+ma(l = prpe))

=0 (=2 + pa(my + mo))

+ mo(1 — prp2))

A. W. Santure and H. G. Spencer

a(l+ kopy — ko).

a(1+ kipy — ko) and oy,

o =

The male additive variance is equivalent to that under
imprinting alone (SPENCER 2002) and is therefore
unaffected by the addition of maternal effects to the
model. In contrast, the female additive genetic variance
is equivalent to that under imprinting alone (SPENCER
2002) only when maternal effects are absent (b= 0). We
may define progeny means and breeding values for
maternal effects alone (i.e., in the absence of imprint-
ing) (see Table 6) as described above and find that the
additive genetic variances simplify to

o}, = 28 mipipy + o® + 4aB +4B%  (7)

and
oim = 2p1p2a2. (8)

The dominance genetic variance is the variance of the
dominance deviations and is not the same for females
2 2 .
(op,) and males (o7, ):

2 72 . 2
()'Df = frl]klddﬁjkl
ijkl

= pip[d (k= ke)* + pipo (b + ko)?)
+4ab((k — k) (1 + mg) — 2k po(my + mg)
+ pi (b + ko) (my + m2))
+0%(6 — 2mymy + 4y (1 — 2p0) + 4ma(2p1 — o)
= prpe(mi + me)* + mi (3p1 + 5p»)
+m3(5p1 + 3ps))] (9)

and
o = Zfri]-klddiw
ijkl
= pipe[a®((k = ko)® + prpo(ka + e)?)
+ a(ky — k) (B¢ + Brw)
+ 072+ mi + m5 + 2(m + ma) (1 — po)
— pipp(m + mp)?)]. (10)

Under imprinting alone, dominance variances are
equivalent for males and females (SPENCER 2002). It is
interesting to note that this equivalence is lost when
maternal effects are included. Taking the variance of the
dominance deviations for maternal effects alone (de-
fined in Table 6), we find that

0';2)f = 219117‘2[2(12]@21,11)2 — 8abkmp py + IOmeQj)llbg + 382]
(1)

and

0'% :2j)1p2[2p1p2(a2k2+b2m2)+[32]. (12)

m
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TABLE 5

Mating table of all possible offspring genotypes under maternal effects only

Mother Offspring Offspring genotypic Proportion of Frequency

(AA) Father (Ai4)) value (Gy) offspring of mating

ArA A A, A A, 0 1 pi

A A A Ay A A 0 3 203 po
A Ag a(l+k) 3

A Ay As Ay A Ay a(l+k) 1 Pip3

A As AL A, AL A, b(1 + m) 3 207 po
Al Ay a(l+ k) +b(1+m) 3

A1 Ay A Ay A1 Ay b(1 + m) i 4p?p3
A Ay a(l+ k) + b(1+ m) 3
As Ay 2a+ b(1 + m) i

Ay Ay AgAg A Ag a(1+ k) + b(1+ m) 3 21 ps
As Ay 2a+ b(1 + m) 3

As Ay A A A Ay a(l+k)+2b 1 Pip3

As Ay A Ay A Ay a(l+k)+2b 3 201 3
AsAs 2a + 2b 3

As Ay As Ay As Ay 2a+2b 1 s

The nonequivalence of dominance deviation variances
under imprinting and maternal effects is therefore due
to differences between male and female dominance
variances under maternal effects alone.

The covariances between dominance deviations and
breeding values are given by

OAD, = Zfri]-k,bvfyddfyk,
ijkl
= pipe[—3ab(6 + ki (10 — 6o + 3my + Tmy)
— ko(4+ 6o + 4mo) + (1 + mo)
X (3(pr — o)
+ po(=17ky — Sky + 10po (k1 + k2))))
— 26+ m (5 — 12p)
+mo(7 — 12p9) — myma(1 + 4p1po)
+mi (34 po — 2p10)
+m3(3+ p1 = 2pip)) + ace(ky — k)]
(13)
and
Tap, = Y _ fribVin, ddm,,
il

= pipecm[a(hy — ko) +5(Be + Byl (14)

Under maternal effects alone these simplify to

and breeding values and dominance deviations are
uncorrelated.
Finally, it can be easily shown that

2 2 2
(Ored :()'Ar +O'Dr +2()-ADf

= (r:im + G%m + 20D,
for both maternal effects and imprinting and for ma-
ternal effects alone.

It is reassuring to note that values for the population
mean, variances, and covariances under maternal ef-
fects alone are equivalent whether they are derived inde-
pendently from Tables 5 and 6 or by substituting k= k; =
ks and m = m; = my into Equations 1, 2, 5, 6, 9, 10, 13,
and 14.

Resemblance between relatives: We now follow the ap-
proach of KEMPTHORNE (1957) to calculate the mother—
offspring covariance (oop,, covariance between off-
spring and female parent) and father—offspring covari-
ance (oop,, covariance between offspring and male
parent) using Table 7. Table 7 displays the genotypic
values of parents and the mean value of offspring of
these parents. Note that this table covers all 12 possi-
ble parent genotypes, as it is important to not average
over Ay genotypes (the male or female parent’s own

mother).
OAD, = p1po[8abkmpy po — 16b°m by po — 3B (a + 2B)] Then
(15) oop = Zfrljk;(Gi]kl — (A progeny mean — ),
and d
oop, = Sp1pe[Bab(—2 + kymy + komy) — 6abpy po(ky + ko) (my + my)
OAD,, = P10, (16) + 2a(0r + o) + 2B (B + Br) + aBu (k1 — ko)

and in the absence of both maternal effects and
imprinting (b= 0 and &, = ko), the covariances are zero

+5a(B; + Byy) + 5b(ag + )], (17)

and
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(3 = dyw + 1)g = g pue (7 — 4y + 1)p =

(3w — 1)'dgg + dywe—
((3ddg — 1w + 3 — 1d)q + dywg—

(3w — 1)'dqg — tdywg—
(g + 1w — 'dg +1)q — Jdwg—

nldg

(*duw — 1)9g + ) 'dg
(Y + 1)3d9g + (4 + 1)dv + g
g+ (4 4+ 1)'dv + &g

(3w — 1)dqg + (34 — 1) dvg
{((3ddg — 1w + 5 — d)q +
(3dy — 1)'dvg

st
2

98+ 73
Hw +1)9 + 03

(3w — 1)'qg — gy

((d'dg — 1w + 6 — 'd)q + gy
{(dw + 1)5dqg — 4 \gywyg

(30 — 1)u — )qg + “ddywg
{(dd'dg — 1w + g — 1)q — & '\dywyg
((3dd — 1w + d)qg — ' dywg

(54 — d)o
((d'dg — 1w + °d — 'd)qg +
(5 — )

(1w + 1)3dqg + (4 + 1)v% + v
(w +1)g + (4 + 1)r§ + o
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((ddg —1)y +3d — d)
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‘e 1q
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(w + 1)+ +1)p
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{(‘dw + 1)3qg + cdywg—

0éfg—
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TABLE 7

Genotypic values and progeny means for mother—offspring and father—offspring pairs under maternal effects and imprinting

Parent genotype Frequency Genotypic value Progeny mean of females Progeny mean of males

A frim 0 apa(1 + ko) ape(1 + ki)

Ana friz; b(1 + m) + bpa(2 + pr (my + mo))

Arnie frine b(1 + my)

Aoy frojo; a1+ k) + b1+ my) ape + b(1 +my) aps +5a(1 + kepr + ki)

Agnie fro11e a(l1+ k) + b(1+ my) + 101+ kit + e + 94 +

As129 frosoe a(l+ k) +2b 2l it lepe) P2 )

A]Q]] frlgn ll(l + kg) (lp2 + b(l + 1”2) apg “"%d(l + kal + klpg)

Ajgo1 fri99) a(l+ky) + b(1 +my) +3a(1+ kipy + ko) + bpo(2 + +

Arars frins a1 + k) + (1 + m) : Pe@+ palm + )

A2221 fI"QQQI 2(l+b(1 +m1) QLZPQ +2b+dp1(1 +k1) 2ap2+apl(1+k2)

Agaro frogis 2a+ b(1 + my) <

Ago9o froges 2a+2b o2 pr(ma+ma))
oop, = i[h{bam [2(cts + o) + By + Byl (18) (also derived by SPENCER 2002), and

Note that, following SPENCER (2002), these covarian-
ces are equivalent to

gor, = 5(0%, + oan,) (19)
and
oor, =503, +0ap,)- (20)

The full-sib covariance (ops) can be calculated with the
aid of Table 8, which displays all possible genotypic
values and frequencies of pairs of siblings:

OFs = Z
offspring pairs
= il prpo(ky + ko)* + 3(of + o)
+ b2p1p2(m1 + WDQ)Q + B(f2 + B;zn + (xf(Bf + Bm)]'
(21)
In the absence of imprinting, setting k= k; = ko and m =
m; = me, we find that

fr(offspring Gy — w.)(offspring G — )

oop, = 3p1 po[8abkmpy py + 20% + 2B% + bap],
b, = sp1peal2a + B,

and

OFs = plpg[(IQij?lj)g + 4b2m2p1pz +o?+ 203 + 282]

These covariances are equivalent to the values of
KeEMPTHORNE (1957), using our notation (note that
his definitions for o and 3 are not the same as ours).
When imprinting is present in the absence of maternal
effects (b= 0),

oop; = lplp‘laf[ (kQ - kl) + 20Lf]7
P = 21’11720‘!11[ a(ky — ko) + 20uy]

ors = il pipe((h + k) + 2p1 (k= ko) (2 = po(ka + ko))
+2(a? +a2)).

Finally, we may also calculate the covariance between
offspring who share a mother or a father. Following
SPENCER (2002), the covariance of half-siblings who
share a mother is

ous, = ioif
= 3ol *((m — ma)* + 2 po(m + ma)?)
+ af + 200 (B + ) + (B + B

(22)

and the covariance of half-sibs sharing a father is

ous,, = 7110'12\,“
= shiprotg, (23)
These covariances reduce to

ous, = sp1fp[80°mE pipy + o + 4ap + 4B7)

and

Sm 21911720‘

in the absence of imprinting and

OHs, = g1 peof
and

1 2
OHS,, = of1/20,

if we assume no maternal effects (SPENCER 2002).

Approach 2a: We now follow a general leastsquares
approach (LyncH and WALsH 1998) to calculate pop-
ulation breeding values, dominance deviations, compo-
nents of variance, and covariances between relatives.

We can write the genotypic value Gy, as the sum of
the mean plus the additive (¢and w) and dominance
(N, 6, and d) effects,
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Genotypic values for full-sib offspring pairs from mating combinations

A. W. Santure and H. G. Spencer

TABLE 8

Mother

Father

Offspring pair genotypic values
[proportion of total offspring of mating class]

Frequency of
mating class

A] A]
ArA

A A
AgAl

Ao,

As Ay

A1 As

A] AQ

Az Ay
A2 AQ

Ag Ay

A4y
A2A1 and A] AQ

AgAg
A] Al

AgA] and A]Ag

AQ AQ

A Ay

A2A1 and A] AQ

Ag Ay

A4
A2A1 and A] A2

Ag Ay

0, 0[1]
0[]

0, a(1+ k) |

a(l+ ko), a(

(1 + ko), a(l+ ke) [1]

b(1+my), b(1+m)[Y

b(1+my), a(1+ k) + (l+m1)[2]

(1+ ki) +o(1+m), a(l+ k) + (1 + my) [3]

1+m), b(1+m)[E

1+m

(
(
1+ m
(

a

,J>

Q

( 16}
a(l+k)+o(1+m)k
(

1+k)+0(1+m)g

]
]

S
Q0|—Q0|—

a(l+k)+ b(l +mi), a(l+ k) + (1 + m) [

a(1+ k) + b(1+my), a(1+ ko) + b(1 + my) [}

a(l+k)+bo(1+m), 2a+ b(1+ my) [%}

a(l+ k) + b(1 + my), a(1+ ko) + b(1 + my) [4]
a(l+ ko) + 0(1 + my), 2a+ b(1 + my) [3]

2a+b(1+m), 2a+ b(1 + m) [{g

a(1+ ko) + b(1+ my), a(1+ ko) + b(1 +m) [{]
a(l+ ko) + b(1+ my), 2a+ b(1 + my) [3]
2a+ b(1+m), 2a+ b(1 + my) [i]

b(1+ my), b(1+ my) [{]
b(1+my), a(l+ k) + b(1+ my) [3]
a(1+ k) + b(1 + my), a(1+ ky) + b(1 + my) []

(
(
E1+ma, b(1 + my) []
1+
(

b

b1+m2§, a(1+kl)+b(l+mz)[§]
b(1+ my), a(1+ ke) + b(1 + my) [
b(1+ my), 2a + b(1 + my) [§]

a1+ k) + b1+ me), a1+ k) + b(1+me) [
a(1+ k) + b(1+ my), a(l + k) + b(1 + my) []
(1+ k) +b(1 + mp), 2a+ b(1 + my) [}
( )+ b(1+m), a (1+k»z)+b(1+mQ)[15}
a(l + ko) + b(1 + mg), 2a + b(1 + mo) [3]
2a+ b(1 + my), 2a + b(1 + my) []

a(l+ k) + 0(1+ my), a(1+ ko) + b(1 + my) [3]
a(1+ ko) + b(1 + my), 2a+ b(1 + my) [3]

2a+ b(1 + my), 2a+ b(1 + my) [4]

a(l+ k) +2b, a(l+k)+2b[1]

a(l+ k) + 20, a(1+k1)+2bg
a(l+ k) + 20, 2a+2b[2}
2a+ 20, 2a + 20 [}]

2a+2b, 2a+ 2b[1]

p
207 po

s
pipe

20115

mvs

bt

2075

nps

pips
2p1 3

4
b

Gl]kl =K + (81 + 8 ) + )\ + ((J.)k' + (.l)'l) + le + Sijkla (24)

where p = 2po(a(1 + kpy) + b(1 + mp,)) as above, €, is
the average additive effect of inheriting an A;allele from
the mother, ¢ is the average additive effect of inherit-
ing an A; allele from the father, w,, is the average addi-
tive effect of having a mother who received an A, allele

from her own mother, and w; is the average additive
effect of having a mother who received an A, allele from
her own father. The dominance effects \, 6, and d are
defined below. Note that here “.” represents either an
A, or an Ay allele in that position.

We first calculate the average genetic values
A;A;j genotypes using Table 3. For example, the average
genotypic value of an A;A; individual is
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1 .
G = [(0)(pf +5p7pe + 3pipe)

R
+o(1+ m)(3pipe + P05 + 30T P5 + i)
+ (1 + mg)(ghipe + b p5 +ipi 05 + ip3)]
= %bl’bg(Q + nmy + mg).
Similarly,

Gor. = a(l+ k) +3b(p1(2 + my + mg) + 4pso)
Gro. = a(l + ky) + 5bpa(2 + my + mo)
Goo.. = 2a+ 5b(p1(2+ my + mg) + 4po).

It can be noted that, as expected,

= piGi. + paprGor. + pipeGra. + psGoo.
= (a2 + pi(k + k) + b2+ pr(m + mg))).

The additive effect of an allele is the deviation of
members of the population with the allele from the
population mean. In the absence of imprinting, the
parental origin of the allele has no effect. With im-
printing, however, we can calculate the additive effect of
the allele separately under maternal and paternal in-
heritance. For example, the average additive effect of
an A; allele when inherited maternally is the average of
the mean A;A; and A;Ay genotypic values minus the
population mean,

€. =G + pGo. —pn
= _%[)Q(Qaf + Bf + Bm)»

while the additive effect of an A, allele when inherited
paternally is

€1 =pGi. T+ 6. —
= —poQiy.
The other two additive effects are thus

g9, = yp1 (20 + Bp + Byy)

€9 = Pr0y-
The dominance effects are defined as
Nj=Gyj —p—¢& —¢gj
for example,
A1 =6, —p—gL —£)
= —aps(ky + ko).
The other dominance effects are shown below:

Aot = Mo = apipo(k + ko)
Nog = —aplg(kl + kg).

It is interesting to note that the dominance effects are
the same for individuals with an A, genotype (regard-
less of mother) as they are for individuals with an Ay,
genotype.

With the help of Table 3, we may now define average
genetic values G ;; of individuals with an A;A; mother.
For example, the average genotypic value of an in-
dividual with an A;A; mother is

1 o
G = F[ﬁi‘(O) + i p2(0) + pipo(a(l + ky)) + pips (a(l + ke))]
1

= d(l)Q + kgpg).
Similarly,
G.o1 = 3a(1 +2po + kupr + ko) + b(1 + my)
G.ao = 3a(1+2ps + kipr + ko) + b(1 + my)

G99 = a(pl + 2?2 + kllbl) + 2b
and again, as expected,
p=pG 1+ pprGar + pippGas + P3G os.

The additive effects of maternal allele may now be
calculated. For example, the average additive effect of a
mother with a maternally inherited A, allele is

o, =G+ pGis— W
= —gpo(ar + 2B¢)

while the additive effect of a mother with a paternally
inherited A; allele is

w1 =pnG11+pGa— 1
= —gpelar + 2B,,)-

The other two additive maternal effects are similarly

wg, = 51 (ar + 2By)
wo = %171 (af + 2Bm)'
The maternal dominance effects are defined as
O =Gnu—pn—op—o0y
for example,

= —bps (my + my).

0n=Gi1—p—w. —w;

The other maternal dominance effects are similarly
091 = 019 = bp1po(my + mo)
B0 = —bp} (mn + my).

Finally, we calculate the combined offspring—-mother
genotype dominance deviations as

Oii = Gijg — W — &, — & — Njj — 0, — w7 — Oy,
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The combined dominance effects are shown below:

O1111 = 1211 = %I)Q(Qaf + B¢+ Bm)
B1191 = 1112 = d1991 = do1o = S(ae(po — p1) + po(Br + Br))
o191 = Bo112 = dasar = dogro = (e (pe — p1) — p1(Be + B))

Bo199 = Bagge = —op1 (20 + B + By)-

In approach 1, we followed the definition that the
breeding value of an individual is twice the difference
between the mean genotypic value of the class’s off-
spring and the population mean (FALCONER and
MAckAY 1996). When breeding values are equivalent
for males and females, the breeding value of a genotypic
class is also the sum of the additive effects of its genes
(LyncH and WALsH 1998):

bvii = &1 +e1 = —gm(20¢ + B + Byy) — rom
= —po(ar + an §(Bf +Bm))

bve; = g9 + €
= prag — pootm + 3p1(Br + Bryn)

bvig =& + &9
= —poag + prom — 5 (B + B)

bvay = &9 + 89 = 41 (205 + B¢ + Byy) + proum
= pr(ar + o +3(Br + Brn))-

For a locus influenced by imprinting and maternal
effects, however, breeding values are different for males
and females. Taking the mean of female and male
breeding values from approach 1 (Table 4), we can see
that

Sbve, + bvin, | = —po(ar + o + 52 + pr(my + my)))
$bvey, + bvimy, | = (o + om) (p1 — p2)

T o(pr — po+mi — prpo(m + my))
$bve, + bvin,] = §loag + om) (p1 — p2)

T b(p1 — po + me — prpp(m + my))

%[be“ + me“} j2! (af +oam + b(Q - [)Q(m] + ng))),

which are not equivalent to the combined female and
male breeding values calculated above from the sum of
additive effects.

Genetic variance components: We may now calculate
variances associated with the population. The offspring
genotype additive genetic variation is the variance as-
sociated with the average additive effects of alleles and
can be shown to be

2
lis) = Zpl(g? + 821)
=1
= impeldal + (20p + B + B,y)7)

while the offspring genotype dominance genetic vari-
ance is the genetic variance associated with dominance
effects:

2
2
Op) = Z:lﬁiﬁj)‘ij
Z,]:
= @pip3(k + ke)*.

Similarly we calculate the variance in the maternal
genotype additive effects as

TR = D 1r(0f + %)

=
Il N
—

= pipa[b*(m1 — mo)? + (o + B + By

and dominance variance for maternal genotype as

2
= > ppit
k=1
= 0*pi 5 (ma + my)*.

The variance in combined dominance effects is

2 _§ 82
(o) 8) = frljleijkl

ijkl
= Ipipolo? + (o + Bp + Brn)?-

Recalling that we defined our genotypic effects as
Gy = o+ (8 T 85) + Ny + (0p, + @) + 0 + Sy,
we may write
gdin = (€. + &) + Njj + (0p. + 0) + 0 + S

and the total variance (var) in the population can be
expressed as

var(gd;,) =var(e; + &) + var(\;) + var(wy, + 0,)
+ var(0) + var(3;u)
+ 2[cov(e; + &) (N;) + cov(e; + &) (0w + wy)
+ cov(g; + &) (0u) + cov(e; + &) (Su)
(Nj)(0p, + 04) + cov(hg)(O)
+ cov(Nyj) (Bijrr) + cov(wy, + 1) (0r)
+ cov(wg. + w ) (Bin) + cov(0r) ()]

+ cov

= 035 + by + TR T Thie) + D)
+2[0A@D0) T TaEAW) T TAEDO) T TAEDE)
T AW T Ipape) T TDRDE)

+ OawpO) T TawDE) T opEpE)]-  (25)

The covariances (cov) of additive-by-additive and addi-
tive-by-dominance effects are

Taa() = ip1pe20f + 30 (Be + By) + (Be + B’
= 74171192[2&[ + Saf(Bf + Bm) + (Bf + Bm)Q]
plp?[Qaf + 30Lf(Bf + Bm) + (Bf + Bm)g]'

OA(e)D(3)

OA(w)D(3)
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Note that all other covariances are zero. As expected, Stun = poor + 3o (Be + Brn)

the total variance in the population (2) may be re- TV . . B

covered from Equation 25. B = 0(2 2+ mi (21 + o+ 2npn) + mapo(pn = o)
Approach 2b: Approach 2a calculated total additive + peog

and dominance effects and did not allow separate cal- T %b(g +2p0 + mupo(pr — po) + ma(2pn + po + 2p1f0))
culation of female and male additive and dominance vari-

ances as were possible in approach 1. Therefore let us T
redefine the additive allele effects as female and male Bty = g0tt(p2 — p1) — 51 (Be + Bin)
effects, so that Btyy = S0(—2p1 + mu(=3p1 — 2o + 2p1 o)
1 _
Giw = o+ (8, T 85) + Nj + (0p, + 07) + 0y + dju +oma(pr+ 2ps + 2pip)) + gor(pe — 1)
=pt (e Tg) + Ny (00 T o)) +0;+ 3, Bt = 2022 +m (=31 = 22 +2p1p) + mapr e — 1)
=t (e + )+ By +gau(py = pr)
Bt = 5b(=2p1 + mupn(pe — p1) + ma(=2p1 — 3po + 2p1 o))

where the extra subscripts on A and d indicate female (f) +las(po — pr)
and male (m) effects. These definitions allow inclusion 5 1
of a parental influence on the next generation into the tn = g0(2p2 T m(2p1 + f2 + 2 o)
model. For example, a Gy, mother will contribute g + mo(—2p1 — 3po + 21 o)) + S (po — p1)
and ¢; alleles to her offspring, plus a maternal compo- Sty = St (pr — 1) + Ypo(Br + B)
nent of w; +w; from her own genotype (plus domi- 1
nance terms). In contrast, Gy, fathers will contribute Bty = 9b0(=2(2p1 + po) + (1 + 2p2 + 21 p2)
only ¢; and ¢ alleles to offspring (plus a dominance + mopy(po — 1)) — prog

term) and will not contribute a maternal term. In using 1 _

these definitions we endeavor to partition the additive Oy = 2@+ o)+ mup(fz = 1)

and dominance terms into those specific to male and +ma(pr+ 2ps 4 2pip)) — prog

female inheritance. Bty = —pro — 3p1(Br + Bry)-
Following this model, g, ®, and 0 terms are defined as

i h 2a. define f le offspring domi
in approach 2a. We define female offspring dominance The male offspring combined dominance deviations

effects as are calculated as
Ay = Gij. — v — & — &j.. Omyy = Gijt — o — € — €
For example, and are thus
\ G - By = —ape(ki(pr + 2p0) — kopr) + bpo(—2 — pr (1 + mg))
for — 1.. — b — & — &1, S :*Llpg(k(p +2P2)*k[7)
=L1w(2a(k (201 + po) — kapo) + Be + Bun)- H H
(el (@pn o) = hop) + Bect Bu) (= pa+ (1= pipu) = maprpe)
The other female offspring dominance effects are Omie = —ape(ki(pr +2p2) — kapr)
thus +b(pr — pop — muprpo + mo(1 — prpp))
81112121 = ap (kl (171 + 2P2) - k?lbl)
Ny = spe(2alkipy — ko(pr + 2p2)) + Br + Bin) s * b(:l — P ;r ml(l}; i) = mappn)
moite — + -
Mo = —3p1(2a(kipr — ka(pr + 2p2)) + By + Brn) oprh(py 2p2) = ko) )
oo = L (2a(hy (2 + ) — hp) + By + B) +b(pr — po — muprpo + mo(1 — prpp))
Mo = —op1(2a(ki (2 + po) = hope) + Br + Br)- Bunaee = apr (k1 (p1 + 2p) — ko) + bpr (2 = poom + mo))
B = —apa(kipe — ke(2p1 + p2)) + bpo(—2 — pr (1 + mg))
Note that dominance effects are no longer equivalent B = —apa(kipe — ke(2p1 + )
for Ajs and As; individuals. The mean female domi- +0(p1 — po + mi(1 — pipe) — mapipo)
nance deviation is zero. By = —apo(kipe — ka(2p1 + po))
We now calculate the combined offspring—-mother + (1 — po — muprpa + mo(1— prpu))
genotype dominance deviations for females as Sy = apr (k1o — ko(2p1 + o))

8ty = Gyt — . — €. — €. — N, — 0, —wj — 0 O = pet m(1 = pupe) = mapnpe)

ik ik i. . i i. . e

’ ’ ’ ’ ) ’ 81“2212 = ap (k1[72 - kQ(QPI + [72))

The female combined dominance deviations are +0(pr = pr = mprpe + me(1 = pipy))
therefore Bingme = ap1 (1o — ko (2p1 + o)) + bp1 (2 — po (o + mg)).
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Again defining the breeding value of a genotypic class
as the sum of the additive effects of its genes (LYNCH
and WaLsH 1998), we may utilize the separate male and
female additive effects to calculate male and female
breeding values. Hence

be11 = €1. + €1.

= —p2(20¢ + B¢ + By)
bvg,, = bvie = €1, + €9,

=51 — o) (20 + B + Byn)
bvg,, = €9, + €9,

=1 (20 + B + Byy)

for females and

bvm,, = €1+ €

= —2poouy
bV, =bvie =¢€9 + €]
= am(p1 — p2)
bV, = €92+ €29
=2pany

for males. It is interesting to note that this approach
recovers the male but not the female breeding values
derived in approach 1 (Table 4).

Genetic variance components: We may now calculate
male and female variances associated with the popula-
tion. The female offspring genotype additive genetic
variation is the variance associated with the average ad-
ditive effects of alleles inherited maternally and can be
shown to be

2
Ui(s)f = Z; 2pie;

= Ipipe20p + By + B

Similarly the offspring female genotype dominance
genetic variance is the genetic variance associated with
the female dominance effects,

2
Thoy, = Zﬁil’j)\é
=1
= pipola®prpo(ky + ko)® +1(2a(ky — ko) + By + Bpn)?],

and the combined female dominance genetic variance
is the variance of the combined female dominance
effects,

2 _ 2
Ops), = Z frimd;,,
ikl

= I pol46* ((m — mg)® + 2p1 po (my + my)?)
+ Q(OLf + Bf + Bm)2 + (Bf + Bm)Q]'

The variances in maternal genotype additive and dom-
inance effects are those found in approach 2a.
The female covariances are

OAEDN), = —p1peldaar(k — k) + (B + B,,)?
+ 20 (By + Bn) + 2a(ky — ko) (B + Byy)]
OA)AwW), = s 2[20f + 3ar (B + By) + (B + B’

= 205(5)A(0)
OAEDE), = —sPip2(20f + Sag(Br + By) + (B + Bi)]
= 204()D(s)
OpMAw), = —imP2(2aar(ki — k) + e (Br + Byy)
+4aB,, (ki — ko) — b(m — mo) (B¢ + By
+ (B + B’

T (), = abpi s (ki + ke)(mi + my)
OpDE), = s pel—4abpipa(ky + ko) (mu + mg) + 2acy (ky — ko)
+4aB,, (kh — ko) + e (Be + Bry)
= b(my — ma)(Br + Bu) + (Br + Bin)’]
OA(DE), = —sp1[0® (m — mo)® + (o + Bp + By)?]

TnEpE), = —0 P ps(mi + mo)®.

The two remaining covariances are zero. As expected,
the total variance in the population (2) may be re-
covered from Equation 25 for the corresponding female
variances and covariances.

The male offspring genotype additive genetic varia-
tion is

2

(’i(qm = Z 2pie’
=1

= 2[)1p20L§1.

2 1,2 2
Note that 03,y = 5(05 ) T Trae))-
The male combined dominance variance is

2 _ § Q2
GD(B)m - frlfk[amw
i

= pipel@ (b — k) + prpo(k + k2)?)
+ 022+ mi + m + 2(my + mo)(pr — o)
= prpe(m +m9)?) + a(ky — ko) (B + Bl

Finally, the covariance between male additive and dom-
inance effects is

OA@)D(),, = Z frij (e +€;)0m,,
ikl

= prpecam[alk = ko) + 5(B; + Brn)]-
Here the total variance in the population (2) is

var(gd;;) = 03+ 0he) + 20a0DE),

P

and is equivalent to that found in Equation 2.
It is interesting to note that the male additive
and dominance variances and additive-by-dominance
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covariance are identical to (6), (10), and (14), the vari-
ances and covariance found using a different method
in approach 1. In contrast, the female variances and
covariances are not immediately comparable to those
found in approach 1. Further, these values cannot be
recovered by ignoring maternal additive and domi-
nance allelic effects so that we reduce the model to
Gg‘/’kl =W+ (81-' + Sj_) + 8¢

ikl
and
Var(gdzjkl) = Ui(s){ + U%(a)f T 20A(6)D (), -

Resemblance between relatives: Using the separate male
and female variance and covariance terms defined above
and Equations 19, 20, 22, and 23 from SPENCER (2002),
we may calculate parent—offspring covariances and co-
variances between half-sibs. We start with males and find
that indeed

gor, =5(0%) T OA@DE),)

and

_ 1.2
OHSw = 40A(e),,

m

In contrast, the female parent-offspring covariance
(Equations 17 and 19) and covariance of half-sibs
sharing a mother (Equation 22) cannot be recovered
from any linear combination of our values for female
variances and covariances derived using our novel
approach above.

DISCUSSION

The importance of parental effects on the phenotype
has long been realized. Nevertheless, the way in which
various forms of parental effects alter the terms in
quantitative genetic models has not always been clear.
Here we show that two different kinds of parental
effects—genomic imprinting and maternal genetic
effects—alter the variance components in the simplest
one-locus two-allele model in fundamental and reveal-
ing ways. Moreover, we find that different approaches to
calculating these components, which work well for the
standard model without such parental effects, cannot be
relied upon when parental effects are present.

We used two approaches (FALCONER and MACKAY
1996; LyncH and WALsH 1998) to calculate additive,
dominance, and total genetic variance. Although both
methods give identical total genetic variance terms,
there are differences in the partitioning of the variance
into additive, dominance, and covariance terms. These
methods differ in that the first approach uses progeny
means to calculate breeding values, while the second
method uses a least-squares approach to define breed-
ing values as the sum of the average allelic effects. Under

a standard, one-locus diallelic model (that is, without
any form of parental effects), the two approaches
retrieve equivalent additive and dominance effects
and no correlation between additive and dominance
effects. However, maternal and imprinting effects intro-
duce both sex-dependent and generation-dependent
effects that result in differences in the way additive and
dominance effects are defined for the two approaches.
Specifically, FALCONER and Mackay (1996) (approach
1) use the variance of the breeding values to calculate
additive genetic variances. Breeding values are calcu-
lated from the progeny means of each genotype, and
this approach introduces a “generation” effect into the
additive dominance. In contrast, LyNcH and WALSH
(1998) (approach 2) use additive effects of alleles to
calculate additive variance. These additive allelic effects
are found by averaging over the genotypic values of
individuals expressing these alleles and so do not in-
clude the same generational effect as calculating breed-
ing values does.

Approach 2 is a more straightforward method for
calculating additive and dominance variances because it
does not require consideration of mating tables. How-
ever, we saw above that we were not able to recover the
approach 1 values for female additive and dominance
variances and the additive-by-dominance covariance
when we refined the least-squares approach to include
male and female effects (approach 2a). It is interesting
to note that approach 2a was able to recover the male
variances and covariance. Clearly calculation of male
breeding values (approach 1) and male allelic effects
(approach 2a) by averaging over female mates and
mothers, respectively, has the same overall effect.

We may examine the covariances between relatives
derived in approach 1 and can see that both imprinting
and maternal effects add extra terms. Ignoring imprint-
ing and maternal effects may over- or underestimate
true covariances. For example, Tables 9 and 10 calculate
parent—offspring, full-sib, and half-sib covariances for
six models: (i) a full model incorporating paternal in-
activation and maternal effects, (ii) a model including
paternal inactivation only, (iii) a full model incorporat-
ing maternal inactivation and maternal effects, (iv) a
model including maternal inactivation only, (v) a model
including maternal effects only, and (vi) a standard two-
allele model without imprinting or maternal effects.
Assuming that both maternal effects and imprinting are
influencing this trait, we have calculated the true ex-
pected population covariances under both paternal inacti-
vation (model i) and maternal inactivation (model iii).
Table 9 calculates these covariances for a = 0.5 and b=
0.1 (offspring genotype has largest influence on geno-
typic values) while Table 10 calculates these covariances
for @ = 0.3 and b = 0.3 (offspring and maternal
genotypes have equal influence on genotypic values).
Note that because we are assuming no imprinting in
models v and vi, covariances for these models need not
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OHs;

OHS,,

be calculated separately for maternal and paternal
inactivation as do models i-iv.

A number of conclusions are apparent from exami-
nation of Tables 9 and 10. For paternal inactivation and
maternal effects in Table 9 (model i) we can see that
Oop, = Ops = Oys, > Oop,, = Ops,,- Note also that models
ii, v, and vi underestimate the true values for oop,,
ors, and oys, while overestimating values for oop,,
and ops, . Model ii retains the relative ordering of co-
variances while model v incorrectly ranks oop, ahead of
Ops,. Estimates for model vi do not compare well to the
true values calculated in model i.

For maternal inactivation with maternal effects in
Table 9 (modeliii) the relative ordering of covariances is
Oop, = Ofs > Oys,, = 0op, > Oys, - Model iv overestimates
while models v and vi underestimate oop,,, Ofs, and
ous, - All three models iv, v, and vi underestimate
oop, and oys,. Model iv retains the relative ranking of
covariances from the true model iii, although estimates
from and order ranking of models v and vi do not
compare well to model iii.

Quite different observations are apparent when ex-
amining Table 10, for covariances calculated assum-
ing maternal effects and own genotype effects have
equal impact on genotypic values of offspring. For
paternal inactivation and maternal effects (model i),
the relative ordering of covariances is now ogs > ops, >
Oop, > Oop,, > Ops,,. Once again models ii, v, and vi
underestimate oop,, Ors, and oy, while overestimating
oop, and oys, . In contrast to Table 9, however, model v
now appears to best estimate relative sizes and ordering
of covariances.

For maternal inactivation in Table 10, an even more
surprising result is apparent. Because maternal alleles
are almost completely inactivated, we would expect
oor, and oys, to rank highly, as they did in Table 9.
However our covariances between relatives now follow
OFps > Opp, = Oys, > Oop,, = Ops,,- Lhere is no consistent
pattern of over- or underestimation of covariances when
comparing to the alternative models iv, v, and vi. As
was the case for paternal inactivation discussed above,
model v (maternal effects alone) appears to best mimic
the covariance structure. Despite maternal effects and
offspring own genotype having equally weighted con-
tributions to offspring genotypic value (a= b= 0.3), itis
apparent from this example that maternal genotype
effects, and not imprinting effects, have greatest impact
on the covariances between relatives. Further, simula-
tion results (data not shown) suggest that maternal
effects can outweigh imprinting effects even when b < a,
especially when the difference between reciprocal het-
erozygotes is not large. For example, if ¢ =0.4, b =
0.2, ky =m = —0.1, and ks = me = 0.2 (higher pater-
nal than maternal expression of alleles, plus maternal
effects), then oop, = 0.0920 and oop, = 0.0575.

We are likely to have population estimates for covar-
iances between relatives. Itis pertinent to assess whether
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we can estimate values for a, b, ki, ko, my, and my given
these covariances. Let us take the parameters and
calculated covariances from model i in Table 9 (pater-
nal inactivation with maternal effects). We assume
P =ps =05, a,06>0, and that heterozygotes are re-
strained to fall within the range of the homozy-
gotes (that is, ki, ke, m,me € [—1,1]). We also set
ki = my and ky = my, so that mother and offspring ge-
notypes act in the same way on overall offspring ge-
notypic value. For example, an AsA; offspring with an
AsA; mother will have a contribution to overall off-
spring genotypic value of a(l + k;) from its own geno-
type and a contribution of 5(1 + k;) from its mother’s
genotype.

We endeavor to retrieve known parameter values for
a, b, ky (= my) and ke (= mo) by setting the calculated
values for covariances between relatives equal to their
mathematical expressions and solving simultaneously.
We have five equations and four unknowns, but because
all five covariances involve quadratic terms in the pa-
rameters we are trying to estimate (a, b, k;, and ko) they
do not have unique solutions for the given calculated
covariances. However, applying our range constraints
gives two solutions,

a=05,0=0.1,k =09, ko =—0.8, m; =0.9, and my = —0.8

(our original values) and

a=050=01, % =—08, ks = 0.9, m; = —0.8, and my = 0.9

(Table 11, full model, row 2). Values of a and b are the
same for the two solutions, maintaining the relative
contribution of maternal effects to the range of geno-
typic values. However, it is interesting to note that the
two solutions exchange values for k; and ks (and m; and
mg) as a consequence of our assumption of equal allele
frequencies in the population. As seen in Table 9, if
there are large differences between predicted values for
reciprocal heterozygotes and between estimates for a
and b, a much larger population value for oop, com-
pared to ogop, is indicative of paternal inactivation.
Therefore we are able to conclude that the first solution
is the true solution for the population. However, as was
clear from Table 10, without large differences between a
and b and k; and ko, it may not be possible to determine
which set of values for a, b, k;, and ke is true for the
population. This highlights an important theoretical
restriction: it may not be possible to differentiate ma-
ternal effects from imprinting using observed popula-
tion covariances—even when assumptions are made about
population allele frequencies and values and ranges for
k], kg, my, and mo.

We may also assess how incorrectly specifying the
model affects our estimates for a, b, ki, ko, my, and mo. We
again take the known values for covariances from model
i in Table 9 and use our expressions for covariances
between relatives as derived in approach 1 under the
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three reduced models: no imprinting (maternal effects
only), no maternal effects (imprinting only), and no
maternal effects or imprinting. By setting the reduced
expressions for covariances equal to the true values and
solving, we find that in many cases we are unable to
recover consistent solutions for the reduced models
(Table 11). We define consistent solutions as solutions
satisfying our constraints on a, b, ki, ke, m;, and my (or
kand m). The lack of consistent solutions for the re-
duced models is an indication that the models are in-
complete and that additional genetic factors are acting
that have not been specified.

Examining columns 1 and 3 in Table 11, we can see
that the assumptions of the three reduced models affect
the restraints that are placed on our parameters: for
example, under a reduced model of maternal effects
only, k; = ko = kand m; = my = mfor all covariances, and
we now have a condition that k, m € [—1,1]. Note that
this also affects the number of parameters we are solving
for in each of the reduced models, and hence to find a
solution we must solve for subsets of covariances, rather
than using all five true covariance values (Table 11,
column 2). Interestingly, a consistent solution pair was
found for all three reduced models using a subset of
full-sib and half-sib covariances: for imprinting only,

{a, ki, ks} = {0.6064, 0.8351, —0.9175}
or {0.6064, 0.9176, —0.8351};

for maternal effects only,

{a, b, k(= m)} = {0.0750, 0.5892, —0.3333}
or {0.0750, 0.5892, 0.3333};

and for no maternal effects or imprinting,

{a, k} = {0.8063, 0.0310} or {0.8063, —0.0310}.

As we also saw in the two solutions to the full model,
for the imprinting-only model k; (and ko) reversed sign
between two solution sets, effectively reversing the pre-
diction from maternal to paternal inactivation of alleles.
A similar result was seen in the no imprinting, no
maternal effects model where the A, allele changed
from recessive (k = —0.0310) to dominant (k¢ = 0.0310)
in two solutions to the same simultaneous equations. In
addition, it is interesting to note that the maternal-
effects model estimated a much larger maternal effect
(b) than the true value, while the other two models
overestimated own genotype effect (). This in general
was also true of consistent estimates for ¢ and b con-
tained within inconsistent solution sets for these three
reduced models. As would be expected, therefore, not
including maternal effects in the model will overesti-
mate the contribution from an offspring’s own geno-
type to genotypic values and covariances.

Many of the inconsistent solutions included imagi-
nary numbers. Examining column 5 of Table 11, we see

a large range in estimates for parameters contained
within these inconsistent solutions. Perhaps not surpris-
ingly, this result suggests that consistent parameter val-
ues contained within inconsistent solution sets should
not be used to infer population parameters. It can be
noted from this example that inconsistent solutions,
solutions containing imaginary numbers, and even the
presence of more than one solution should highlight
to the researcher that an incorrect model has been
employed.

From Tables 9-11 we have seen that misspecification
of the model can have huge implications on parameter
and covariance estimation, and it is clearly important to
allow for imprinting and maternal effects when estimat-
ing parameters and covariances. Nevertheless, research-
ers should be aware that even in using a complete model
and known covariances between a range of relatives,
they may not be able to differentiate between maternal
and paternal expression if maternal genotype is having
a significant effect and differences between reciprocal
heterozygotes are small.
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