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Manuscript received December 1, 2005
Accepted for publication April 14, 2006

ABSTRACT

Finite mixture models are helpful for uncovering heterogeneity due to hidden structure. Quantitative
genetics issues of continuous characters having a finite mixture of Gaussian components as statistical
distribution are explored in this article. The partition of variance in a mixture, the covariance between
relatives under the supposition of an additive genetic model, and the offspring–parent regression are
derived. Formulas for assessing the effect of mass selection operating on a mixture are given. Expressions
for the genetic and phenotypic correlations between mixture and Gaussian traits and between two
mixture traits are presented. It is found that, if there is heterogeneity in a population at the genetic or
environmental level, then genetic parameters based on theory treating distributions as homogeneous can
lead to misleading interpretations. Some peculiarities of mixture characters are: heritability depends on
the mean values of the component distributions, the offspring–parent regression is nonlinear, and genetic
or phenotypic correlations cannot be interpreted devoid of the mixture proportions and of the param-
eters of the distributions mixed.

FINITE mixture models, used in biology and in
genetics since Pearson (1894), are helpful for

uncovering heterogeneity due to hidden structure or
incorrect assumptions. For instance, unknown loci with
major effects can create ‘‘bumps’’ (sometimes quite
subtle) in a phenotypic distribution, and this type of
heterogeneity may be resolved by fitting a mixture, i.e.,
by calculating conditional probabilities that a datum is
drawn from one of the several potential, yet unknown,
genotypes. A brief review of the potential usefulness
of mixtures for uncovering major genes is in Lynch
and Walsh (1998). Also, many quantitative trait loci
detection procedures are based on ideas from mixture
models (Haley and Knott 1992).

The quantitative genetics of characters distributed as
mixtures has not been studied extensively, although the
idea underlies work of, e.g., Latter (1965) and Kimura
and Crow (1978). Perhaps this is due to that, until
recently, fitting complex hierarchical mixture models to
phenotypic data was computationally difficult. However,
inference about some quantitative genetic characters
via finite mixture models may be warranted in practice.
For example, consider mastitis, an inflammation of the
mammary gland of cows and goats associated with
bacterial infection. The disease affects the dairy industry
globally, and it has severe economic effects. Genetic
variation in susceptibility to mastitis exists, and selection
for increased resistance is feasible (Heringstad et al.

2000). However, recording of mastitis events is not
routine in most nations, and milk somatic cell counts
(SCC) have been used as a proxy in genetic evaluation of
sires (using mixed-effects linear models), because an
elevation of SCC is associated with mastitis. It is not
obvious how the SCC information should be treated
optimally in genetic evaluation. SCC is both an indicator
of mastitis and a measure of response to infection. It is
reasonable to expect that SCC observations taken on
healthy and diseased animals display different distribu-
tions, which are ‘‘hidden’’ in the absence of disease re-
cording. Finite mixture models have been suggested in
this context by Detilleux and Leroy (2000), Ødegård

et al. (2003, 2005), Gianola et al. (2004), and Boettcher
et al. (2005).

This article explores quantitative genetics issues of
continuous characters having a finite mixture of Gauss-
ian components as statistical distribution. model in-
troduces notation, gives a specification in which both
genetic and residual effects follow mixtures, and derives
pertinent marginal and conditional distributions. trun-
cation selection gives formulas for assessing the effect
of mass selection operating on a mixture. Next, co-

variance between relatives presents the partition
of variance in a mixture, the calculation of covariance
between relatives under the supposition of an additive
genetic model, and illustrates the effect of heterogeneity
on the offspring–parent regression. Genetic and pheno-
typic correlations between mixture and Gaussian traits,
and between two mixture traits, are discussed in covari-

ance structure. This article concludes with some
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comments and with an appendix, where some basic
formulas of mixture distributions are presented.

MODEL

Suppose an observable random variable (yi, pheno-
type of individual i) is drawn from the finite mixture of
GE Gaussian components,

yi jpe;me;s
2
e; ai �

XGE

k¼1

PekN ðyi jmk 1 ai ;s
2
ek
Þ; ð1Þ

where pe is a vector containing the mixing proportions
Pek (summing to 1);me ands2

e are eachGE 3 1 vectors of
means and variances with typical elements mk and s2

ek
,

respectively; ai is the genetic value of i, and N :j:;:ð Þ
denotes a univariate normal density with appropriate
mean and variance. As shown in the appendix, the
mean and variance of this conditional (given the genetic
effect) distribution are

Eðyi jpe;me;s
2
e; aiÞ ¼

XGE

k¼1

Pekmk 1 ai ; ð2Þ

and

Varðyi jpe;me;s
2
e; aiÞ

¼
XGE

k¼1

Pek ðs2
ek
1m2

kÞ �
XGE

k¼1

Pekmk

 !2

¼ s2
e; ð3Þ

respectively, wheres2
e is the residual or ‘‘environmental’’

variance. Informally,
PGE

k¼1 Pekm
2
k �

PGE

k¼1 Pekmk

� �2
is the

part of the environmental variance contributed by pop-
ulation heterogeneity.

Assume that the genetic effect ai is also drawn from
the mixture with GA components

ai jpa;a;s
2
a �

XGA

m¼1

PamN ðai jam ;s
2
am
Þ; ð4Þ

where pa ¼ Pa1
; . . . ; PaGA

� �
9; a ¼ a1; . . . ; aGA

½ �9, and
s2

a ¼ ½s2
a1
; . . . ; s2

aGA
�9 are the vectors of mixing propor-

tions, component means, and component variances,
respectively. Then, E ai jpa;a;s

2
a

� �
¼
PGA

m¼1 Pamam , and

Varðai jpa;a;s
2
aÞ ¼

XGA

m¼1

Pam ðs2
am
1a2

mÞ �
XGA

m¼1

Pamam

 !2

¼ s2
a ;

ð5Þ

where s2
a is the genetic variance, and

PGA

m¼1 Pama
2
m�PGA

m¼1 Pamam

� �2
is interpretable as ‘‘variance between

genetic means.’’ In Gaussian linear models the distribu-
tion of the random genetic effects is often taken to be
N(ai j 0, s2

a), where s2
a is the additive genetic variance,

so it may be reasonable to introduce the restrictionPGA

m¼1 Pamam ¼ 0 in the mixture (Verbekeand Lesaffre

1996). The joint density of ai and yi is obtained by
multiplication of (1) and (4), yielding

pðyi ; ai jpe;me;s
2
e;pa;a;s

2
aÞ

¼
XGE

k¼1

XGA

m¼1

Pek PamN ðyi jmk 1 ai ;s
2
ek
ÞN ðai jam ;s

2
am
Þ;

ð6Þ

which is a finite mixture of GE 3 GA bivariate normal
distributions, with mixing proportion Pek Pam for the
kmth component; note that

PGE

k¼1

PGA

m¼1 Pek Pam ¼
PGE

k¼1

Pek

PGA

m¼1 Pam ¼ 1. From standard Gaussian linear mod-
els theory, given the km component (let the indicator
dkm ¼ 1 denote such a situation),

yi

ai

� �
jmk ;am ;s

2
ek
;s2

am
; dkm

¼ 1

� N2
yi

ai

� �
;

mk 1am

am

� �
;

s2
ek
1s2

am
s2

am

s2
am

s2
am

" # !
;

where N2(. j .,.) denotes a bivariate normal distribution.
Further,

ai j yi ;mk ;am;s
2
ek
;s2

am
; dkm ¼ 1 � N ðai j âkm ;s2

am
ð1�bkmÞÞ;

where

âkm ¼ am 1 bkmðyi � mk � amÞ;

and

bkm ¼
s2

am

s2
ek
1s2

am

:

Under the standard additive genetic model of Fisher
(1918), this regression of ‘‘genotype on phenotype’’ bkm
is the heritability of the character under the kmth
component of the bivariate mixture. The joint density
(6) is also expressible as

pðyi ; ai jpe;me;s
2
e;pa;a;s

2
aÞ

¼
XGE

k¼1

XGA

m¼1

Pek PamN ðyi jmk 1am ;s
2
ek
1s2

am
Þ

3N ðai j âkm ;s2
am
ð1 � bkmÞÞ: ð7Þ

The marginal density of yi is arrived at by integrating
(7) over ai, yielding

pðyi jpe;me;s
2
e;pa;a;s

2
aÞ

¼
XGE

k¼1

XGA

m¼1

Pek PamN ðyi jmk 1am ;s
2
ek
1s2

am
Þ: ð8Þ

This is a finite mixture of GE 3 GA univariate normal
distributions with mixing proportions Pek Pam . From the
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appendix, the mean and variance of the phenotypic
distribution are

Eðyi jpe;me;s
2
e;pa;a;s

2
aÞ ¼

XGE

k¼1

Pekmk 1
XGA

m¼1

Pamam ð9Þ

and

Varðyij jpe; me; s
2
e; pa; a; s

2
aÞ

¼ Eai ½Varðyi jpe; me; s
2
e; aiÞ�

1Varai ½Eðyi jpe; me; s
2
e; aiÞ�

¼
XGE

k¼1

Pek ðs2
ek
1m2

kÞ �
XGE

k¼1

Pekmk

 !2

1
XGA

m¼1

Pam ðs2
am
1a2

mÞ �
XGA

m¼1

Pamam

 !2

¼ s2
e 1s2

a: ð10Þ

A standard problem in quantitative genetics is that of
inferring genetic values from phenotypes. From (7) and
(8), the density of the conditional distribution of ai
given yi is

pðai j yi ; pe; me; s
2
e; pa; a; s

2
aÞ

¼
XGE

k¼1

XGA

m¼1

QkmN ðai j âkm ; s2
am
ð1 � bkmÞÞ; ð11Þ

where

Qkm ¼
Pek PamN ðyi jmk 1am ; s

2
ek
1s2

am
ÞPGE

k¼1

PGA
m¼1 Pek PemN ðyij jmk 1am ; s

2
ek
1s2

am
Þ
:

Hence, the conditional distribution of ai given yi is a
mixture of the GE 3 GA normal distributions N ai j âkm ;ð
s2

am
1 � bkmð ÞÞ, where the mixing proportion is Qkm, the

conditional probability that the datum is drawn from
N yi jmk 1am ; s

2
ek
1s2

am

� �
, given the observation yi. The

best predictor of genetic value is the conditional ex-
pectation function

Eðai j yi ; pe; me; s
2
e; pa; a; s

2
aÞ

¼
ð
ai
XGE

k¼1

XGA

m¼1

QkmN ðai j âkm ; s2
am
ð1 � bkmÞÞdai

¼
XGE

k¼1

XGA

m¼1

Qkmâkm ð12Þ

(Henderson 1973; Bulmer 1980; Fernando and
Gianola 1986; Searle et al. 1992), which is a weighted
average of the conditional expectations peculiar to each
of the GE 3 GA components of mixture (11). This result
is important: the regression of genotype on phenotype
is not linear in yi. Therefore, standard linear models
give less than optimal predictions of genetic effects for

traits distributed as mixtures. Further, using (39) in the
appendix, the variance of the conditional distribution is

Varðai j yi ; pe; me; s
2
e; pa; a; s

2
aÞ

¼
XGE

k¼1

XGA

m¼1

Qkm ½s2
am
ð1� bkmÞ1 â2

km ��
XGE

k¼1

XGA

m¼1

Qkmâkm

 !2

:

ð13Þ

In the standard additive genetic linear model, the
variance of the conditional distribution of genotypes
given phenotypes is s2

að1 � h2Þ (Falconer 1989), where
h2 is the coefficient of heritability; this conditional
variance is homogeneous and does not depend on the
data. In a mixture model, however, the dispersion about
the regression function is heteroscedastic and nonlin-
ear on the phenotypic value. Hence, both point and in-
terval predictions of genetic value in mixtures involve
strikingly different formulas.

TRUNCATION SELECTION

Consider the standard truncation selection setting in
which individuals kept as parents are such that yi . t,
with the proportion of individuals selected being Pr
yi . tð Þ ¼ g. From (8), the distribution of phenotypic

values within selected individuals has density

pSðyiÞ ¼
PGE

k¼1

PGA
m¼1 Pek PamN ðyi jmk 1am ; s

2
ek
1s2

am
Þ

g
;

yi . t;

where

g ¼
ð‘
t

XGE

k¼1

XGA

m¼1

Pek PamN ðyi jmk 1am ; s
2
ek
1s2

am
Þdyi

¼
XGE

k¼1

XGA

m¼1

Pek Pam 1�F
t � mk � amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
ek
1s2

am

q
0
B@

1
CA

2
64

3
75¼XGE

k¼1

XGA

m¼1

Pek Pamgkm :

ð14Þ

Above, gkm is the proportion selected within the kmth
mixture component and F :ð Þ is the standard normal
distribution function. The proportion selected g is,
thus, a weighted average of the individual component
selection proportions gkm. Since the threshold is fixed,
the components that are most prevalent, have largest
means, and are most variable will be influential.

The mean value of selected individuals is

ESðyiÞ ¼
PGE

k¼1

PGA
m¼1 Pek Pam

Ð ‘
t yiN ðyi jmk 1am ; s

2
ek
1s2

am
Þdyi

g

¼
PGE

k¼1

PGA
m¼1 Pek Pamgkmðmk 1am 1 ikm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ek
1s2

am

q
ÞPGE

k¼1

PGA
m¼1 Pek Pamgkm

¼
XGE

k¼1

XGA

m¼1

vkmðmk 1am 1 ikm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ek
1s2

am

q
Þ; ð15Þ
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where ikm is the selection intensity factor under the kmth
component (Falconer 1989) and

vkm ¼ Pek PamgkmPGE
k¼1

PGA
m¼1 Pek Pamgkm

are relative weights summing to 1. The phenotypic
superiority of selected individuals or selection differen-
tial Sð Þ is given by the difference between (15) and (9).
Further, the mean genetic value of selected parents is

ESðaiÞ ¼ Ey½Eðai j yÞ j yi . t�:

Employing (12),

ESðaiÞ ¼ Ey

XGE

k¼1

XGA

m¼1

Qkmâkm j yi . t

" #
:

This expression cannot be evaluated analytically, be-
cause it is a highly nonlinear function of the phenotypic
values. However, it can be approximated by Monte Carlo
procedures, e.g., by drawing samples from the bivariate
mixture (7). Accept the draws in which y . t, calculatePGE

k¼1

PGA

m¼1 Qkmâkm for each accepted y, and then av-
erage this quantity over the samples kept. Finally, the
genetic superiority of accepted parents over the un-
selected population is

Da ¼ ESðaiÞ � Eðai jpa; a; s
2
aÞ

¼ Ey

XGE

k¼1

XGA

m¼1

Qkmâkm j yi . t

" #
�
XGA

m¼1

Pamam :

The expected fraction of the selection differential that is
realized can be assessed as Da/S, and this will differ from
what could be expected from the regression of offspring
on midparent, because of nonlinearity (see the follow-
ing section).

Effects of truncation selection upon a heterogeneous
population, i.e., a mixture, have been studied exten-
sively in quantitative genetics. For example, Hill (1974)
and Bijma and Woolliams (1999) gave formulas for
prediction of response suitable for age-structured pop-
ulations or for overlapping generations. Also, Latter
(1965), Lande (1976), and Kimura and Crow (1978)
addressed consequences of truncation selection when
there is some grouping structure in a population, e.g.,
caused by genes of large effects. To illustrate, suppose
that a genetic mixture derives from a major locus with
two alleles. Prior to selection, the mixing proportions
(frequencies) of the three genotypes are, in our
notation, Pa1

; Pa2
, and Pa3

. Also, suppose that the
environmental distribution is zero-mean normal, with
variance s2

e, independent of the genetic distribution,
and that the polygenic genetic variance is homoscedas-
tic and equal to s2

a (equivalently, the within major
genotype genetic variance is constant). Using (14), the
overall selection proportion is g ¼

P3
m¼1 Pamgm , and the

genotypic frequencies after selection become Pam* ¼
Pamgm=g. After selection, employing (15), the pheno-
typic distribution has mean value

m* ¼
X3

m¼1

Pam* am 1 im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

e 1s2
a

q� 	
:

Falconer (1989) gives approximate expressions for
relative fitness of genotypes, e.g., g2/g1. Note that, under
these assumptions, the phenotypic distribution remains
a mixture, irrespective of the number of cycles of
selection. The means and variance change, however,
due to the modification of the Pam* frequencies pro-
duced by selection.

COVARIANCE BETWEEN RELATIVES

General: The fraction of variance attributable to
additive genetic effects (usual definition of heritability)
is location invariant for a Gaussian trait, i.e., it does
not involve mean values. In a mixture, ‘‘heritability’’
becomes

t2 ¼
PGA

m¼1 Pam ðs2
am

1a2
mÞ � ð

PGA
m¼1 PamamÞ2PGA

m¼1 Pam ðs2
am

1a2
mÞ � ð

PGA
m¼1 PamamÞ2 1

PGE
k¼1 Pek ðs2

ek
1m2

k Þ � ð
PGE

k¼1 PekmkÞ2:

ð16Þ

The partition of variance depends on component-
specific variances s2

am
ands2

ek

� �
, on mixing proportions

(Pam and Pek), and on mean values (mk andam) as well. In
the simpler case in which the genetic distribution is the
homogeneous processN ai j 0; s2

a

� �
, heritability becomes

t2 ¼ s2
a

s2
a 1

PGE
k¼1 Pek ðs2

ek
1m2

kÞ � ð
PGE

k¼1 PekmkÞ2; ð17Þ

and this is expected to be lower than in a homogeneous
population because fixed effects contribute to variance.
If the residual variance is homoscedastic across mixture
components, this reduces further to

t2 ¼ h2

11 ð
PGE

k¼1 Pekm
2
k � ð

PGE
k¼1 PekmkÞ2Þ=ðs2

a 1 s2
eÞ
;

ð18Þ

where h2 ¼ s2
a= s2

a 1s2
e

� �
. Heterogeneity in means re-

duces heritability in a mixture t2ð Þ, and the standard h2

is obtained only when the sampling model invokes a
draw from a single component distribution.

The covariance between phenotypes of related indi-
viduals i and i9 is

Covðyi ; yi9 jpe; me; s
2
e; pa; a; s

2
aÞ

¼ Eai ;ai9 ½Covðyi ; yi9 jpe; me; s
2
e; ai ; ai0 Þ�

1 Covai ;ai9 ½Eðyi jpe; me; s
2
e; aiÞ; Eðyi9 jpe; me; s

2
e; ai9Þ�

¼ Covai ;ai9
XGE

k¼1

Pekmk 1 ai ;
XGE

k¼1

Pekmk 1 ai9

" #
¼ Covðai ; ai9Þ;

ð19Þ
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after assuming that phenotypes (given the additive
genetic values ai, ai9) are conditionally independent.
To develop the covariance between genetic values fur-
ther, we assume that these are distributed as the bivariate
mixture

ai

ai9

� �
jpa; a; s

2
a

�
XGA

m¼1

PamN2

 
ai

ai9

� �
j

am

am

� �
;

1 Aii9

Aii9 1

� �
s2

am

!
;

where N2 : ; :ð Þ denotes a bivariate normal distribution
and Aii9 is the additive relationship between the two
individuals, assumed constant across all components of
the mixture; inbreeding is supposed to be nil. It follows
directly that each of the genetic values hasPGA

m¼1 PamN ai jam ; s
2
am

� �
as marginal distribution. Then

Covðai ; ai9Þ ¼
ð ð

aiai9
XGA

m¼1

PamN2

3

 
ai

ai9

� �
j

am

am

� �
;

1 Aii9

Aii9 1

� �
s2

am

!

�
XGA

m¼1

Pamam

 !2

¼
XGA

m¼1

Pam ðAii9s
2
am
1a2

mÞ �
XGA

m¼1

Pamam

 !2

¼ Aii9

XGA

m¼1

Pams
2
am
1
XGA

m¼1

Pama
2
m�

XGA

m¼1

Pamam

 !2

:

ð20Þ

This reduces to Aii9

PGA

m¼1 Pams
2
am

if am ¼ 0 for every m
and to the standard Aii9s

2
a in the absence of heteroge-

neity in the distribution of genetic effects.
Regression of offspring on parent: Using (10) and

(20), the standard formula for the regression of the
phenotypic value of a progeny (O) on that of a parent
(P) (with Aii9 ¼ 1

2) gives

bOP ¼ CovðyO ; yPÞ
VarðyPÞ

¼
ð1=2Þ

PGA
m¼1 Pams

2
am

1
PGA

m¼1 Pama
2
m � ð

PGA
m¼1 PamamÞ2PGA

m¼1 Pam ðs2
am

1a2
mÞ � ð

PGA
m¼1 PamamÞ2 1

PGE
k¼1 Pek ðs2

ek
1m2

k Þ � ð
PGE

k¼1 PekmkÞ2:

ð21Þ
If the distribution of genetic effects is homogeneous,
this simplifies to

bOP ¼ ð1=2Þs2
a

s2
a 1

PGE
k¼1 Pek ðs2

ek
1m2

kÞ � ð
PGE

k¼1 PekmkÞ2: ð22Þ

The consequences of (21) and (22) are clear: if there
is heterogeneity in the distribution either of sampling
model residuals or of genetic effects, then bOP is
affected by the mixing proportions and by the means
mk. To illustrate, suppose that the genetic distribution is

homogeneous; let GE ¼ 2, take m1 ¼ 0 as ‘‘origin,’’ m2 ¼
Ds2

e1
, and s2

e1
¼ s2

e2
¼ 1. Then (22) is expressible as

bOP ¼ ð1=2Þs2
a

s2
a 1 11Peð1 � PeÞD2:

When Pe ¼ 1, the formula gives half of heritability, which
is a standard result (Falconer 1989). The function is
symmetric with respect to Pe; since Pe 1 � Peð Þ is maxi-
mum at Pe ¼ 1

2, the regression is minimum at this value.
As an example, consider the offspring–parent regres-
sion as a function of Pe for four situations with different
additive genetic variance (s2

a) and distances between
means (D) in the two distributions of the mixture: (1)
s2

a ¼ 1;D ¼ 1; (2) s2
a ¼ 1;D ¼ 2; (3) s2

a ¼ 0:10;D ¼ 1;
and (4) s2

a ¼ 0:10;D ¼ 2. Situations 1 and 2 correspond
to a trait with a heritability of 0.50 under homogeneity,
while 3 and 4 are for a lowly heritable trait (h2 � 0.09). In
1 and 2, the regression b decreases from 0.25 to �0.22
and 0.17, respectively, representing relative decreases in
heritability of 12 and 32%. The relative decreases in
heritability are 18 and 47% in cases 3 and 4, respectively.
In brief, heritability in heterogeneous or admixed pop-
ulations depends on the mixing proportion, on the
mean difference between mixture components, and on
the ‘‘homogeneous situation’’ heritability.

COVARIANCE STRUCTURE

Correlations with a Gaussian trait: Correlations be-
tween a mixture trait and a normally distributed char-
acter may be of interest. For example, the mixture trait
could be SCC in dairy cattle, with several component
distributions corresponding to different unknown sta-
tuses of mammary gland disease. The Gaussian trait
could be milk yield of a cow. Is the genetic correlation
between the two traits affected by heterogeneity of
somatic cell count?

Let the model for the Gaussian trait w be

wi ¼ mw 1 awi 1 ewi ; ð23Þ

where mw is the mean of the trait, awi � N 0; s2
aw

� �
is the

additive genetic value of individual i for trait w, and
ewi � N 0; s2

ew

� �
is a residual effect, independent of awi;

s2
aw

and s2
ew

are genetic and residual components of
variance, respectively. The phenotypic distribution is,
thus, wi � N mw ; s

2
aw
1s2

ew

� �
.

Suppose that the distribution of mixture trait y has
two components at each of the genetic and residual
levels; i.e., GA ¼ GE ¼ 2. Assume further that

a1i

a2i

awi
e1i
e2i
ewi

2
6666664

3
7777775
� N6

a

a

0
0
0
0

2
6666664

3
7777775
;

s2
a1

sa12 sa1w 0 0 0

s2
a2

sa2w 0 0 0

s2
aw

0 0 0

s2
e1

0 se1w

s2
e2

se2w

Symmetric s2
ew

2
66666664

3
77777775

0
BBBBBBB@

1
CCCCCCCA
:

ð24Þ
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The distribution of each of the two genetic effects
entering into the mixture for trait y (a1, a2) is centered at
a, but has component-specific variances. These two
genetic effects may be imperfectly correlated, with
genetic covariance sa12

; for instance, different genes
affecting somatic cell count are expressed under the
unknown ‘‘mastitis’’ and ‘‘no-mastitis’’ disease condi-
tions generating the mixture. Also, the genetic co-
variance with the Gaussian trait may be specific to
each of the two components. The component-specific
residual effects (e1, e2) are heteroscedastic but uncorre-
lated, as it is not possible to observe ‘‘disease’’ and ‘‘no
disease’’ in the same individual at the same time.
However, a residual correlation with the Gaussian trait
is allowed and assumed peculiar to each component
distribution.

Recall from (4) that ai jPa1
; Pa2

; a; s2
a1
; s2

a2
�
P2

m¼1

PamN ai ja; s2
am

� �
. Now, let @m take the value 1 when the

draw is from component m and 0 otherwise. The joint
density under m is

pðawi ; ami j @m ¼ 1Þ ¼
ami

awi

� �
� N2

a

0

� �
;

s2
am

samw

samw s2
aw

" # !
;

m ¼ 1; 2;

so that, unconditionally

pðawi ; aiÞ ¼
X2

m¼1

PamN2
a

0

� �
;

s2
am

samw

samw s2
aw

" # !
:

Then

Covðaw ; aiÞ ¼
ð ð

awaipðaw ; aiÞdawdai

¼
X2

m¼1

Pam

ð ð
awaiN2

 
a

0

� �
;

s2
am

samw

samw s2
aw

" #!
dawdai

¼
X2

m¼1

Pamsamw ¼ Pa1sa1w 1 ð1 � Pa1Þsa2w : ð25Þ

Using (5) and (25), and taking a ¼ 0, the genetic
correlation between the mixture-distributed trait and
the Gaussian character is

ra;aw ¼ Pa1sa1w 1 ð1 � Pa1Þsa2w

saw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
m¼1 Pams

2
am

q : ð26Þ

This reduces to the standard sayw= saysaw

� �
when the

distribution of genetic effects for trait y is homogeneous
and to

ray ;aw ¼
sayw

saw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
P2

m¼1 Pams
2
am
�

q ; ð27Þ

when sa1w
¼ sa2w

.
The effect of Pam on genetic correlation (27) is

illustrated next. Let l ¼ s2
a2
=s2

a1
be a heteroscedasticity

factor, where s2
a1

, the genetic variance under the first
component of the mixture, is viewed as ‘‘baseline’’
genetic variance, i.e., a measure of variability in the
absence of heterogeneity. Then

ray ;aw ¼
sayw

sawsa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pa1 1 ð1 � Pa1Þl

p
¼ rhomoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pa1 1 ð1 � Pa1Þl
p ; ð28Þ

where rhomo is the genetic correlation in the absence of
a mixture and

½Pa1 1 ð1 � Pa1Þl��ð1=2Þ

is the factor by which rhomo is modified by heterogene-
ity. Since the sign of ray ;aw

is invariant with respect to Pa1
,

it suffices to examine function (28) only under positive
values of rhomo. Figure 1 displays the relationship
between the genetic correlation (28) and Pa1

for two
values of rhomo (0.7 and 0.3) and of l (1.5 and 2). As Pa1

increases, the proportion of the component with larger
genetic variance (m ¼ 2) decreases. The genetic
correlation increases monotonically with Pa1

and more
rapidly so at the largest value of genetic heteroscedas-
ticity. Suppose that w is total lactation milk yield in dairy
cows and that y is SCC, a mixture trait resulting from the
fact that some cows have mastitis (�20–40%). There is
evidence (e.g., Heringstad et al. 2006) that the genetic
variance of somatic cell count is �2.5 times larger in
healthy than in diseased (clinical cases) cows. Under the
assumptions leading to (28), our model predicts that
the genetic correlation between milk yield and somatic
cell score would decrease as the frequency of masti-
tis in the population decreases. Similar algebra and

Figure 1.—Genetic correlation (Rho) between a Gaussian
character and a mixture trait for a two-component mixture,
as a function of the mixing proportion (Pa1

), for different
combinations of rhomo, genetic correlation in absence of mix-
ture, and l, heteroscedasticity factor. From top to bottom: (1)
rhomo ¼ 0.7, l ¼ 1.5 (open squares); (2) rhomo ¼ 0.7, l ¼ 2
(dotted line); (3) rhomo ¼ 0.3, l¼ 1.5 (solid line); (4) rhomo ¼
0.3, l ¼ 2 (open circles).
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considerations hold for the environmental correlation
between traits.

Consider again the joint distribution (24), and write

yi ¼ dem1 1 ð1 � deÞm2 1 daa1i 1 ð1 � daÞa2i

1 dee1i 1 ð1 � deÞe2i ; ð29Þ

where the random variable de takes the value 1 or 0 with
probabilities Pe and 1 � Pe, respectively; da is another
binary variable taking the values 1 or 0 with probabilities
Pa and (1 �Pa), respectively, and distributed indepen-
dently of de. These two binary variates are assumed to be
independent of awi and ewi entering into the model for
wi in (23). Then,

Eðwi j de; daÞ ¼ EðwiÞ ¼ mw ;

Eðyi j de; daÞ ¼ dem1 1 ð1 � deÞm2 1a;

and

Covðyi ;wi j de; daÞ
¼ Cov½daa1i 1 ð1 � daÞa2i 1 dee1i

1 ð1 � deÞe2i ; awi 1 ewi j de; da�
¼ dasa1w 1 ð1 � daÞsa2w 1 dese1w 1 ð1 � deÞse2w :

The phenotypic covariance between y andw is, therefore,

Covðyi ; wiÞ ¼ Ede;da ½dasa1w 1 ð1 � daÞsa2w

1 dese1w 1 ð1 � deÞse2w �
1 Covde;da ½dem1 1 ð1 � deÞm2 1a; mw �:

Since the second term is null

Covðyi ; wiÞ ¼ Pasa1w1ð1�PaÞsa2w1Pese1w1 ð1�PeÞse2w :

ð30Þ
Above, Pasa1w

1 1 � Pað Þsa2w
is the genetic covariance, as

in (25), and Pese1w
1 1 � Peð Þse2w

is the residual co-
variance. Collecting (30), (10), plus the fact that
wi � N mw ; s

2
aw
1s2

ew

� �
, and assuming that a ¼ 0, yields

as phenotypic correlation

ryw ¼ Pasa1w 1 ð1 � PaÞsa2w 1Pese1w 1 ð1 � PeÞse2w

sw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
m¼1 Pams

2
am
1
P2

k¼1 Pek ðs2
ek
1m2

kÞ�ð
P2

k¼1 PekmkÞ2
q :

ð31Þ
The phenotypic correlation depends not only on the
underlying components of variance and covariance, but
also on the mixing proportions and population means.

If the genetic distribution is homoscedastic s2
a1
¼

�
s2

a2
¼ s2

ay
;sa1w

¼ sa2w
¼ sayw Þ, and heterogeneity is at the

level of the sampling model only, but with se1w
¼ se2w

¼
seyw and s2

e1
¼ s2

e2
¼ s2

ey
, the phenotypic correlation

becomes

ryw ¼ rhomoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ð

P2
k¼1 Pekm

2
k � ð

P2
k¼1 PekmkÞ2Þ=s2

y

q ; ð32Þ

where rhomo ¼ sayw 1se1w

� �
= swsy

� �
is the phenotypic

correlation in the absence of a mixture for the residual
distribution ands2

y
¼ s2

ay
1s2

ey
. To illustrate, takem1 ¼ 0

as origin, m2 ¼ D, and sy ¼ 1. Then

ryw ¼ rhomoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Peð1 � PeÞD2

p : ð33Þ

The phenotypic correlation has a minimum at Pe¼ 0.5 if
rhomo is positive; however, it is maximum at this value of
the mixing proportion if rhomo is negative. Effects of Pe

and of D on the genetic correlation are shown in Figure
2, for rhomo ¼ 0.7 and D ¼ 1 and 2. The function is sym-
metric and steeper as D increases. For D¼ 2, the correla-
tion decreases from 0.7 (for Pe ¼ 0 or 1) to a minimum
of �0.50. The curves are inverted if rhomo is negative. In
short, if the value of Pe 1 � Peð Þ is used to measure
admixture in the residual distribution, the phenotypic
correlation decreases with admixture if it is positive in a
homogeneous population. On the other hand, ryw in-
creases with admixture if negative under the homoge-
neous situation.
Correlations between two mixture-distributed char-

acters: Suppose now that measurements are available
for traits y and z. For simplicity, it is assumed that the
joint distribution of y and z arises from a two-component
mixture of bivariate normal distributions at the level of
the sampling model (that is, given the genetic effects)
and from a two-component bivariate normal mixture of
genetic effects. Given the independently distributed
binary indicator variables de and da, one can write

yi
zi

� �
¼

dem1y 1 ð1 � deÞm2y 1 daa1i;y

1 ð1 � daÞa2i;y 1 dee1i;y 1 ð1 � deÞe2i;y
dem1z 1 ð1 � deÞm2z 1 daa1i;z

1 ð1 � daÞa2i;z 1 dee1i;z 1 ð1 � deÞe2i;z

2
664

3
775:
ð34Þ

Figure 2.—Phenotypic correlation (Rho) between a Gauss-
ian character and a mixture trait for a two-component mixture,
as a function of the mixing proportion (Pe). (1) rhomo ¼ 0.7,
D ¼ 1 (solid line); (2) rhomo ¼ 0.7, D ¼ 2 (line with squares).
rhomo, phenotypic correlation in the absence of a mixture; D,
difference between means of the two distributions.
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Then

Covðyi ; ziÞ ¼ Ede;da Covðy; z j de; daÞ
1 Covde;da ½Eðy j de; daÞ; Eðz j de; daÞ�:

ð35Þ

Assuming independence between genetic and envi-
ronmental effects in the distributions, it follows that

Covðy; z j de; daÞ ¼ d2
asa1;yz 1 2dað1 � daÞsa12;yz

1 ð1 � daÞ2sa2;yz

1 d2
ese1;yz 1 2deð1 � deÞse12;yz

1 ð1 � deÞ2se2;yz ;

where sam;yz
and sem;yz

m ¼ 1; 2ð Þ are the additive and en-
vironmental components of covariance between y and z
under m, and sa12;yz

and se12;yz
are potential cross-mixture

covariances. Further, under the assumption of a null
mean of the component-specific genetic and environ-
mental distributions, as well as of independence of the
binary indicator variables de and da,

Eðy j de; daÞ ¼ dem1y 1 ð1 � deÞm2y;

and

Eðz j de; daÞ ¼ dem1z 1 ð1 � deÞm2z:

Since de and da are Bernoulli, E deð Þ ¼ Pe, Var deð Þ ¼
Pe 1 � Peð Þ, E dað Þ ¼ Pa, and Var dað Þ ¼ Pa 1 � Pað Þ. Then

Ede;daCovðy; z j de; daÞ
¼ Pasa1;yz 1 ð1 � PaÞsa2;yz 1Pese1;yz 1 ð1 � PeÞse2;yz

and

Covde;da ½Eðy j de; daÞ; Eðz j de; daÞ�
¼ Covde;da ½dem1y 1 ð1 � deÞm2y; dem1z 1 ð1 � deÞm2z�
¼ Peð1 � PeÞm1ym1z 1Peð1 � PeÞm2ym2z

� Peð1 � PeÞðm1ym2z 1m2ym1zÞ:

Employing the preceding results in (35),

Covðyi ; ziÞ
¼ Pasa1;yz 1 ð1 � PaÞsa2;yz 1Pese1;yz 1 ð1 � PeÞse2;yz

1 Peð1 � PeÞ½m1ym1z 1m2ym2z � ðm1ym2z 1m2ym1zÞ�:
ð36Þ

Under the assumption that the underlying genetic
distributions have zero means, the genetic correlation
between the two mixture traits is

rayz ¼
Pasa1;yz 1 ð1 � PaÞsa2;yzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
m¼1 Pams

2
am;y

P2
m¼1 Pams

2
am;z

q :

The environmental correlation takes the form

reyz ¼
P2

k¼1 Pemsem;yz
1Peð1 � PeÞ½m1ym1z1m2ym2z�ðm1ym2z1m2ym1zÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
P2

k¼1 Pekm
2
ky�ð

P2
k¼1PekmkyÞ2�½

P2
k¼1Pekm

2
kz�ð

P2
k¼1PekmkzÞ2�

q ;

and the phenotypic correlation follows from (36) and
(10), after setting all a’s to 0.

CONCLUSION

Some basic results of standard theory of quantitative
genetics under additive inheritance were extended to
finite mixture models with Gaussian components. It was
found that, if there is heterogeneity in a population at
either the genetic or the environmental levels, then
genetic parameters based on theory treating distribu-
tions as homogeneous can lead to misleading interpre-
tations. Some peculiarities of mixture characters are:
heritability depends on the mean values of the popula-
tions, the offspring–parent regression is nonlinear, and
genetic or phenotypic correlations cannot be inter-
preted devoid of the mixture proportions and of the
parameters of the component distributions. For exam-
ple, nonlinearity of the offspring–parent regression was
studied by Robertson (1977) and Gimelfarb (1986)
under dominance and by Im and Gianola (1988) for
binary traits. Gimelfarb (1986) gave conditions under
which the regression would be nearly linear under
dominance, e.g., a large number of loci affecting the
trait or mild dominance and gene frequencies not far
from 0.5. Our results illustrate that nonlinearity can also
arise due to heterogeneity at the environmental level
due to, for instance, omitting relevant covariates in a
linear model for quantitative genetic analysis.

Clearly, standard models for quantitative traits can
lead to erroneous results if fitted to heterogeneous data.
If a mixture is suspected, two suitable methods for
inferring unknown mixture parameters are maximum-
likelihood and Bayesian analyses. Procedures for likeli-
hood- or posterior-based inference applied to mixtures
are discussed extensively in Titterington et al. (1985)
and McLachlan and Peel (2000), including situations
in which the component distributions are not normal,
e.g., skewed survival processes. Implementations suit-
able for fitting different types of quantitative genetic
mixture models have been described and applied by
Ødegård et al. (2003, 2005), Gianola et al. (2004), and
Boettcher et al. (2005). Prediction of breeding values
is discussed in Gianola (2005). A suitable software for
the analysis of mixtures with random effects is available
in a forthcoming update of Version 6.0 of the DMU
package (Madsen and Jensen 2002).

An important issue is how many components should
be fitted in a mixture model. Testing for the number
of components is a difficult matter, and there may not be
a one-to-one correspondence between the number of
components fitted and the number of heterogeneous
groups (McLachlan and Peel 2000). For example,
several groups may be hidden behind an apparently
bimodal distrbution, due to limited sample size. Also,
if some of the component distributions are skewed,
typically the number of components needed for a good
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fit is larger than the number of groups causing hetero-
geneity. Probably the most elegant procedures for infer-
ring the number of components needed are Bayesian
implementations via the reversible-jump algorithm
(Richardson and Green 1997), but computations can
be extremely taxing.
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APPENDIX

The first and second moments, and the variance of a
finite mixture of K Gaussian distributions, with parame-
ters u ¼ ½P1; . . . ;PK ; m1; . . . ;mK ; s

2
1; . . . ;s

2
K �9, where

the mixture proportionsPk are such that
PK

k¼1 Pk ¼ 1, are

Eðy j uÞ ¼
ð
y
XK
k¼1

PkN ðy jmk ; s
2
kÞ

" #
dy ¼

XK
k¼1

Pkmk ; ðA1Þ

Eðy2 juÞ ¼
ð
y2
XK
k¼1

PkN ðy jmk ; s
2
kÞ

" #
dy ¼

XK
k¼1

Pkðm2
k 1s2

kÞ;

ðA2Þ
and

Varðy j uÞ ¼
XK
k¼1

Pks
2
k 1

XK
k¼1

Pkm
2
k �

XK
k¼1

Pkmk

 !2

: ðA3Þ

The first term in (A3) can be interpreted as an average
variance, while

PK
k¼1 Pkm

2
k �

PK
k¼1 Pkmk

� �2
measures dis-

persion between group means or heterogeneity; if the
m’s are equal, this term is null. The variance of the mix-
ture depends not only on individual component vari-
ances, but also on group means. If the components have
homogeneous variance s2,

Var y j uð Þ ¼ s2 1
XK
k¼1

Pkm
2
k �

XK
k¼1

Pkmk

 !2

: ðA4Þ
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