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ABSTRACT

The aim of this article is to develop an integrated-likelihood (IL) approach to estimate the genetic
differentiation between populations. The conventional maximum-likelihood (ML) and pseudolikelihood
(PL) methods that use sample counts of alleles may cause severe underestimations of FST, which means
overestimations of u ¼ 4Nm, when the number of sampling localities is small. To reduce such bias in the
estimation of genetic differentiation, we propose an IL method in which the mean allele frequencies over
populations are regarded as nuisance parameters and are eliminated by integration. To maximize the IL
function, we have developed two algorithms, a Monte Carlo EM algorithm and a Laplace approximation.
Our simulation studies show that the method proposed here outperforms the conventional ML and PL
methods in terms of unbiasedness and precision. The IL method was applied to real data for Pacific
herring and African elephants.

THE study of population structures arises in many
contexts in population genetics, and a wide variety

of patterns of population structures have been mod-
eled, including the stepping-stone, island, and mixed
population models (e.g., Kimura and Weiss 1964;
Wright 1969; Millar 1987; Rannala and Hartigan

1995). Statistical methods have also advanced, reflect-
ing the discovery of fine-scale markers and the devel-
opment of modeling for population structures (e.g.,
Weir 1996; Balding et al. 2003).

To study the genetic structures of natural popula-
tions, samples are usually taken from several localities.
However, in many situations, there are no specific
boundaries or obvious regional units, and therefore
subpopulations cannot be well defined beforehand. In
the case of mixing populations, it may be possible to
apply individual assignment methods based on multi-
locus genotypes (Pritchard et al. 2000; Falush et al.
2003; Manel et al. 2005) to identify a finite number
of subpopulations. However, if the population has a
continuous structure and consists of a large number
of subpopulations, assuming a metapopulation or an
infinite-island model is a natural way to estimate the ge-
netic differentiation between subpopulations (Pannell
and Charlesworth 2000; Rousset 2003; Hanski and
Gaggiotti 2004).

The metapopulation model considers a universe of
demes (subpopulations) that have peculiar genetic
structures and introduces a distribution of allele fre-
quencies among these demes. When the allele frequen-
cies are distributed as a Dirichlet distribution, the
probability distribution for the sampled counts of alleles
at each locus can be explicitly expressed as a Dirichlet-
multinomial distribution (Rannala and Hartigan

1996; Weir 1996; Holsinger 1999; Kitada et al. 2000;
Corander et al. 2003; Rousset 2003). In this model,
the variance of the allele frequencies among sampling
localities is closely related to FST or u ¼ 4Nm (Wright

1969; Rannala and Hartigan 1996; Kitada et al. 2000;
Balding 2003; Kitada and Kishino 2004). The param-
eter FST or u is explicitly included in the statistical model
and can therefore be estimated using likelihood meth-
ods. The maximum-likelihood (ML) estimation has
been discussed by Lange (1995), Kitada et al. (2000),
and Balding (2003). Furthermore, a pseudolikelihood
(PL) estimation was proposed by Rannala and Hartigan

(1996) as a variant of the ML method.
Because the parameters that express population dif-

ferentiation, FST and u, are related to the variance, as
discussed above, the difference in the sampled counts of
alleles among sampling localities contains information
about these parameters. A larger number of sampling
localities improve the precision of the estimates with
these parameters (Kitada and Kishino 2004). How-
ever, sampling from many localities is often difficult
in genetic studies of wildlife populations. In such cases,
the ML and PL methods cause difficulties, as in the
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estimation of the variance in a normal distribution.
The ML estimator of s2 based on a sample of size n,
x1; . . . ; xn , from a normal distribution N(m, s2) is given
by
P

ðxi � �xÞ2=n, whereas an unbiased estimator is given
by
P

ðxi � �xÞ2=ðn � 1Þ. The only difference is in the
denominator. However, if the sample size n is small, the
amount of bias in the ML estimator cannot be ignored.
This might be the case for the estimation of FST or u in
the metapopulation model.

An unbiased estimation of s2 described above can
be achieved using several different likelihood adjust-
ments, known as conditioning, marginalization, and
integration (Lindsey 1996; Berger et al. 1999). Un-
fortunately, the conditional- and marginal-likelihood
methods cannot be applied to a Dirichlet-multinomial
distribution because no appropriate statistics that
separate the likelihood can be obtained. On the other
hand, the integrated-likelihood (IL) method does not
require such separation. Instead, integration with re-
spect to nuisance parameters must be undertaken.
Typically, the IL function does not have a closed form.
However, the recent development of computational
methods allows us to deal with it: for example, the
EM algorithm (McLachlan and Krishnan 1997), the
Markov chain Monte Carlo (MCMC) method (Robert
and Casella 2004), and the Laplace approximation
(Pawitan 2001).

In this article, we use an IL approach to the meta-
population model and develop a new method to pre-
cisely estimate important parameters of interest, FST

and u. Two algorithms, a Monte Carlo EM algorithm
with an MCMC and the Laplace approximation, are
applied to maximize the IL function. The performance
of the IL method is evaluated with numerical simula-
tions and compared with the ML and PL estimation
methods. Microsatellite allele frequencies in Pacific
herring and mtDNA restriction fragment length poly-
morphism (RFLP) haplotypes of African elephants are
analyzed. The impact of bias on the inference of genetic
differentiation is also discussed.

MODELS AND METHODS

Statistical modeling: Consider a sample taken from
multiple localities in a metapopulation having an
infinite-island model. Suppose that K demes or sub-
populations are drawn from the metapopulation and
Nk ðk ¼ 1; . . . ; K Þ alleles of individuals are counted
for L loci. Let pkl ¼ ðpkl1; . . . ; pklJl Þ9 ðk ¼ 1; . . . ; K ; l ¼
1; . . . ; LÞ be a vector of the true allele frequencies at
the lth locus in the kth subpopulation, where Jl ðl ¼
1; . . . ; LÞ is the number of different alleles at the lth
locus, and

PJl
j¼1 pklj ¼ 1. Let nkl ¼ ðnkl1; . . . ; nklJl Þ9 de-

note a vector of observed allele frequencies at the lth
locus at the kth subpopulation. Under the assumption
of random sampling at each locality, the distribution of

nkl, given pkl, can be assumed to be multinomial with the
probability function

f ðnkl j pklÞ ¼
Nk !QJl
j¼1 nklj !

YJl
j¼1

p
nklj
klj :

Here, Nk ¼
PJl

j¼1 nklj . Note that the allele counts at each
locus, given the true allele frequencies, are independent
among subpopulations. We also assume linkage equi-
librium. Therefore, the allele counts are also indepen-
dent over all loci within each subpopulation. We assume
that the distribution of pkl at the lth locus in the kth
subpopulation follows a Dirichlet distribution, with the
probability density function

f ðpkl ; u;bl Þ ¼
GðuÞQJl

j¼1 GðubljÞ
YJl
j¼1

p
ublj�1
klj ;

where u is a scale parameter that is a vector common to
all loci, and bl ¼ ðbl1; . . . ; blJl

Þ are the mean allele fre-
quencies at the lth locus satisfying

PJl
j¼1 blj ¼ 1. This

distribution was originally derived by Wright (1945,
1951) as a diffusion approximation to the discrete gen-
eration Wright’s model. A justification for the continu-
ous generation model has been given by Rannala and
Hartigan (1996).

In this model, the variance of the jth allele frequency
for the lth locus, pklj, is given by

Var½ pklj � ¼
1

11 u
bljð1 � bljÞ: ð1Þ

The larger the value of u, the smaller the genetic dif-
ferentiation among subpopulations, and vice versa. In
fact, genetic differentiation is expressed as

FST ¼ 1

11 u
; ð2Þ

which was given by Wright (1969), Rannala and
Hartigan (1996), Balding (2003), and Kitada and
Kishino (2004). Hence, u is a parameter that controls
the degree of genetic differentiation among sub-
populations.

Estimation by the ML method: The marginal distri-
bution of the observed random vector nkl is given by a
Dirichlet-multinomial distribution as follows:

f ðnkl ; u; blÞ ¼
ð
f ðnkl j pkl Þf ðpkl ; u; bl Þdpkl

¼ Nk !QJl
j¼1 nklj !

� GðuÞ
GðNk 1 uÞ �

YJl
j¼1

Gðnklj 1 ubljÞ
GðubljÞ

:

ð3Þ

The parameters to be estimated are u and b ¼
ðb91; . . . ; b9LÞ9. Because the mutual independence of
data is assumed, the overall likelihood for these param-
eters based on Equation 3 is defined as
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Lðu; bÞ ¼
YK
k¼1

YL
l¼1

f ðnkl ; u; blÞ

¼
YK
k¼1

YL
l¼1

Nk !QJl
j¼1 nklj !

� GðuÞ
GðNk 1 uÞ �

YJl
j¼1

Gðnklj 1 ubljÞ
GðubljÞ

:

The ML estimator of u is given by maximizing the like-
lihood function L(u, b) (Lange 1995; Weir 1996; Kitada
et al. 2000). The parameter FST can be estimated with
Equation 2.

Estimation by the PL method: Rannala and Hartigan

(1996) used a PL approach to reduce computational
time in optimizing the original likelihood L(u, b).
In their method, the vector of the nuisance parame-
ter bl ðl ¼ 1; . . . ; LÞ is replaced with the average val-
ues for observed allele frequencies throughout the
population,

b̂l ¼
1P

K
k¼1 Nk

XK
k¼1

nkl1; . . . ;
XK
k¼1

nklJl

 !
;

and Lðu; b̂Þ is maximized as if b̂ ¼ ðb̂91; . . . ; b̂9LÞ9 were
the true parameters.

Estimation by the IL method: As an alternative to the
two likelihood estimations described above, we propose
an IL approach to estimate u. This means that the free
parameters in b ¼ ðb91; . . . ; b9LÞ9 are regarded as nui-
sance parameters and are eliminated from L(u, b) by
integration. We use an integrated-likelihood function
for u, defined as

LIðuÞ ¼
ð
D
Lðu; bÞdb

¼
YL
l¼1

ðYK
k¼1

Nk !QJl
j¼1 nklj !

(
� GðuÞ
GðNk 1 uÞ

�
YJl
j¼1

Gðnklj 1 ubljÞ
GðubljÞ

dbl

)
; ð4Þ

where D is the parameter space of b. This treatment can
be regarded as a kind of Bayesian estimation using a
noninformative prior for b. In fact, when the prior bl ¼
ðbl1; . . . ; blJl

Þ � Dirichð1; . . . ; 1Þ ðl ¼ 1; . . . ; LÞ is as-
sumed, the density function is

pðbl1; . . . ; blJl Þ} 1;

and therefore LIðuÞ}
Ð
Lðu; bÞpðbÞdb holds. Unfortu-

nately, an explicit form for LI(u) cannot be obtained in
the metapopulation model.

We consider two alternative algorithms for the max-
imization of LI(u). One is the Monte Carlo EM (MCEM)
algorithm (Wei and Tanner 1990). The EM algorithm
converges on the maximum value of LI(u). However,
as is well known, the convergence of the EM algorithm
is slow. For this reason, we use mainly the Laplace

approximation (Pawitan 2001). The program for the
latter method is available from the authors upon re-
quest. Detailed descriptions of both of the methods are
given in appendixes a and b.

SIMULATION STUDIES

Simulation scenarios: We evaluated the estimation
performance of the ML, PL, and IL methods with
numerical simulations. For simplicity, we considered
only cases in which the same number of individuals
are collected from each of the sampled subpopula-
tions and the different loci share the same mean allele
frequencies.

Simulation data were generated as follows. A simula-
tion scenario was specified by the number of subpopu-
lations sampled (K), sample size (Nk), the number of
loci (L), the number of alleles (Jl), mean allele frequen-
cies (bl), and the degree of genetic differentiation (FST).
The parameters used in this study are as follows:

Number of subpopulations sampled: K ¼ 2, 3, 4, 5, 7,
10, 15

Sample size: Nk [ N ¼ 50, 100, 200
Number of loci: L ¼ 1, 3, 5, 10, 20
Number of alleles: Jl [ J ¼ 2, 5, 10
Mean allele frequencies: bl [ ð1; 1; . . . ; 1Þ=J and
ð1; 2; . . . ; J Þ=ð J ð J � 1Þ=2Þ

Genetic differentiation: FST ¼ 0.01, 0.05, 0.1, 0.4.

Once specifying a simulation scenario, the observed
allele frequencies, nkl ¼ ðnkl1; . . . ; nklJl Þ, were gener-
ated from a Dirichlet-multinomial distribution in Equa-
tion 3 for each locus. After the data were generated, we
estimated the parameter u using the ML, PL, and IL
methods, and then we estimated FST with the relation-
ship FST ¼ 1/(11 u). The number of simulation replicas
was fixed at 1000 throughout each simulation scenario.
Then, the mean and standard deviation of 1000 es-
timates of FST were assessed for each method. In the IL
method, we used the Laplace approximation because
its computation cost is lower than that of the MCEM
algorithm. However, before undertaking more compre-
hensive simulations, we checked the consistency of the
two algorithms by using some of the simulation data
sets.

Simulation results: We first examined the efficacy of
the Laplace approximation for our IL approach. Figure
1 compares the estimates based on the two different
algorithms used to find the maximum value of the IL
function. Simulation data were generated for the case
where K ¼ 5, N ¼ 50, L ¼ 10, J ¼ 5, and FST ¼ 0.1. As
shown in Figure 1, estimates made with the Laplace
approximation tended to be close to those made with
the MCEM sequence. The difference of computation
times between the two algorithms was noteworthy. For
the situation above, the estimation with the Laplace
approximation took �6 sec, which was comparable to
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those with the ML and PL methods (�3 and 1 sec,
respectively), while MCEM spent �40 min up to the
40th step on a Pentium-IV 3.2-GHz PC. Note that the
computing time varied little among data sets utilized
within a same scenario, but depended much on the
number of subpopulations sampled, loci, and alleles.

Figure 2 shows the estimation performance of the
ML, PL, and IL methods for FST ¼ 0.05 for various values
of K, the number of loci L, the number of alleles J, and
the sample size N. We used the set of parameters K ¼ 5,
N¼ 50, L¼ 10, and J¼ 5 as baseline values and changed
each of them. Only the results for the case of bl [

ð1; . . . ; 1Þ=J are shown here, because differences in
mean allele frequencies between scenarios had little
impact on estimation performance. As expected, severe
underestimation of FST was observed with both the ML
and PL methods, especially for small values of K. In con-
trast, less bias was observed with the IL method. These
results demonstrate that the IL method outperforms
the ML and PL procedures in terms of minimizing bias
in all cases.

With all three methods, increasing the number of
subpopulations sampled, K, reduced both bias and
variance. On the other hand, increasing the number
of loci, the number of alleles per locus, and the sample
size had little effect on bias, but led to a reduction in
variance. The latter phenomenon has been reported by
Balding (2003) for the ML method. These results
demonstrate that the number K is very important for
the precise estimation of FST.

More detailed results for N¼ 50, L¼ 10, and J¼ 5 are
shown in Table 1. All the estimates were negatively
biased. The ML and PL estimates were very similar in all
cases and had large negative biases, especially when FST

was ,0.1 and the number of sampling localities was less
than five. On the other hand, the PL estimates had a
much smaller bias under these conditions. When FSTwas
as large as 0.4, the bias of the ML and PL estimates was
moderate and similar to that of the IL estimate.

APPLICATIONS TO REAL DATA

Pacific herring: The first example, a marine fish
species, shows a case with a low FST-value. A total of
1263 fish were taken from three localities, Akkeshi,
Yudounuma Lake, and Funkawan Bay, which are located
on the east coast of Hokkaido in Japan. Table 2 shows
the observed allele frequencies at five microsatellite
loci, which were in Hardy–Weinberg equilibrium in
each sample (Sato 2004). A large value for the gene
flow rate, which means a small value for FST, was ob-
served (Table 3). In this case, the estimates made with
the ML and PL methods were much smaller than that
made with the IL method. This result is consistent with a
phenomenon observed in the simulation studies; that
is, there is a clear difference between the IL and ML or
PL estimates when the FST-value is small.

African elephants: Next, we used the mtDNA RFLP
haplotype data given in Table 3 of Rannala and
Hartigan (1996), which are a modification of the
original data of Georgiadis et al. (1994). In this study,
10 haplotypes were evaluated in 270 elephants from 10
populations in Kenya, Zimbabwe, Botswana, and South
Africa. As shown in Table 3, the relative differences in
the estimates of u and FST were smaller than those
observed in the Pacific herring. This is due to the
greater number of sampling localities and the higher
value of FST compared with those of the Pacific herring
population.

DISCUSSION

In this article, we have proposed a new method for the
estimation of genetic differentiation between popula-
tions, based on the IL function, to reduce the bias
observed in the ML and PL methods, which have been
used previously in this field. Our simulation results
demonstrate that the estimation performance of the IL
method is much better than that of the conventional
ML and PL methods in terms of unbiasedness and
precision. Differences in estimation performance were
observed, especially when the number of subpopula-
tions sampled, K, was small or the level of genetic
differentiation, FST, was low. In fact, the number of
subpopulations sampled is often restricted in studies of
the population genetics of wildlife. Furthermore, FST

could be small for species that have no specific bound-
aries, such as birds and fishes, as shown in the data
analysis for Pacific herring. In this sense, the IL method
is strongly recommended for the estimation of FST.

Figure 1.—Comparison of estimates for FST by the IL func-
tion, based on the two different algorithms, the MCEM and
Laplace approximation. Simulation data were generated for
K ¼ 5, N ¼ 50, L ¼ 10, J ¼ 5, and FST ¼ 0.1.
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We focused on the estimation of FST and u for the
metapopulation models. Thus, we regarded the mean
allele frequencies as nuisance parameters. The elimina-
tion of nuisance parameters has been one of the central
problems in statistics. As shown in our simulation
studies, the large degree of bias in the ML and PL
estimates of FST did not decrease even when the number
of loci was increased. These phenomena are typical
cases of so-called Neyman–Scott problems (Neyman

and Scott 1948), in which the dimension of the
nuisance parameter increases with the number of
observations. There are several possible ways to elimi-
nate nuisance parameters: the conditional, marginal,
and IL methods. Of these, we used the IL method

because no suitable statistics for conditional- or marginal-
likelihood methods were available in our model. Al-
though a small amount of bias was still observed in the
IL estimates, the improvement in estimation perfor-
mance using the IL method is considerable.

The resources for sampling surveys in the field are
always limited. Given the total sample size, it is recom-
mended that the number of sampling localities be as
large as possible by sacrificing the number of individuals
sampled at each locality (Figure 2). Increased sample
size at each locality yielded little reduction in bias in the
estimation of FST, although it could decrease the esti-
mation variance. To better understand the role played
by the sampling scheme of this study, we conducted

Figure 2.—Means of ML, PL, and IL estimates with the 5th and 95th percentiles (vertical lines). The true FST was fixed at 0.05.
The baseline scenario was K¼ 5, L¼ 10, J¼ 5, and N¼ 50 with bl [ ð1; . . . ; 1Þ=J . x-Axes are different for each part: the number of
sampling localities (K), the number of loci (L), the number of alleles ( J), and the sample size common to sampling localities (N).
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further simulation studies, in which the total sample size
over all sampling localities was fixed. The simulation
scenario was set at FST ¼ 0.05, L ¼ 10, and J ¼ 5, with
bl [ ð1; . . . ; 1Þ=J . The total sample size, K �N, was fixed
at 600. As shown in Figure 3, an increase in K improved
estimation performance. Furthermore, for small K, the
variance was small because of the large sample size.
However, the bias was still large when the values of K
were small, although the sample size was considerably
larger than that in the case of a large K. In the field, it is
often much more difficult to visit many sites than to
study many individuals at each site. Therefore, our IL
method may be especially valuable in such circumstances.

Our statistical estimation assumes the Dirichlet dis-
tribution for allele frequencies. This assumption is well
suited to the metapopulation with an island structure.
On the other hand, examination of robustness of the IL
estimation based on such an assumption is of interest.
For this purpose, we conducted a small simulation study
assuming a simple scenario for non-Dirichlet with
biallelic loci. Now consider sampling from a metapopu-
lation that consists of a large number of subpopulations,
and suppose that allele frequencies at a locus in a
subpopulation are either (0.6, 0.4) or (0.4, 0.6). The
proportion of those two kinds of subpopulations in the
metapopulation is assumed to be 1:1, which means that
allele frequencies at a locus of a sampled subpopulation
are (0.6, 0.4) with the probability 1

2. In this case, the
mean allele frequencies over the metapopulations are

(0.5, 0.5), and the variance is calculated as 0.5(0.4 �
0.5)2 1 0.5(0.6 � 0.5)2 ¼ 0.01. Hence, FST is 0.04
(¼ 0.01/0.25). Under this scenario with K ¼ 5, N ¼ 50,
and L ¼ 10, we estimated FST using the IL method. The
results are summarized in Table 4. Although the esti-
mation performances are slightly different between the
cases of Dirichlet and non-Dirichlet, the IL method
based on the Dirichlet assumption still performed well
in both cases. Note that the ML and PL methods were
still heavily biased in this case (not shown here). This
simulation is not comprehensive, but it suggests that our
method may be useful for other genetic models.

In this article, we assumed that the parameter u is
common throughout all loci. However, as discussed by
Balding (2003), u can vary across loci because of
different mutation rates and/or selection effects. Even
if the mutation rates are incorporated into the model
and assumed to be different among loci, the distribu-
tional form of the Dirichlet holds through ul ¼ 4Nm 1

4Nml or FST,l ¼ 1/(1 1 4Nm 1 4Nml), where m is a
migration rate and ml is a mutation rate at the lth locus
(Wright 1969). In this case, it is possible to estimate
the value of u locus by locus. However, assuming a
random effect model for u over all loci is also a prom-
ising alternative method. This assumption can make the
estimation not only easier but also more efficient.
The first advantage is the reduction in the dimension
of the parameter. The second advantage arises from
the concept of ‘‘borrowing strength’’ across loci in the

TABLE 1

Mean and standard deviation (SD) of FST from 1000 simulations at various levels of FST for different numbers
of sampling localities

ML PL IL

FST K Mean SD Mean SD Mean SD

0.01 2 0.00014 (�98.6) 0.0007 0.00008 (�99.2) 0.0006 0.00691 (�30.9) 0.0051
5 0.00421 (�57.9) 0.0026 0.00415 (�58.5) 0.0026 0.00952 (�4.8) 0.0031

10 0.00690 (�31.0) 0.0021 0.00686 (�31.4) 0.0021 0.00962 (�3.8) 0.0022
15 0.00802 (�19.8) 0.0017 0.00799 (�20.1) 0.0017 0.00984 (�1.6) 0.0018

0.05 2 0.0154 (�69.2) 0.0082 0.0134 (�73.2) 0.0093 0.0356 (�28.7) 0.0105
5 0.0368 (�26.5) 0.0061 0.0365 (�27.0) 0.0061 0.0461 (�7.9) 0.0066

10 0.0434 (�13.3) 0.0045 0.0432 (�13.5) 0.0045 0.0481 (�3.7) 0.0046
15 0.0457 (�8.5) 0.0037 0.0457 (�8.7) 0.0037 0.0489 (�2.1) 0.0038

0.1 2 0.0431 (�56.9) 0.0140 0.0408 (�59.2) 0.0135 0.0704 (�29.6) 0.0162
5 0.0784 (�21.6) 0.0101 0.0779 (�22.1) 0.0101 0.0902 (�9.8) 0.0104

10 0.0887 (�11.3) 0.0072 0.0885 (�11.5) 0.0072 0.0946 (�5.4) 0.0073
15 0.0929 (�7.1) 0.0060 0.0927 (�7.3) 0.0060 0.0968 (�3.2) 0.0061

0.4 2 0.260 (�35.1) 0.515 0.231 (�43.2) 0.475 0.313 (�21.6) 0.467
5 0.352 (�12.1) 0.272 0.341 (�14.7) 0.271 0.367 (�8.3) 0.264

10 0.378 (�5.5) 0.188 0.373 (�6.8) 0.189 0.383 (�4.3) 0.185
15 0.385 (�3.8) 0.150 0.382 (�4.6) 0.151 0.388 (�3.1) 0.148

The bias (percentage) is shown in parentheses. The sample size is N ¼ 50, and the number of loci and alleles
are L ¼ 10 and J ¼ 5, respectively. The mean allele frequencies are fixed at bl [ ð1; . . . ; 1Þ=J .
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context of an empirical Bayes procedure (Beaumont
and Rannala 2004). Incorporating such random ef-
fects leads to further hierarchical modeling. Our IL
method, however, can be extended to such modeling.
Furthermore, Bayesian computational methods and al-
gorithms are also possible candidate methods (Beaumont
and Rannala 2004). Meanwhile, the presence of the se-
lection effects unfortunately breaks down the Dirichlet

assumption for the allele frequencies, and even the
variance of allele frequency does not have a simple
form as in Equation 1 (Wright 1969). Hence, the
extension of our method may not be straightforward.
These topics are problems to be investigated in the
future.

Linkage disequilibrium is an important factor in
practice. Under linkage disequilibrium, a probability

TABLE 2

Allele frequencies at five loci in Pacific herring

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

Alleles AK YD FK AK YD FK AK YD FK AK YD FK AK YD FK

1 0 10 1 14 26 5 0 3 1 3 0 4 0 0 8
2 0 1 1 5 4 5 3 15 6 11 1 1 0 0 12
3 0 16 0 2 0 1 0 1 2 0 1 1 0 0 7
4 8 9 2 38 27 34 34 40 19 37 4 31 0 0 8
5 3 7 8 43 29 63 0 9 5 179 148 169 0 0 43
6 5 20 14 155 103 134 0 0 66 11 11 55 0 0 9
7 1 16 12 133 165 128 21 9 18 3 4 7 3 0 44
8 0 0 3 177 197 149 71 66 71 241 300 257 0 0 14
9 25 28 22 68 73 128 11 4 20 56 76 46 0 3 37
10 63 42 59 33 27 45 8 4 4 16 5 72 1 0 8
11 64 57 59 41 28 75 45 19 49 3 8 6 16 6 9
12 157 121 99 57 44 47 27 61 48 4 6 11 0 12 11
13 9 32 35 4 0 54 1 1 8 7 41 35 25 51 43
14 23 10 16 0 3 10 202 128 135 0 5 33 36 31 39
15 15 11 25 11 50 13 62 68 58 42 34 36 9 28 67
16 6 89 37 10 8 8 162 160 124 2 0 10 23 21 43
17 131 57 48 7 6 8 34 32 66 9 12 17 64 29 35
18 12 16 49 1 1 0 49 122 77 0 0 7 25 22 23
19 127 55 157 7 2 8 28 20 63 20 24 54 21 26 15
20 2 14 98 0 0 2 33 19 21 38 12 7 35 35 35
21 25 50 43 0 0 1 0 1 31 119 60 35 54 43 10
22 29 21 32 0 1 1 10 9 18 5 29 14 21 20 18
23 2 6 28 0 0 2 3 2 7 0 8 17 35 82 33
24 11 8 15 0 0 4 1 0 3 0 5 0 31 26 21
25 2 9 4 0 0 1 0 1 2 0 0 1 45 39 86
26 1 1 0 1 0 0 46 68 23
27 6 12 6 0 0 1 56 34 28
28 5 1 4 0 0 2 52 18 12
29 3 3 7 0 0 1 25 46 41
30 21 10 5 84 33 40
31 4 8 3 21 39 22
32 4 5 3 25 12 21
33 2 5 10 29 22 15
34 1 4 2 3 4 7
35 5 3 4 4 2 1
36 7 11 4 6 10 9
37 9 7 7 7 8 4
38 2 2 1 1 8 12
39 7 1 0 0 6 5
40 3 0 1 0 5 6
41 4 0 1 1 4 0
42 1 1 0 1 0 1
43 0 8 0 1 1 0
44 0 3 0 0 0 1
45 1 4 1

AK, YD, and FK refer to Akkeshi, Yudounuma Lake, and Funkawan Bay, respectively.
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distribution of composite genotypes for biallelic cases
is given in Kitada and Kishino (2004). In this article,
a simulation study was conducted for assessing the
estimation performance of FST under various levels of
linkage disequilibrium. The results (shown in Table 3
in Kitada and Kishino 2004) suggested that the
maximum-likelihood estimation based on smaller num-
bers of sampling localities tended to cause underesti-
mation of FST, which is a similar phenomenon observed
in our article under linkage equilibrium. Meanwhile,
they showed that the level of linkage disequilibrium had
little impact on the amount of estimation bias although
it slightly affected the estimation variance for FST.
Therefore, we expect that our integrated-likelihood
approach is also effective to improve the estimation
performance in the linkage disequilibrium model, and
the amount of reduction of bias is not related to the level
of linkage disequilibrium. Although the likelihood
function is complicated in the model, this topic also
warrants further investigation.

The authors are grateful to two anonymous reviewers for their
constructive comments on the original version of this manuscript.
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APPENDIX A: ESTIMATION WITH THE MCEM ALGORITHM

At first, we briefly illustrate a typical case of the EM algorithm (McLachlan and Krishnan 1997). Let Y and Z be
the observed and latent/missing random vectors, respectively. Let f(y, z; v) denote the joint probability density
function, where v is a vector of parameters. The log-likelihood function for v, based on the complete data (Y, Z), is
given by lc(v) ¼ log f(y, z; v). To find the maximum-likelihood estimator, the likelihood based on the observed data
y, loðvÞ ¼ log

Ð
f ðy; z; vÞdz must be maximized. However, some models do not have closed forms for lo(v). Instead

of directly maximizing lo(v), the EM algorithm alternates between the following two steps:

E step: compute Q(v jv[t]) ¼ E[lc(v) jY, v[t]].
M step: define v[t11] as a value of v that maximizes Q(v jv[t]).

In our metapopulation model, the observed data are the set fnkl ; k ¼ 1; . . . ; K ; l ¼ 1; . . . ;Lg, and the latent
variables are bl ¼ ðbl1; . . . ; blJl

Þ ðl ¼ 1; . . . ; LÞ. Although bl is originally a parameter vector, it can be regarded as a
random vector with a flat prior in the context of Bayesian estimation. The complete log-likelihood function is given by

lcðu; bÞ ¼
XL
l¼1

XK
k¼1

flog f ðnkl j u; blÞ1 logpðblÞg:

Note that the second term is ignorable because p(bl) } 1. The original EM algorithm expects an explicit formula for
the conditional expectation Q in the E-step. However, Q in our model does not have a closed form because the log-
likelihood is complicated by the Dirichlet-multinomial distribution. To evaluate the function Q, we use a Monte Carlo
integration via the MCMC method.

We calculate Ebl
½log f ðnkl j u; blÞ jnkl ; u

½t��. To generate the random variables blðl ¼ 1; . . . ; LÞ from the conditional
distribution of bl, given ðn1l ; . . . ; nKl Þ and u[t],

pðbl jn1l ; . . . ; nKl ; u
½t�Þ ¼ f ðn1l ; . . . ; nKl ; bl ; u

½t�Þ
f ðn1l ; . . . ; nKl ; u

½t�Þ
¼ f ðn1l ; . . . ; nKl jbl ; u

½t�ÞÐ
f ðn1l ; . . . ; nKl jbl ; u

½t�Þdbl

;

the following Metropolis–Hasting sampling method (e.g., Robert and Casella 2004) is used.

1. Sample a candidate vector bl* from a proposal distribution g(� jbl
(i)).

2. Compute an acceptance ratio defined by

rðbðiÞ
l ; bl*Þ ¼ min

f ðn1l ; . . . ; nKl jbl*; u
½t�Þg ðbðiÞ jb*Þ

f ðn1l ; . . . ; nKl jbðiÞ
l ; u½t�Þg ðb* jbðiÞÞ

; 1

 !
:

3. Set bl
(i11) as

b
ði11Þ
l ¼ bl* with probability rðbðiÞ

l ; bl*Þ;
b
ðiÞ
l otherwise:

(

Let mt be the sample size of the Monte Carlo integration at the tth step in the EM algorithm. Precision of the Monte
Carlo integration depends on the sample size. To obtain better precisions at later steps in the E-step, which affect
convergence of u[t], we increase mt by t as
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mt ¼ k � minð½1021ðt=20Þ�; 104Þ:

The first mt/5 samples are discarded as constituting the burn-in period to make the MCMC sequences independent of
initial values of b. The value k is the length of thinning; that is, every kth simulation draw is kept as an output of the
Monte Carlo data. This is to reduce the autocorrelation in each sequence. We set k ¼ 10. The function Q(uju[t]) is
approximately assessed as

Q̂ ðu j u½t�Þ ¼ 1

m9t

Xm9t

i¼1

lcðu; bðiÞÞ;

where m9t is the length of the effective MCMC sequence. If the standard error of the parameter estimate is required,
it can be evaluated using the observed information as follows:

Î ðuÞ ¼ � 1

m9t

Xm9t

i¼1

@2

@u2lcðû; bðiÞÞ � 1

m9t

Xm9t

i¼1

@

@u
lcðû; bðiÞÞ

� �2

1
1

m9t

Xm9t

i¼1

@

@u
lcðû; bðiÞÞ

)2

:

(

APPENDIX B: ESTIMATION WITH THE LAPLACE APPROXIMATION

Our integrated likelihood can be expressed as

LIðuÞ ¼
YL
l¼1

ð
f ðn1l ; . . . ; nKl j u; blÞdbl : ðB1Þ

We illustrate the approximation by considering the contribution made by the lth locus [say LI
(l)(u)] to LI(u). The

Laplace approximation is often used in statistics. The approximation depends on a second-order Taylor expansion of
log f ðnl j u; blÞ ¼ log f ðn1l ; . . . ; nKl j u; blÞ. Let b̂lðuÞ be the value of bl that maximizes log f(nl j u,bl) for fixed u. Then,
LI

(l)(u) can be approximated (ignoring factors not depending on u) as

L
ðlÞ
I ðuÞ �

ð
exp log f ðnl j u; b̂lðuÞÞ � 1

2ðbl � b̂lðuÞÞ9H ðuÞðbl � b̂lðuÞÞ
n o

dbl

¼ detfH ðuÞg�1=2f ðnl j u; b̂lðuÞÞ;

where

H ðuÞ ¼ � @2

@bl@b9l
log f ðnl j u; blÞ j bl¼b̂l ðuÞ;

and det{H(u)} denotes the determinant of H(u). Taking the logarithm of LI
(l)(u), we get

logL
ðlÞ
I ðuÞ � log f ðnl j u; b̂lðuÞÞ � 1

2 log detfH ðuÞg: ðB2Þ

The first term on the right-hand side of Equation B2 is the profile log-likelihood of u. In fact, Equation B2 can be
regarded as an approximate modified profile log-likelihood of u to reduce the estimation bias (Lindsey 1996;
Pawitan 2001). The estimates b̂lðuÞðl ¼ 1; . . . ; LÞ have of course uncertainty due to their own nature. However, if
only the first term of the right-hand side of Equation B2 is present, b̂l ðuÞ acts as if the true value, and therefore the
uncertainty in b̂lðuÞ is not taken into account. This is a reason why the IL method outperforms the conventional ML
and PL methods.

In the metapopulation model, it is not possible to obtain an exact formula for H(u) or b̂lðuÞ. To maximizeP
l logLðlÞI ðuÞ, we use an iterative method based on automatic differentiation (Skaug and Fournier 2006), which is

implemented with the statistical software ADMB-RE (http://otter-rsch.com/admbre/admbre.html). To improve the
accuracy of the Laplace approximation, we changed the variables in the integral of Equation B1 using the logistic
transformation blj ¼ expðhljÞ=

PJl
j¼1 expðhljÞ ð j ¼ 1; . . . ; JlÞ with the constraint hlJl

¼ 0. The computation time is
much less than that required for the MCEM algorithm.
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