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ABSTRACT

Finite mixture models are helpful for uncovering heterogeneity due to hidden structure. Quantitative
genetics issues of continuous characters having a finite mixture of Gaussian components as statistical
distribution are explored in this article. The partition of variance in a mixture, the covariance between
relatives under the supposition of an additive genetic model, and the offspring—parent regression are
derived. Formulas for assessing the effect of mass selection operating on a mixture are given. Expressions
for the genetic and phenotypic correlations between mixture and Gaussian traits and between two
mixture traits are presented. It is found that, if there is heterogeneity in a population at the genetic or
environmental level, then genetic parameters based on theory treating distributions as homogeneous can
lead to misleading interpretations. Some peculiarities of mixture characters are: heritability depends on
the mean values of the component distributions, the offspring—parent regression is nonlinear, and genetic
or phenotypic correlations cannot be interpreted devoid of the mixture proportions and of the param-

eters of the distributions mixed.

INITE mixture models, used in biology and in
genetics since PEARSON (1894), are helpful for
uncovering heterogeneity due to hidden structure or
incorrect assumptions. For instance, unknown loci with
major effects can create “bumps” (sometimes quite
subtle) in a phenotypic distribution, and this type of
heterogeneity may be resolved by fitting a mixture, i.e.,
by calculating conditional probabilities that a datum is
drawn from one of the several potential, yet unknown,
genotypes. A brief review of the potential usefulness
of mixtures for uncovering major genes is in LYNCH
and WaLsH (1998). Also, many quantitative trait loci
detection procedures are based on ideas from mixture
models (HALEY and KNoOTT 1992).

The quantitative genetics of characters distributed as
mixtures has not been studied extensively, although the
idea underlies work of, e.g., LATTER (1965) and KiMmURA
and Crow (1978). Perhaps this is due to that, until
recently, fitting complex hierarchical mixture models to
phenotypic data was computationally difficult. However,
inference about some quantitative genetic characters
via finite mixture models may be warranted in practice.
For example, consider mastitis, an inflammation of the
mammary gland of cows and goats associated with
bacterial infection. The disease affects the dairy industry
globally, and it has severe economic effects. Genetic
variation in susceptibility to mastitis exists, and selection
for increased resistance is feasible (HERINGSTAD et al.

! Corresponding author: Department of Animal Sciences, 1675 Observa-
tory Dr., Madison, WI 53706.  E-mail: gianola@calshp.cals.wisc.edu

Genetics 173: 2247-2255 (August 2006)

2000). However, recording of mastitis events is not
routine in most nations, and milk somatic cell counts
(SCC) have been used as a proxy in genetic evaluation of
sires (using mixed-effects linear models), because an
elevation of SCC is associated with mastitis. It is not
obvious how the SCC information should be treated
optimally in genetic evaluation. SCC s both an indicator
of mastitis and a measure of response to infection. It is
reasonable to expect that SCC observations taken on
healthy and diseased animals display different distribu-
tions, which are “hidden” in the absence of disease re-
cording. Finite mixture models have been suggested in
this context by DETILLEUX and LErOY (2000), DDEGARD
et al. (2003, 2005), GIANOLA et al. (2004), and BOETTCHER
et al. (2005).

This article explores quantitative genetics issues of
continuous characters having a finite mixture of Gauss-
ian components as statistical distribution. MODEL in-
troduces notation, gives a specification in which both
genetic and residual effects follow mixtures, and derives
pertinent marginal and conditional distributions. TRUN-
CATION SELECTION gives formulas for assessing the effect
of mass selection operating on a mixture. Next, CO-
VARIANCE BETWEEN RELATIVES presents the partition
of variance in a mixture, the calculation of covariance
between relatives under the supposition of an additive
genetic model, and illustrates the effect of heterogeneity
on the offspring—parent regression. Genetic and pheno-
typic correlations between mixture and Gaussian traits,
and between two mixture traits, are discussed in COVARI-
ANCE STRUCTURE. This article concludes with some
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comments and with an APPENDIX, where some basic
formulas of mixture distributions are presented.

MODEL

Suppose an observable random variable (y;, pheno-
type of individual i) is drawn from the finite mixture of
Gg, Gaussian components,

G
3| Per e 02, ai ~ > P N(i|wy + ai,02), (1)
k=1

where p. is a vector containing the mixing proportions
P., (summing to 1); p. and o2 are each Gg X 1 vectors of
means and variances with typical elements p; and O'Ek,
respectively; a; is the genetic value of i, and N(.|.,.)
denotes a univariate normal density with appropriate
mean and variance. As shown in the APPENDIX, the
mean and variance of this conditional (given the genetic
effect) distribution are

E(5i | P B> 07, a;

G
)= Pyt a, (2)
k=1

and

Var(y; | pes e, 0%, @)
= ZPek 0'2 + p,k

respectively, where o2 is the residual or “environmental”
variance. Informally, S P, p2 — (chil P, Mk)z is the
part of the environmental variance contributed by pop-
ulation heterogeneity.

Assume that the genetic effect g; is also drawn from
the mixture with G, components

2

Zpekp"k = 0-3? (3)

Ga

@ |p,, @, 02 ~ ZPamN(ai | am(rzm), (4)

m=1
where p, = [Pa” ceey Pa(;A]’v a=la,...,aq], and
o: =02, ..., 0} | are the vectors of mixing propor-

tions, component means, and component variances,
. P G,
respectively. Then, E(a; |p,, o, 02) =3 % | P, a,, and

Ga

Gy 2
Var((12|pa’a (}' Z 3m 0'2 +0L <Zpa,,,(xm> = 0'37
m=1 m=1
(5)

where o2 is the genetic variance, and Zm | Po—
(Zm:l Pamam)2 is interpretable as “variance between
genetic means.” In Gaussian linear models the distribu-
tion of the random genetic effects is often taken to be
N(a; | 0, 62), where o2 is the additive genetic variance,
so it may be reasonable to introduce the restriction
Zm 1 P., o, = 0in the mixture (VERBEKE and LESAFFRE

1996). The joint density of @; and y; is obtained by
multiplication of (1) and (4), yielding

p(yla a; | Per e szpava’ 0-3)

G Gy

= ZZPekPamN(yi | by + @i,

k=1 m=1

Uf/{)N(ai | OL,,Z,O'EW),

(6)

which is a finite mixture of Gg X G bivariate normal
distributions, with mixing proportion P, P, for the
kmth Component; note that > ;% "% P P, =31,
P., Zm 1 P.,, = 1. From standard Gaussian linear mod-
els theory, glven the km component (let the indicator

8., = 1 denote such a situation),

i 5
a | }Lk,OLm,O'ek,O' km
1

=1
2 2
Vi Wy oy, o, + dm g,
~ N2 RE ) 9 9 9
a; (& 37) O-a,,, O'am
where Ny(. | .,.) denotes a bivariate normal distribution.
Further,
2
a; |y17 Mgy Oy O-ek’ Ga 78km =1~ N(az ‘ Ay O (1 bkm))
where
&km =o, Tt bkm(yi - M — OLm),
and
)
km — "9 9
e + Oy,

Under the standard additive genetic model of FISHER
(1918), this regression of “genotype on phenotype” by,
is the heritability of the character under the kmth
component of the bivariate mixture. The joint density
(6) is also expressible as

PO, @i | Pes Re, OF, Py, @, 073)

G Gy

= Z Z Pe, Py, N(yi | 1y + 0, ()'Zk + Gim)

k=1 m=1
X N(a; | g, o (1 — b)) (7)

The marginal density of y; is arrived at by integrating
(7) over a;, yielding

p(yl |pe7 W, UE’P:N «, 03)
Ge G

= Z Z PekPamN(yi | My + 0-3,{ + O-zm)- (8)

k=1 m=1

This is a finite mixture of Gy X G, univariate normal
distributions with mixing proportions P, P, . From the
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APPENDIX, the mean and variance of the phenotypic
distribution are

G

Z Peypiy + Z Py,

(yl |Pe7 Me) eaPaJX 0'

and

Var( ij|Pe> M, sz Pa. & 0-2)
e7 l)}

e’ l)]
Ge

2
= Zpek(o-gk + “’k <Z PCk”’k)
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k=1
Ga Ga 2
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m=1 m=1
=0+ (10)

A standard problem in quantitative genetics is that of
inferring genetic values from phenotypes. From (7) and
(8), the density of the conditional distribution of «;
given y; is

p(ai‘yh pcv Me; 0-27 pav «, 0-3)

Ge Gy
:ZZQcmN(ai|&kma O-?im(l _bkm))v (11)
k=1 m=1
where
QO — Pe, P, N(yi | g + 0t 0'2 + O'M)

PIridP s

Hence, the conditional distribution of a; given y; is a
mixture of the Gg X Ga normal distributions N(a; | @y,
02 (1 = byy)), where the mixing proportion is Qy,,, the
conditional probability that the datum is drawn from
N(yi | ) + Qs ()':fk + 0':”), given the observation y; The

best predictor of genetic value is the conditional ex-
pectation function

Ly Poy P, N(yij | by + i, 07 +‘7am).

E(d,’ ‘y“ Pes Mes 0-37 Pa &, 0-3)

Gg Gy
= J @Y Y QuN(a;| tn, 07 (1= bpn)) da

k=1 m=1

- ZZ ka(lkm (12)

=1 m=1

(HENDERSON 1973; BurLMER 1980; FERNANDO and
GiaNoLA 1986; SEARLE et al. 1992), which is a weighted
average of the conditional expectations peculiar to each
of the Gg X G, components of mixture (11). This result
is important: the regression of genotype on phenotype
is not linear in y; Therefore, standard linear models
give less than optimal predictions of genetic effects for

traits distributed as mixtures. Further, using (39) in the
APPENDIX, the variance of the conditional distribution is

Var(ai |y1a pea Me 0-31 Pa» «, 0-3)

Gy Gy Gi Gy 2
:ZZQ;WL[O'Z — b)) + akm <Z ZQ’W‘@’"’) .
=1 m=1 k=1 m=1

(13)

In the standard additive genetic linear model, the
variance of the conditional distribution of genotypes
given phenotypes is 62(1 — /%) (FALCONER 1989), where
h* is the coefficient of heritability; this conditional
variance is homogeneous and does not depend on the
data. In a mixture model, however, the dispersion about
the regression function is heteroscedastic and nonlin-
ear on the phenotypic value. Hence, both point and in-
terval predictions of genetic value in mixtures involve
strikingly different formulas.

TRUNCATION SELECTION

Consider the standard truncation selection setting in
which individuals kept as parents are such that y;, > ¢,
with the proportion of individuals selected being Pr
(y;>1t) =+. From (8), the distribution of phenotypic
values within selected individuals has density

Zi?il thl Pe, Pa, N(yi | ey + 0ty ng + 0'4,,[)

ps(yi) = — v ;

yl>t,

where

o Gp - Ga ( (
[ RN e o2 o)

U k=1 m=1

[CTEN L=y — 0y [CTEN
- ZZPekPa,,, - ﬁ :Zzpekpam'y}tm'

k=1 m=1 o, T 0o, k=1 m=1

(14)

Above, Vi, is the proportion selected within the kmth
mixture component and ®(.) is the standard normal
distribution function. The proportion selected vy is,
thus, a weighted average of the individual component
selection proportions vy, Since the threshold is fixed,
the components that are most prevalent, have largest
means, and are most variable will be influential.
The mean value of selected individuals is

I?il 7?:1 P, P, Lx VilN (i | by + s (72 + U )dy,
Es(yi) = "

S S Pe,Pa Yo (W ot Uom\/ U + él)

Gg, Gy
51 2met PerPay Yiom
Ge Ga

_Zkam Mk+a,n+lk,”\/;T) (15)

=1 m=
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where i, is the selection intensity factor under the kmth
component (FALCONER 1989) and

v Pe,Pa,Yim
km — Ge Ga
o1 Dt PeyPa, Yiom

are relative weights summing to 1. The phenotypic
superiority of selected individuals or selection differen-
tial (S) is given by the difference between (15) and (9).
Further, the mean genetic value of selected parents is

Es(a) = B[E(aily) | 5> 1.
Employing (12),

Gg Gy

Z Z Qimakm ‘yz >1t].

k=1 m=1

This expression cannot be evaluated analytically, be-
cause it is a highly nonlinear function of the phenotypic
values. However, it can be approximated by Monte Carlo
procedures, e.g., by drawing samples from the bivariate
mixture (7). Accept the draws in which y > ¢, calculate

Gil Zf,’;‘*:] Qpmyn for each accepted y and then av-
erage this quantity over the samples kept. Finally, the
genetic superiority of accepted parents over the un-
selected population is

A, = Es(a;) — E(a; |Pav «, Ui)
G Gy

:E\ ZZka&km|yi>t

Gy
— Z P, o

k=1 m=1 m=1

The expected fraction of the selection differential thatis
realized can be assessed as A,/ S, and this will differ from
what could be expected from the regression of offspring
on midparent, because of nonlinearity (see the follow-
ing section).

Effects of truncation selection upon a heterogeneous
population, i.e., a mixture, have been studied exten-
sively in quantitative genetics. For example, HiLL (1974)
and ByMa and WooLLiams (1999) gave formulas for
prediction of response suitable for age-structured pop-
ulations or for overlapping generations. Also, LATTER
(1965), LANDE (1976), and Kimura and Crow (1978)
addressed consequences of truncation selection when
there is some grouping structure in a population, e.g.,
caused by genes of large effects. To illustrate, suppose
that a genetic mixture derives from a major locus with
two alleles. Prior to selection, the mixing proportions
(frequencies) of the three genotypes are, in our
notation, P, , P,,, and P,,. Also, suppose that the
environmental distribution is zero-mean normal, with
variance Ui, independent of the genetic distribution,
and that the polygenic genetic variance is homoscedas-
tic and equal to o2 (equivalently, the within major
genotype genetic variance is constant) Using (14), the
overall selection proportionisy = Z 1 Pa, Y, and the

genotypic frequencies after selection become P =
P, Y,./Y- After selection, employing (15), the pheno-
typic distribution has mean value

3

Z dm(am + zm\/(rz + (ri).

m=1

FALCONER (1989) gives approximate expressions for
relative fitness of genotypes, e.g., ¥2/1. Note that, under
these assumptions, the phenotypic distribution remains
a mixture, irrespective of the number of cycles of
selection. The means and variance change, however,
due to the modification of the P frequencies pro-
duced by selection.

COVARIANCE BETWEEN RELATIVES

General: The fraction of variance attributable to
additive genetic effects (usual definition of heritability)
is location invariant for a Gaussian trait, i.e., it does
not involve mean values. In a mixture, “heritability”
becomes

2 _ anl Py (0' + Ol - (Zn;f P, o) L
=G 5 : G .
Doy P;\W(“'é,,, +tol)— (o Pe, o)? + Zk1 ("'ﬁk i) — (T Pe,pa)?

(16)

T

The partition of variance depends on component-
specific variances (0’ and o2 ) on mixing proportions
(P,, and P,,), and on mean values (prand o) as well. In
the simpler case in which the genetic distribution is the
homogeneous process N( 10, o ) heritability becomes

2
: - 5 (17)
2 + Z Ck(o-i, + “‘k) - (Zlgél Pek“’k)z

and this is expected to be lower than in a homogeneous
population because fixed effects contribute to variance.
If the residual variance is homoscedastic across mixture
components, this reduces further to

2 _ (o2

: n?
2
(Z}?illeklk% (Zlgil ]eli,k)Q)/(Oi 05)’
(18)

where #? = 02/(0? + 02). Heterogeneity in means re-
duces heritability in a mixture (%), and the standard A
is obtained only when the sampling model invokes a
draw from a single component distribution.

The covariance between phenotypes of related indi-
viduals ¢ and ¢’ is

COV(yiv yir |pe’ 2 (rzv P. @, 0-2)
= ba \aj [COV(% yir |Pe’ Ke, O ;7 ai, (l/)}
+ Covllufl, [E(yl |Pe R, O e7 ) (yl ‘pev M, O e7 l,)]

= Covy, 4 ZPekMk + a;, ZPekMk + ay | = Cov(a;, ay),
=1 k=1
- (19)
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after assuming that phenotypes (given the additive
genetic values a; @) are conditionally independent.
To develop the covariance between genetic values fur-
ther, we assume that these are distributed as the bivariate
mixture

a; 9
ap ‘paV a’ 0.;1
i Oy 1 Ay
~ P, N ' 7 o |,
; a, 2<|: 1':|||:am:| |:Aii' 1 :| am>
where Ny(.,.) denotes a bivariate normal distribution

and Aj; is the additive relationship between the two
individuals, assumed constant across all components of
the mixture; inbreeding is supposed to be nil. It follows
directly that each of the genetic values has
S P N(ai|a,, o2 ) as marginal distribution. Then

Cov(a;, ay) = Jja,a, ZPamNz
a; oy T Aa]
X | ; o,
ay QU A1 "
G 2
— (Z Pamam>
m=1

Ga Ga 2
= Z P, (Aii’ojm + O‘fn) - (Z Pamam>

m=1 m=1

Ga Gy Ga 2
= A” am(rim + Z Pama%ﬂ — Z P, o .
m=1 m=1
(20)

This reduces to A;; Zm 1 P.dm(riﬂ if o, = 0 for every m
and to the standard A”/aa in the absence of heteroge-
neity in the distribution of genetic effects.

Regression of offspring on parent: Using (10) and
(20), the standard formula for the regression of the
phenotypic value of a progeny (O) on that of a parent
(P) (with A;y = %) gives

Bop = COV00: 9P)
o = Var(n)
(1/2) ZZL P, 0%, +Z$‘1P o = (1 Pan)®
ZC\ P, '52,, +a, Zm 1P,,,0‘m + R Pe( '3’2 +18) = (T Pei)?
(21)

If the distribution of genetic effects is homogeneous,
this simplifies to

(1/2)o;

Ck (0-2 + p“k (Ek Ck “‘k)?

Bor = (22)

2+ Zk

The consequences of (21) and (22) are clear: if there
is heterogeneity in the distribution either of sampling
model residuals or of genetic effects, then Bop is
affected by the mixing proportions and by the means
W To illustrate, suppose that the genetic distribution is

homogeneous; let Gg = 2, take w; = 0 as “origin,” p, =
Ac? ,and 07 = o? = 1. Then (22) is expressible as

Bop — (1/2)0;
O 702+ 1+ P(1 - P)AY

When P. = 1, the formula gives half of heritability, which
is a standard result (FALCONER 1989). The function is
symmetric with respect to P.; since P.(1 — P.) is maxi-
mum at P. = %, the regression is minimum at this value.
As an example, consider the offspring—parent regres-
sion as a function of P, for four situations with different
additive genetic variance (o?) and distances between
means (A) in the two distributions of the mixture: (1)
c2=1,A=1;(2) 62=1,A=2; (3) 62 =0.10,A=1;
and (4) 02 = 0.10, A = 2. Situations 1 and 2 correspond
to a trait with a heritability of 0.50 under homogeneity,
while 3 and 4 are for a lowly heritable trait (4*~ 0.09). In
1 and 2, the regression 3 decreases from 0.25 to ~0.22
and 0.17, respectively, representing relative decreases in
heritability of 12 and 32%. The relative decreases in
heritability are 18 and 47% in cases 3 and 4, respectively.
In brief, heritability in heterogeneous or admixed pop-
ulations depends on the mixing proportion, on the
mean difference between mixture components, and on
the “homogeneous situation” heritability.

COVARIANCE STRUCTURE

Correlations with a Gaussian trait: Correlations be-
tween a mixture trait and a normally distributed char-
acter may be of interest. For example, the mixture trait
could be SCC in dairy cattle, with several component
distributions corresponding to different unknown sta-
tuses of mammary gland disease. The Gaussian trait
could be milk yield of a cow. Is the genetic correlation
between the two traits affected by heterogeneity of
somatic cell count?

Let the model for the Gaussian trait w be

Wi = Py, + i + Cui s (23)

where ., is the mean of the trait, a,; ~ N(O7 O'j) is the
additive genetic value of individual ¢ for trait w, and
lwi ~ N (O, Giw) is a residual effect, independent of a,;
()'i" and O'Ew are genetic and residual components of
variance, respectively. The phenotypic distribution is,
thus, w; ~ N(u,, 02 +0?

Suppose that the distribution of mixture trait y has
two components at each of the genetic and residual
levels; i.e., G» = Gg = 2. Assume further that

2

ai @ oy 0'212 0y, O 0 0
ag; o 0-2\7 Oay, 0 0 0
p)
i 0 an 0 0 0
~ NG ) 2
el 0 o, 0 o,
02 0 Ugg Gﬂzm
Cui 0 Symmetric a2
(24)
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The distribution of each of the two genetic effects
entering into the mixture for trait y (a;, ae) is centered at
o, but has component-specific variances. These two
genetic effects may be imperfectly correlated, with
genetic covariance o,,; for instance, different genes
affecting somatic cell count are expressed under the
unknown “mastitis” and “no-mastitis” disease condi-
tions generating the mixture. Also, the genetic co-
variance with the Gaussian trait may be specific to
each of the two components. The component-specific
residual effects (e, &) are heteroscedastic but uncorre-
lated, as it is not possible to observe “disease” and “no
disease” in the same individual at the same time.
However, a residual correlation with the Gaussian trait
is allowed and assumed peculiar to each component
distribution.

Recall from (4) that a;| Py, P, o, 02, 0% ~ Y2 |
P.dmN(az- | e, (rzm). Now, let 0,, take the value 1 when the
draw is from component m and 0 otherwise. The joint
density under m is

2
a 3 a 0- ()- muw
P(dwia aml‘amzl):|: m£:|NZV2<|: :|a |: o 3‘2 :|>7
i 0 Taym O-a“,
m=1, 2,

so that, unconditionally

2 2
o (O Ta,.,
p(awi; ai) = ZpamN? |:O:|a A 0_2
m=1

O-amw Ay

Then

COV((luH ai) = JJ awaip((lum ai)dawdai

al |03, Oa.
P, ™ Oy ]VQ ) 9 ddw da/ﬁ
1 0 Oayy O

Ay

I
M)~

m

Pﬂm Ty = Palo-a]w + (1 - Pal )Uaﬂw' (25)

Il
M)~

1

3
I

Using (5) and (25), and taking a = 0, the genetic
correlation between the mixture-distributed trait and
the Gaussian character is

_ Pal Oay, + (1 - Pal)o-a?ur

2 2
Oa, m=1 Pam O-am

(26)

This reduces to the standard o,/ (O'HyO'uw) when the
distribution of genetic effects for trait yis homogeneous
and to

Tay,

Paya, = , (27)

O-'dw [ ?n:] Pam 0-3,,,]

When O-alw = 0-"[214/.

The effect of P,, on genetic correlation (27) is
illustrated next. Let A = o7 /02 be a heteroscedasticity

Rho 08
0.75

0.7 N
0.65
0.6
0.55 T»'
0.5 -
0.45
0.4
0.35

0.3
0.25

eaesiiiiiy
o ronoocod
Seanasaiiisty PeaEzaisiuetet i
SesasusiaiEiiti
FOOCCO0D00000T
i I

t
0 0.1 02 03 04 05 06 07 0.8 09 1

qoooooo000pOonC
T

Mixing proportion Pal

FiGurE 1.—Genetic correlation (Rho) between a Gaussian
character and a mixture trait for a two-component mixture,
as a function of the mixing proportion (F,), for different
combinations of ppome, genetic correlation in absence of mix-
ture, and \, heteroscedasticity factor. From top to bottom: (1)
Phomo = 0.7, N\ = 1.5 (open squares); (2) phomo = 0.7, A =2
(dotted line); (3) promo = 0.3, A = 1.5 (solid line); (4) promo =
0.3, A = 2 (open circles).

factor, where Gi, the genetic variance under the first
component of the mixture, is viewed as “baseline”
genetic variance, i.e, a measure of variability in the

absence of heterogeneity. Then

0 _ Tay,
W Gy Oay /Py + (1= Pay)N
_ Phomo (28)

VP, + (1 =P\

where phomo 1 the genetic correlation in the absence of
a mixture and

[P'dl + (1 - Pdl)k]7(1/2)

is the factor by which py,ome is modified by heterogene-
ity. Since the sign of p, , is invariant with respectto P, ,
it suffices to examine function (28) only under positive
values of ppomo. Figure 1 displays the relationship
between the genetic correlation (28) and P,, for two
values of prome (0.7 and 0.3) and of A (1.5 and 2). As P,
increases, the proportion of the component with larger
genetic variance (m = 2) decreases. The genetic
correlation increases monotonically with P,, and more
rapidly so at the largest value of genetic heteroscedas-
ticity. Suppose that wis total lactation milk yield in dairy
cows and that yis SCC, a mixture trait resulting from the
fact that some cows have mastitis (~20-40%). There is
evidence (e.g., HERINGSTAD et al. 2006) that the genetic
variance of somatic cell count is ~2.5 times larger in
healthy than in diseased (clinical cases) cows. Under the
assumptions leading to (28), our model predicts that
the genetic correlation between milk yield and somatic
cell score would decrease as the frequency of masti-
tis in the population decreases. Similar algebra and
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considerations hold for the environmental correlation
between traits.
Consider again the joint distribution (24), and write

Yi = 86“’1 + (1 - 86)“’2 +98,a1; +
+ Bee1; + (1 —

(1 - Sa) az;
Sc)eQia (29)

where the random variable 8. takes the value 1 or 0 with
probabilities P. and 1 — P, respectively; 3, is another
binary variable taking the values 1 or 0 with probabilities
P, and (1 —P,), respectively, and distributed indepen-
dently of 8. These two binary variates are assumed to be
independent of a,,; and e¢,; entering into the model for

w;in (23). Then,

E(wi | 8(?, 8'&) = E(u}i) = My
E(yl | 667 Sa) = 86“’1 + (1 - 86)““2 + «,

and

Cov(y;, w; | 8¢, 8,)
= Cov[d,a1; + (1 — 8;)ag; + decer;
+ (1 — 8c) i, i + eyi| B¢, 4]
= Sao'alw + (1 - 821)0'212,” + Seo'elw + (1 -

ac)o-em'
The phenotypic covariance between yand wis, therefore,

Cov(y;, w;) = Es_5,[8a0q,, T (1 —8,)0,

+ Be0e,, + (1 — ae)o'ezw]

+ Covg5,[Bemy + (1 = 8c)pg + o, ).

Since the second term is null

Cov(y;, w;) = Py0a,, t (1= P))0y,, + Pe0e,, t (1— Po)0e,, -

(30)

Above, P,o,,, + (1 — P,)o,,, is the genetic covariance, as
in (25), and P.o.,, + (1 — P.)o.,, is the residual co-
variance. Collecting (30), (10), plus the fact that
w; ~ N (b, o2 +0? ), and assuming that a = 0, yields

as phenotypic correlation
Py, + (1 — P)og,, + Peoe,, + (1 — Pe)oe,,

2

\/Z 1 Pa, a”+ Zk 1 ﬁk(o-ek-‘rp“k) (Zk:l Pe 1)
(31)
The phenotypic correlation depends not only on the
underlying components of variance and covariance, but
also on the mixing proportions and population means.

If the genetic distribution is homoscedastic (02 =

2‘ = 0'2 i Oa,., = Oa,, = 0, ),and heterogeneity is at lthe
level of the samphng model only, but with o,

o, and o7 —0'2 =g’

yw e’

becomes

= 0-621“ =
the phenotypic correlation

Phomo
p)w ‘7 (32)
V1 (00 Paisd = (3 Pam)?)/03

Rho 0.7 +
0.675

0.65 1

0.625 -
" .
u .
06+ = =
575 g 3
0.575 + " -
. g

0.55 1
0.525 +
0.5 1

0.475 + ) ; : } ; ! ; ; ;

‘
i
0 01 02 03 04 05 06 07 08 09 1

Mixing proportion Pe

F1GURE 2.—Phenotypic correlation (Rho) between a Gauss-
ian character and a mixture trait for a two-component mixture,
as a function of the mixing proportion (P.). (1) phomo = 0.7,
A =1 (solid line); (2) promo = 0.7, A = 2 (line with squares).
Phomos Phenotypic correlation in the absence of a mixture; A,
difference between means of the two distributions.

where ppon0 = (0'% + (rem)/(aw(ry) is the phenotypic
correlation in the absence of a mixture for the residual
distribution and ¢* = (rz + 02 . Toillustrate, take p; =0
as origin, pe = A, and 0' = 1. Then

Phomo
= - 33
Py V14 P.(1 - P.)A? (38)

The phenotypic correlation has a minimum at P. = 0.5 if
Phomo 18 positive; however, it is maximum at this value of
the mixing proportion if pyome is negative. Effects of P,
and of A on the genetic correlation are shown in Figure
2, for promo = 0.7 and A = 1 and 2. The function is sym-
metric and steeper as A increases. For A = 2, the correla-
tion decreases from 0.7 (for P. = 0 or 1) to a minimum
of ~0.50. The curves are inverted if pyomo 1S negative. In
short, if the value of P.(1 — P.) is used to measure
admixture in the residual distribution, the phenotypic
correlation decreases with admixture if it is positive in a
homogeneous population. On the other hand, p,, in-
creases with admixture if negative under the homoge-
neous situation.

Correlations between two mixture-distributed char-
acters: Suppose now that measurements are available
for traits y and z For simplicity, it is assumed that the
jointdistribution of yand zarises from a two-component
mixture of bivariate normal distributions at the level of
the sampling model (that is, given the genetic effects)
and from a two-component bivariate normal mixture of
genetic effects. Given the independently distributed
binary indicator variables 8. and 3,, one can write

Bepury T (1 = Be )Moy +Batisy

yi| + (1 = 8y)agiy + Beerjy + (1 — de)eiy
zi| Oepy, + (1 - 80)“’21 +8.a1:.
+ (1 - 821)‘7'21',1 + 8eeli,z + (1 - 86)€2i,z

(34)



2254 D. Gianola, B. Heringstad and J. Odegaard

Then

Cov(y, z;) = Es_5,Cov(y, 2| de, 8,)

35
+ Covs, 5, [E(y| 8¢, 8a), E(2]| 8¢, 84)]. (85)

Assuming independence between genetic and envi-
ronmental effects in the distributions, it follows that

2
Cov(y, 2|8, 8,) = 8,0, 28,(1 — Sa)UaW
+(1 - 83)20'.&2%
2
+ Seael.y; +28.(1 - SC)UCIQ,yz
2

+ (1 =38¢)%0e,,.,
where o,, and ., (m =1, 2)are the additive and en-
vironmental components of covariance between yand z
under m, and 0,,, and o, are potential cross-mixture
covariances. Further, under the assumption of a null
mean of the componentspecific genetic and environ-

mental distributions, as well as of independence of the
binary indicator variables 8. and &,

E(J’ | 667 82) = 8ﬁl‘l‘ly + (1 - 86)“‘2)'7
and
E(z[8e, 82) = Bephy, + (1 — 55)}1,21.

Since 8. and 3, are Bernoulli, E(8.) = P., Var(d.) =
P.(1 - P.), E(3,) = P,, and Var(3,) = P,(1 — P,). Then
Es_5,Cov(y, z| 8¢, 8,)
= PdO'al,yz + (1 - P’d)gag“z + Peo-el_yz + (1 - PC)UGZ.vz

and
Covs, 5,[E(y] e, 8.), E(z] 3¢, 8,)]
= COVaevaa [aelkly + (1 - 86)“"2}'7 86“‘12 + (1 - 86)“’22]
= Pe(1 = Pe)pyyiry, + Pe(l — Pe)proyiho,
= Pe(1 = Pe)(iybo; + Hoyhty,)-
Employing the preceding results in (35),
Cov(yi, z)
- Pao-zn_yz + (1 - Pa)o-auz + Pe(yel,yz + (1 - Pe)o-e‘l.yz
+ Pe(1 = Pe)[yyirs + RoyPa, — (Rgybo, T Royity)]-
(36)

Under the assumption that the underlying genetic
distributions have zero means, the genetic correlation
between the two mixture traits is

0. = Pao'al,y: + (1 - Pa)O-aQ.yZ
ay,,
) \/ >t P am‘fzm_y > P amaim_;

The environmental correlation takes the form

_ Z;Zc:l Pem(fem.);"'Pe(l - Pe)[l*lypvlz"'l*‘zyl"ﬂz*(Mlylwz"'l"«zymz)]
VIR Pyt = (3 PP P = (8 Perie)?)

Pey.

and the phenotypic correlation follows from (36) and
(10), after setting all o’s to 0.

CONCLUSION

Some basic results of standard theory of quantitative
genetics under additive inheritance were extended to
finite mixture models with Gaussian components. It was
found that, if there is heterogeneity in a population at
either the genetic or the environmental levels, then
genetic parameters based on theory treating distribu-
tions as homogeneous can lead to misleading interpre-
tations. Some peculiarities of mixture characters are:
heritability depends on the mean values of the popula-
tions, the offspring—parent regression is nonlinear, and
genetic or phenotypic correlations cannot be inter-
preted devoid of the mixture proportions and of the
parameters of the component distributions. For exam-
ple, nonlinearity of the offspring—parent regression was
studied by ROBERTSON (1977) and GIMELFARB (1986)
under dominance and by IM and Gianora (1988) for
binary traits. GIMELFARB (1986) gave conditions under
which the regression would be nearly linear under
dominance, e.g., a large number of loci affecting the
trait or mild dominance and gene frequencies not far
from 0.5. Our results illustrate that nonlinearity can also
arise due to heterogeneity at the environmental level
due to, for instance, omitting relevant covariates in a
linear model for quantitative genetic analysis.

Clearly, standard models for quantitative traits can
lead to erroneous results if fitted to heterogeneous data.
If a mixture is suspected, two suitable methods for
inferring unknown mixture parameters are maximum-
likelihood and Bayesian analyses. Procedures for likeli-
hood- or posterior-based inference applied to mixtures
are discussed extensively in TITTERINGTON et al. (1985)
and McLacHLAN and PeEL (2000), including situations
in which the component distributions are not normal,
e.g., skewed survival processes. Implementations suit-
able for fitting different types of quantitative genetic
mixture models have been described and applied by
DDEGARD et al. (2003, 2005), GIANOLA et al. (2004), and
BOETTCHER ¢! al. (2005). Prediction of breeding values
is discussed in GiaNnoraA (2005). A suitable software for
the analysis of mixtures with random effects is available
in a forthcoming update of Version 6.0 of the DMU
package (MADSEN and JENSEN 2002).

An important issue is how many components should
be fitted in a mixture model. Testing for the number
of components is a difficult matter, and there may not be
a one-to-one correspondence between the number of
components fitted and the number of heterogeneous
groups (McLacHLAN and PeeL 2000). For example,
several groups may be hidden behind an apparently
bimodal distrbution, due to limited sample size. Also,
if some of the component distributions are skewed,
typically the number of components needed for a good
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fit is larger than the number of groups causing hetero-
geneity. Probably the most elegant procedures for infer-
ring the number of components needed are Bayesian
implementations via the reversiblejump algorithm
(RicHARDSON and GREEN 1997), but computations can
be extremely taxing.
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K 2

K K
Var(y|0) =Y Pioi + > Pipi — [ D P, | . (A3)
k=1 k=1 k=1

The first term in (A3) can be interpreted as an average
variance, while 35 | P,u2 — (Zle Pkpk)z measures dis-
persion between group means or heterogeneity; if the
W’s are equal, this term is null. The variance of the mix-
ture depends not only on individual component vari-
ances, butalso on group means. If the components have
homogeneous variance a2,

K K 2
Var(y|0) = o + ZPkMi - ZPI{M . (A4)
=1 =1



