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ABSTRACT

Sibships are commonly used in genetic dissection of complex diseases, particularly for late-onset dis-
eases. Haplotype-based association studies have been advocated as powerful tools for fine mapping and
positional cloning of complex disease genes. Existing methods for haplotype inference using data from
relatives were originally developed for pedigree data. In this study, we proposed a new statistical method for
haplotype inference for multiple tightly linked single-nucleotide polymorphisms (SNPs), which is tailored
for extensively accumulated sibship data. This new method was implemented via an expectation-
maximization (EM) algorithm without the usual assumption of linkage equilibrium among markers. Our
EM algorithm does not incur extra computational burden for haplotype inference using sibship data
when compared with using unrelated parental data. Furthermore, its computational efficiency is not
affected by increasing sibship size. We examined the robustness and statistical performance of our new
method in simulated data created from an empirical haplotype data set of human growth hormone gene
1. The utility of our method was illustrated with an application to the analyses of haplotypes of three
candidate genes for osteoporosis.

THE human genome has been portrayed as a series
of high linkage disequilibrium (LD) regions with

limited haplotype diversity (Patil et al. 2001; Gabriel

et al. 2002). Several common haplotypes that can be
captured by a few tagging single-nucleotide polymor-
phisms (SNPs) usually account for a majority of ge-
netic variation in genomic regions or candidate genes
( Johnson et al. 2001; Patil et al. 2001; Gabriel et al.
2002). Such haplotype patterns observed in empirical
studies have triggered the development of the In-
ternational HapMap Project that aims to determine the
common patterns of DNA sequence variation in the
human genome (Gibbs et al. 2003). Focusing on these
common haplotypes greatly facilitates LD-based map-
ping analyses, such as those for fine mapping and po-
sitional cloning of complex disease genes ( Johnson

et al. 2001). However, linkage phase information in
diploids, such as humans, is usually unknown from
genotype data. The determination of haplotypes by
experimental methods in large samples is currently
time consuming and expensive. Therefore, computa-

tional algorithms and statistical methods have been
used for large-scale haplotype determination.

Sibships are commonly used with increasing empha-
sis on genetic studies of complex diseases, particularly
those late-onset ones such as Alzheimer’s and Parkinson’s
diseases, for which genotype data of parents of affected
individuals are usually not available (Freimer and
Sabatti 2004). Extensively accumulated sibship data
call for algorithmic and methodological advances in
haplotype inference for subsequent fine mapping and
positional cloning studies. Currently available com-
putational algorithms and statistical methods of haplo-
type inference from relatives were originally developed
for pedigree data (Lander and Green 1987; Sobel and
Lange 1996; O’Connell 2000; Qian and Beckmann

2002). It is unclear how these methods perform in
haplotype inference without founder information in
sibship data.

Existing methods for pedigree haplotype inference
can be broadly classified into two categories: rule-based
and likelihood-based haplotyping methods. The rule-
based approaches (Wijsman 1987; O’Connell 2000;
Tapadar et al. 2000; Qian and Beckmann 2002; Li

and Jiang 2003; Gao et al. 2004) are deterministic and
fast and thus can handle large pedigrees with dense
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markers. However, they do not normally provide nu-
merical assessments of the reliability of their results. On
the other hand, likelihood-based methods (Lander and
Green 1987; Sobel and Lange 1996; Lin and Speed

1997; Abecasis et al. 2002) are typically stochastic and
flexible in tackling complex pedigrees, but they are time
consuming and thus may not be suitable for large data
sets. In particular, most likelihood-based methods for
pedigree haplotype inference implicitly assume linkage
equilibrium among markers. However, this assumption
is contradicted by haplotype block structures in human
genomes, as observed ubiquitously in recent empirical
data (Patil et al. 2001; Gabriel et al. 2002). The po-
tential problem of using linkage-based software that
assumes linkage equilibrium among markers in haplo-
type inference has been nicely addressed in the analysis
of haplotypes within the HPC1 gene (Schaid et al. 2002).
Two recent methods, FAMHAP and FBAT, are excep-
tions in that they can be used to infer haplotype from
nuclear families without the assumption of linkage
equilibrium among markers (Becker and Knapp 2004;
Horvath et al. 2004).

In this study, we proposed a maximum-likelihood
method for haplotype inference for multiple tightly
linked SNPs, tailored for sibship data. We implemented
our method via a well-known expectation-maximization
(EM) algorithm without the assumption of linkage
equilibrium among markers. The utility of the new
method was validated by using a wide variety of sim-
ulated and real data sets. We compared our method with
commonly used software for haplotype inference, Gene-
hunter (Kruglyak et al. 1996) and FAMHAP (Becker

and Knapp 2004).

STATISTICAL METHODS

Suppose that there is a sample of n sibships, and each
sibship contains ni individuals. Let G ¼ ðG1; . . . ; GnÞ
denote the observed genotypes for the n sibships, where
Gi ¼ ðgi1; . . . ; gini

Þ and gij is the genotype of individual
j in the sibship i. Let u ¼ ðu1; . . . ; uM Þ denote popula-
tion haplotype frequencies, where M is the number of
all possible haplotypes in the sample. Let gif and gim

denote the unobserved father and mother genotypes in
the sibship i, respectively. The likelihood function of the
data can be expressed as

LðG j uÞ ¼
Yn

i¼1

PðGiÞ

¼
Yn

i¼1

X
gif

X
gim

Pðgif ÞPðgimÞPðgi1; . . . ; gini
j gif ; gimÞ:

ð1Þ

Suppose that the marker loci are tightly linked so that
the recombination in the parental generation can be

safely ignored and Hardy–Weinberg equilibrium (HWE)
holds true. Then,

PðGiÞ ¼
X

gif¼ðhs4ht Þ

X
gim¼ðhu4hvÞ

tni CiCstCuvCstuvusutuuuv ;

ð2Þ

where the notion gif ¼ ðhs4htÞ denotes a parental
zygote configuration in which the two haplotypes, hs

and ht , are compatible with the genotype gif ; t is the
probability of offspring genotypes given different mat-
ing design and equals 1 when both parents are homo-
zygotes, 1

2 when only one of the parents is a homozygote,
1
4 when both parents are two different heterozygotes,
and 1

4 and 1
2 for homozygous and heterozygous offspring,

respectively, when both parents are identical hetero-
zygotes; Ci has values of 1 or 0 according to whether
parental genotypes gif and gim are compatible with their
offspring genotypes (gi1; . . . ; gini

) or not; Cst is the
combination coefficient of two haplotypes and has
values of 1 or 2 according to whether hs ¼ ht or not;
Cstuv is the combination coefficient of two parental
genotypes and has values of 1 or 2 according to whether
gif ¼ gim or not; and us , ut , uu , and uv are frequencies of
haplotypes hs , ht , hu , and hv , respectively.

The maximum-likelihood estimate (MLE) of u can be
found analytically by solving a system of regular equa-
tions with a Lagrange multiplicator l,
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and

XM
j¼1

uj ¼ 1: ð4Þ

However, solving a set of M equations is tedious when M
is large, and the number M is often unknown a priori.
Alternatively, a wide variety of iterative algorithms for
solving MLE equations can be used. Among them, the
EM method is very general for missing data problems,
with fairly simple forms and well-established statistical
properties (Dempster et al. 1977). In our method, in the
expectation step, the probability of each of the parental
zygote configurations that are compatible with their
offspring genotypes is calculated by using haplotype
frequencies obtained in the previous iteration step. In
the maximization step, haplotype frequencies are esti-
mated by counting copies of a specific haplotype in
parental zygote configurations, which maximizes the
likelihood of Equation 1. Here we combined the ex-
pectation and maximization steps and obtained the fol-
lowing expectation-maximization recursion,
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where ur

j and ur11
j are the estimated frequencies at

steps r and r11, respectively, and Z j
stuv counts how often

(zero, one, two, three, or four times) haplotype j occurs
in the two haplotype pairs (hs; ht) and (hu; hv). Within
the EM framework, the approximate variances of the
estimates of haplotype frequencies can be obtained by
inverting the estimated information matrix (appendix a)
(Louis 1982).

We adopted the following two strategies to improve
the computation speed of our method. First, we used
an efficient approach of starting iteration suggested by
Rohde and Fuerst (2001). That is, at the first iteration
step, we took into account only the most likely haplotype
pairs in the sample and then estimated haplotype fre-
quencies by counting these most likely haplotype pairs.
This approach usually generated the best haplotype
estimates while obviating multiple starting iterations.
Second, the possible unknown parental genotypes have
three to the power of the number of loci in haplotype
inference. These possible parental genotypes in Equa-
tion 5 were analytically collapsed and reduced given
different mating designs. As an example, this collapse
approach for sibship data with two siblings is detailed
in appendix b. It can be seen from appendix b that
haplotype inference using sibship data does not in-
crease the computational burden of our EM algorithm
compared with that using unrelated parental data. Also,
the increasing sibship size does not result in a larger
computational burden since the number of compatible
parental genotypes is reduced and more easily resolved
given the larger sibship size.

SIMULATIONS

Simulation data were sampled from empirical haplo-
type data of human growth hormone gene 1 (GH1)
(Horan et al. 2003), where GH1 underwent a combi-
nation of events including mutation, recombination,
and gene conversion. These complexities inherent in
the GH1 gene are common in real data applications.
Haplotypes of the GH1 gene were experimentally de-
termined in a sample of 154 male British Caucasians.
The 15 SNP sites spanned 535 nucleotides in the pro-
moter of the GH1, with minor allele frequencies rang-
ing from 0.3 to 41.2%. Six of these SNPs can be
considered as rare variants with minor allele frequencies
,5% (0.3–3.6%). Standardized linkage disequilibrium
measured by jD9j (Lewontin 1964) among the remain-
ing 9 common SNPs ranged from complete LD (i.e.,
sites �301 and �308) to effective linkage equilibrium
(i.e., sites �1 and 159).

To simplify simulation and comparison of the simu-
lation results, we here considered each sibship with two

siblings. In the simulations, in each nuclear family, both
parents’ haplotypes were randomly selected from the
haplotype distribution of the GH1 gene as shown in
Table 1 of Horan et al. (2003). Two offspring (i.e., a sib
pair) were then randomly generated from their parents.
The following six cases were studied:

1. Our newly proposed EM algorithm using sib-pair
data (EM-Sib): We treated parents’ genotypes as miss-
ing data and used only the sib-pair data for haplotype
inference.

2. The conventional EM algorithm using singleton data
(EM-Single): To avoid related subjects, we randomly
selected one individual from each sib pair and used
this singleton data for haplotype inference by apply-
ing the conventional EM algorithm that was designed
for random population samples (Excoffier and
Slatkin 1995).

3. Genehunter using sib-pair data (GH-Sib): Gene-
hunter Version 2.1 (http://www.fhcrc.org/labs/
kruglyak/Downloads/index.html) was used for hap-
lotype inference for the sib-pair data without using
parent information.

4. Genehunter using family data (GH-Family): Gene-
hunter was used for haplotype inference for the whole-
family data in which each nuclear family had both
parents and two offspring. To keep the genotyping
cost the same for each method, the number of nuclear
families used was halved in this case and thus the total
number of subjects used for haplotype inference was
the same as in the cases using the sib-pair data.

5. FAMHAP using sibship data (FAMHAP-Sib) without
reordering SNP data: The FAMHAP software was ob-
tained from Tim Becker’s website (http://www.uni-
bonn.de/%7Eumt70e/becker.html).

6. FAMHAP using sibship data with reordered SNP data
(FAMHAP-Sib-R): To obtain the best estimates, we
tried several orders of genotype data and took esti-
mates with the largest likelihood.

To compare the performance of each statistical
method, we evaluated the following commonly used
measurements:

1. The discrepancy between the estimated and true
sample haplotype frequencies,

Dðû; uÞ ¼ 1
2

PM
j¼1
j ûj � uj j ; ð6Þ

where ûj and uj denote, respectively, the estimated
and true frequencies of the jth haplotype in the
sample.

2. Error rate—namely, the proportion of individuals
with ambiguous phase whose haplotypes are not cor-
rectly inferred (Niu et al. 2002).

3. Identification rate: A good statistical method for hap-
lotype inference should meet two criteria: (i) high
proportion of true haplotypes identified to total true
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haplotypes in the sample and (ii) low proportion of
false (nonexistent) haplotypes to total estimated
haplotypes in the sample. The haplotype identifica-
tion rate is an integrative index measuring these two
criteria (Excoffier and Slatkin 1995). We consider
that a haplotype is identified as being present in the
true sample if its frequency is estimated to be above
the threshold value of 1/(2n) (n is sample size). The
identification rate can be defined as

IH ¼
2ðk � �kÞ

k 1 k̂
; ð7Þ

where k is the number of haplotypes in the true
sample, k̂ is the number of estimated haplotypes with
frequencies above the threshold, and �k is the number
of true haplotypes not identified in the sample.

SIMULATION RESULTS

We simulated six sample sizes: n ¼ 50, 100, 150, 200,
250, and 300. Simulations were replicated 100 times for
each case and the mean results of the 100 simulations
were summarized. Comparisons of discrepancies, error
rates, and identification rates among different methods
are shown in Figures 1 and 2. Our new method for
haplotype inference using sibship data (i.e., EM-Sib)
has the smallest discrepancy and error rate and the
highest identification rate. The FAMHAP does not work
well for inferring haplotype with a large number of loci
without reordering SNP genotype data. However, the
performance of FAMHAP is improved when running
several orders of SNP data. The Genehunter method for
haplotype inference using sibship data (i.e., GH-Sib)
produces the largest discrepancy (.20%) and error rate
(.30%) and the lowest identification rate (,70%) for
haplotype analyses. However, when using the whole
family data Genehunter performs dramatically better
than that using sibship data, but is still not as good
compared to the EM methods. The EM-Single method
that only uses singleton data is less accurate for hap-
lotype inference compared with our EM-Sib method.
This is because the EM-Single method does not com-
pletely explore sibship information for haplotype
inference.

Generally, the discrepancy and the error rate for the
EM methods accumulate with increased number of loci
for haplotype inference. However, the performance of
Genehunter depends largely on the LD among markers
and is not affected by the number of loci for haplotype
inference. For instance, in our simulations, the error
rate of the GH-Sib is 33 and 44% for inferring 15- and
9-locus haplotypes, respectively. Another remarkable
feature is that increasing sample sizes does not reduce
the error rate or raise the identification rate when using
the GH-Sib and GH-Family methods (Figures 1 and 2).

Figure 1.—Comparisons of discrepancies, error rates, and
identification rates among different methods using 15-locus
haplotype simulated data.
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The EM algorithms including the EM-Sib, EM-Single,
FAMHAP-Sib, and FAMHAP-Sib-R are favored by in-
creasing sample sizes. Larger sample sizes result in
more accurate haplotype estimates and smaller stan-
dard errors in these EM methods.

APPLICATION EXAMPLES

To demonstrate the utility of our new method, we
selected �200 Caucasian nuclear families (each with
both parents and two offspring) from our studies that
aim to search genes underlying the risk to osteoporo-
sis in the Creighton University Osteoporosis Research
Center. Three important candidate genes for osteo-
porosis were chosen for estimation of haplotype fre-
quencies. These were the vitamin D receptor (VDR),
apolipoprotein E (APOE), and parathyroid hormone
(PTH)/PTH-related peptide receptor type 1 (PTHR1).
Four SNPs were genotyped for each of these three genes
in these subjects (Long et al. 2004). For the VDR gene,
the SNPs spanned 63.4 kb and pairwise LD (jD9j)
(Lewontin 1964) ranged from 0.049 to 0.980 with an
average of 0.345. For the APOE gene, the SNPs spanned
3.6 kb and pairwise LD ranged from 0.745 to 0.999 with
an average of 0.898. For the PTHR1 gene, the SNPs
spanned 20.3 kb and pairwise LD ranged from 0.947 to
0.985 with an average of 0.970. The nuclear families
were divided into two subsamples (with the same num-
ber of subjects): unrelated parental sample and sib-
ship sample. We estimated haplotype frequencies at the
VDR (n¼ 221), APOE (n¼ 197), and PTHR1 (n¼ 218)
genes using the above six strategies: EM-Sib, EM-Single,
GH-Sib, GH-Family, FAMHAP-Sib, and FAMHAP-Sib-R.
To evaluate the performance of the above strategies in
the real data application, we applied the conventional
EM algorithm for estimation of haplotype frequencies
to the parental samples (denoted as EM-Parent). The
conventional EM algorithm is effective for unrelated
parental samples and should yield a high accuracy of
haplotype frequency estimates in a sample of �400
unrelated subjects (Fallin and Schork 2000). There-
fore, haplotype frequencies estimated from the EM-
Parent are treated as references of ‘‘true’’ haplotype
frequencies in the population. We then compared
haplotype frequencies from the EM-Parent with those
from the other six strategies (Tables 1–3).

Haplotype frequencies estimated from the EM-Sib
and FAMHAP methods are most similar to those from
the EM-Parent. The total discrepancy for these methods
is �2.5%. The performance of the EM-Single ranks
fourth among the six strategies with an average discrep-
ancy of 5.8%. The total discrepancies for the GH-Sib
method are 32.6, 41.8, and 18.3% for the VDR, PTHR1,
and APOE genes, respectively. The GH-Family performs
reasonably better than the GH-Sib with an average
discrepancy of 9.2%. There are three to six haplotypes

Figure 2.—Comparisons of discrepancies, error rates, and
identification rates among different methods using nine-locus
haplotype simulated data.
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whose frequency differences between the EM-Parent
and the GH-Sib are .5%. Such a large estimated fre-
quency difference is also observed between the EM-
Parent and GH-Family methods. Furthermore, the GH
methods falsely declared several pseudohaplotypes. In
the PTHR1 gene, two haplotypes (ACAA and ACGA)
whose frequencies were estimated to be zero in all of the
EM methods were detected by both the GH-Sib and GH-

Family methods. These two haplotypes likely do not
exist in the sample since the EM methods are very robust
in random samples (Fallin and Schork 2000). It is also
worth noting that the FAMHAP methods tend to miss
rare haplotypes. For example, four VDR haplotypes with
frequencies of �2% (.1/4n) that were detected by the
EM-Parent method were not found in the FAMHAP
methods.

TABLE 1

Comparison of VDR haplotype frequencies estimated from different methods

Haplotypes EM-Parent EM-Sib EM-Single GH-Sib GH-Family FAMHAP-Sib

GTAT 0.0024 0.0010 — 0.0738 0.0046 —
GTAC 0.1257 0.1208 0.1337 0.0705 0.1147 0.1197
GTGT 0.1453 0.1421 0.1143 0.1066 0.1479 0.1498
GTGC — — 0.0028 0.0246 0.0149 —
GCAT 0.0104 0.0068 0.0073 0.0721 0.0321 0.0062
GCAC 0.2180 0.2089 0.1839 0.1197 0.1686 0.2135
GCGT 0.2298 0.2355 0.2865 0.1754 0.2167 0.2436
GCGC 0.0025 — — 0.0754 0.0149 —
ATAT 0.0021 0.002 0.0023 0.0066 0.0046 —
ATAC 0.0173 0.0278 0.0001 0.0131 0.0103 0.0204
ATGT 0.0885 0.0826 0.0799 0.0393 0.0768 0.0830
ATGC 0.0021 0.0027 0.0041 0.0213 0.0057 —
ACAT 0.0010 0.006 0.0018 0.0033 0.0092 —
ACAC 0.0404 0.0472 0.0759 0.0443 0.0585 0.0480
ACGT 0.1144 0.1053 0.1075 0.0885 0.1147 0.1061
ACGC — — — 0.0656 0.0057 —
Discrepancy — 0.0342 0.1059 0.3260 0.0922 0.0338

In Tables 1–3, haplotype frequencies that are estimated from parental samples using the conventional EM algorithm (i.e., EM-
Parent) are treated as ‘‘true’’ haplotype frequencies in the population. The discrepancy of haplotype frequencies was calculated
using Equation 7. Values in italics are those haplotypes whose frequencies deviated .5% from those estimated from the EM-
Parent. FAMHAP-Sib and FAMHAP-Sib-R yielded identical results for haplotypes with small numbers of loci.

TABLE 2

Comparison of APOE haplotype frequencies estimated from different methods

Haplotypes EM-Parent EM-Sib EM-Single GH-Sib GH-Family FAMHAP-Sib

CGTC 0.3721 0.3789 0.3855 0.3599 0.3939 0.3763
CGTG — 0.0015 — — 0.0058 —
CGCC 0.0094 0.0075 0.0010 0.0130 0.0044 —
CGCG — — — — — —
CATC 0.0018 0.0046 0.0069 0.0093 0.0087 0.0096
CATG 0.0013 — — — — —
CACC — — — — — —
CACG — — — — — —
GGTC 0.0272 0.0275 0.0409 0.1262 0.0392 0.0352
GGTG 0.0615 0.063 0.0508 0.0353 0.0538 0.0512
GGCC 0.1215 0.108 0.0979 0.0557 0.1279 0.1330
GGCG 0.0010 — — 0.0130 — —
GATC 0.3982 0.3953 0.4170 0.3210 0.3576 0.3914
GATG 0.0060 0.0055 — 0.0204 0.0044 0.0055
GACC 0.0001 0.0006 — 0.0464 0.0044 —
GACG — — — — — —
Discrepancy — 0.0173 0.0511 0.1826 0.0573 0.0304

See Table 1 legend for details.

504 P.-Y. Liu, Y. Lu and H.-W. Deng



DISCUSSION

There is an increasing consensus among human
geneticists to use sib-pair linkage and association ap-
proaches to map disease-susceptibility genes (Freimer

and Sabatti 2004). Many large sibship data sets have
already been accumulated, calling for due applications.
For late-onset diseases, sibship data without parents are
common. One of the applications for these sibship data
is haplotype analysis, which has shown some distinct
advantages over single-marker analysis in genetic stud-
ies of common diseases. In the context of association
studies, when the disease association of a specific allele
is dependent on cis-acting interactions with other loci,
the disease association may not be detected by testing a
single allele unless the whole functional haplotype itself
is analyzed. This has been demonstrated through both
empirical studies (Drysdale et al. 2000; Martin et al.
2000) and simulation studies (Zhang et al. 2002, 2003).
Computational algorithms and statistical methods are
currently the preferred means, particularly for large-
scale haplotype determination. In this study, we devel-
oped a new statistical method for haplotype inference
for multiple tightly linked SNPs, which is specially
designed for sibship data. We examined the robustness
and statistical performance of the new method in our
simulated data that were created from empirical haplo-
type data of the GH1 gene (Horan et al. 2003). The
utility of our method was demonstrated with an appli-
cation to the inferences of haplotypes at several candi-
date genes underlying osteoporosis.

The accuracy of the proposed method was improved
over that of existing methods, as demonstrated in both
simulated and real data. Our EM algorithm did not

increase the computational burden for haplotype in-
ference using sibship data, compared with that using
unrelated parental data. Its computational efficiency was
not affected by increasing sibship size. FAMHAP did not
perform well for inferring haplotype with a large number
of loci in single SNP genotype data and its performance
was dramatically improved when running several orders
of SNP data. In addition, FAMHAP tended to miss rare
haplotypes in the sample. However, Genehunter esti-
mated haplotype frequencies with large biases and falsely
declared nonexistent haplotypes in the sample. This is
because Genehunter assumes linkage equilibrium among
markers on the basis of the Lander–Green algorithm
(Lander and Green 1987). This assumption was ap-
parently violated for dense SNP data that were used in
our simulations and real data analyses. Similar results
were also observed in the haplotype analysis of the
HPC1 gene in a recent study (Schaid et al. 2002).

Haplotype inference can be viewed as a missing data
problem. In our method, specifically developed for
sibship data without parents, marker data from all of
the sibships are observed data, whereas parental zygote
configurations [i.e., gif ¼ ðhs4htÞ] are unobservable or
missing data. The principle of our method is to resolve
sibship genotype data into their parental zygote config-
urations, from which haplotype inference can then be
conducted. This circumvents the problem of related
subjects that arises in the direct application of the con-
ventional EM algorithm to sibship data. In our method,
parental genotype data, if available, can reduce the
number of potential zygote configurations and thus
increase the accuracy of haplotype inference and ac-
celerate the computation. Incorporating parental data
into our method is straightforward and simply discards

TABLE 3

Comparison of PTHR1 haplotype frequencies estimated from different methods

Haplotypes EM-Parent EM-Sib EM-Single GH-Sib GH-Family FAMHAP-Sib

ACAAa — — — 0.1839 0.0422 —
ACAG 0.0012 0.0016 0.0023 0.0088 0.0060 —
ACGAa — — — 0.0035 0.0030 —
ACGG 0.5767 0.5834 0.5641 0.3993 0.5241 0.5915
ATAA 0.0023 0.0032 0.0023 0.0123 0.0075 —
ATAG — — — — — —
ATGA 0.0174 0.021 0.0253 0.0105 0.0286 0.0195
ATGG 0.0010 0.0016 0.0023 0.0070 0.0015 —
GCAA 0.0057 0.0064 0.0069 0.0070 0.0030 0.0061
GCAG — 0.0016 0.0024 0.0018 — —
GCGA 0.0011 0.0016 — — 0.0030 —
GCGG 0.0058 0.0064 0.0023 0.0140 0.0045 —
GTAA 0.3806 0.3751 0.3829 0.1506 0.3102 0.3829
GTAG 0.0024 0.0016 0.0023 — 0.0090 —
GTGA 0.0034 0.0049 0.0046 0.0158 0.0136 —
GTGG 0.0023 0.0016 0.0023 0.1856 0.0437 —
Discrepancy — 0.0121 0.0174 0.4178 0.1270 0.0196

See Table 1 legend for details.
a The underlined haplotypes likely do not exist in the samples.
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those zygote configurations that are not compatible
with their observed parental genotypes. This is some-
what similar to a recent study of haplotype inference
using nuclear family information (Rohde and Fuerst

2001). We therefore encourage researchers to collect
available parent data if possible in addition to sibship
data in their respective studies.

Finally, two assumptions underlying our method
should be acknowledged. One is that no recombination
occurs among dense SNP markers in the parental gen-
eration. This simplifies the variable t in Equation 2 as
a constant for different mating types. If t takes into
account marker interval distance as a function of re-
combination, it will lead to complexity of the likelihood
of the data and require further investigation. However,
this assumption should hold in real applications, espe-
cially for inferring haplotypes in haplotype blocks where
recombination is highly restricted in human genomes.
There is little evidence for historical recombination in
past generations in haplotype blocks (Patil et al. 2001;
Gabriel et al. 2002), let alone recombination occurring
in a given single generation (e.g., the parental genera-
tion). The other is that HWE holds at haplotypes. Fallin

and Schork (2000) have recently reported a simulation
study to assess the effects of departure from HWE on
estimation of haplotype frequency by the EM algorithm
in random population samples. They demonstrated that
the EM algorithm is reasonably robust to departure from
HWE and there is no increase in error with extreme
departure from HWE toward excess homozygosity.
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APPENDIX A

The approximate variances of the estimates of haplotype frequencies can be obtained by inverting the estimated
information matrix Iðû;GÞ,

Iðû;GÞ ¼ �E
Xn

i¼1
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The last term of the above equation equals zero when evaluated at u ¼ û. The above equation can also be regarded as
the observed information for the EM algorithm (Louis 1982).

APPENDIX B

The possible unknown parental genotypes in Equation 5 were analytically collapsed given different mating designs,
which could greatly reduce the EM computation. In our method, we first found the possible parental zygote
configurations that are compatible with the sibling’s genotypes. We then derived the explicit form of Equation 5 in
each configuration. Below, we illustrate this collapse technique for sibship data with two siblings. The two siblings
could take four, three, two, or one possible unobserved haplotypes.

a. Suppose that the two siblings take four haplotypes and their haplotype configuration is (h1h2, h3h4). Accordingly,
their compatible parental genotypes should be (h1h3, h2h4) and (h1h4, h2h3). For the parental genotype (h1h3, h2h4),
the denominator of Equation 5 can be expressed asX

gif¼ðh14h3Þ

X
gim¼ðh24h4Þ

tni CiC13C24C1324u1u3u2u4 ¼ ð14Þ
2 � 1 � 2 � 2 � 2 � u1u2u3u4 ¼ 1

2u1u2u3u4:

Then we counted the number of haplotype j that occurred in the two haplotype pairs (h1; h3) and (h2; h4). The
numerator of Equation 5 can be expressed as

X
gif
¼ðh14h3Þ

X
gim¼ðh24h4Þ

tni CiC13C24C1324Z
j
1324u1u3u2u4

¼ ð14Þ
2 � 1 � 2 � 2 � 2 � 1 � u1u2u3u4 ¼ 1

2u1u2u3u4; when j ¼ 1; 2; 3; 4X
gif¼ðh14h3Þ

X
gim¼ðh24h4Þ

tni CiC13C24C1324Z
j
1324u1u2u3u4 ¼ 0; when j 6¼ 1; 2; 3; 4:

The same results can be obtained from the parental genotype (h1h4, h2h3).
b. Suppose that the two siblings take three haplotypes and their possible haplotype configurations are (h1h2, h1h3) and

(h1h1, h2h3). Accordingly, their compatible parental genotypes should be (h1ht , h2h3) and (h1h2, h1h3), respectively,
where t can be any haplotype in the population. For the parental genotype (h1ht , h2h3), the denominator of
Equation 5 can be expressed as
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The numerator of Equation 5 can be expressed asX
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For the parental genotype (h1h2, h1h3), the denominator of Equation 5 can be expressed asX
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¼ðh14h2Þ
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X
t 6¼1

ð14Þ
2 � 1 � 2 � 2 � 2 � u2

1u2u3 ¼ 1
2u2

1u2u3:

The numerator of Equation 5 can be expressed as

X
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c. Suppose that the two siblings take two haplotypes and their possible haplotype configurations are (h1h1, h1h2),
(h1h2, h2h2), (h1h2, h1h2), and (h1h1, h2h2). Accordingly, their compatible parental genotypes should be (h1h2, h1hv),
(h1h2, h2hv), (h1ht , h2hv), and (h1h2, h1h2), respectively, where t and v can be any haplotypes in the population. For
the parental genotype (h1h2, h1hv), the denominator of Equation 5 can be expressed as
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The numerator of Equation 5 can be expressed asX
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The same results can be obtained from the parental genotype (h1h2, h2hv) by exchanging the subscripts 1 and 2 in
the above derivations.

For the parental genotype (h1ht , h2hv), the denominator of Equation 5 can be expressed asX
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The numerator of Equation 5 can be expressed asX
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For the parental genotype (h1h2, h1h2), the denominator of Equation 5 can be expressed asX
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The numerator of Equation 5 can be expressed asX
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d. Suppose that the two siblings take one haplotype and their haplotype configuration is (h1h1, h1h1). Accordingly,
their compatible parental genotype should be (h1ht , h1hv). The denominator of Equation 5 can be expressed asX

gif
¼ðh14ht Þ

X
gim¼ðh14hvÞ

tni CiC1tC1vC1t1vu1utu1uv ¼ 1
4u2

1 1 1
2u3

1 1 1
4u4

1:

The numerator of Equation 5 can be expressed asX
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This collapse technique can be also implemented similarly in other sibship data structures. As shown in the above
derivations, the haplotype inference using sibship data does not dramatically increase the EM computation compared
with that using unrelated parental data. Also, increasing sibship size does not result in a larger computational burden
since the number of compatible parental genotypes is reduced and more easily resolved given the larger sibship size.
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