Copyright © 2006 by the Genetics Society of America
DOI: 10.1534/genetics.106.059295

Note

A Stochastic Model for Cancer Risk

Rinaldo B. Schinazi’

Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80933-7150

Manuscript received April 11, 2006
Accepted for publication July 3, 2006

ABSTRACT

We propose a simple stochastic model based on the two successive mutations hypothesis to compute
cancer risks. Assume that only stem cells are susceptible to the first mutation and that there are a total of D
stem cell divisions over the lifetime of the tissue with a first mutation probability p; per division. Our
model predicts that cancer risk will be low if m = ;D is low even in the case of very advantageous
mutations. Moreover, if ;D is low the mutation probability of the second mutation is practically irrelevant
to the cancer risk. These results are in contrast with existing models but in agreement with a conjecture of
Cairns. In the case where m is large our model predicts that the cancer risk depends crucially on whether
the first mutation is advantageous or not. A disadvantageous or neutral mutation makes the risk of cancer

drop dramatically.

ANCER has long been thought of as being
provoked by successive somatic mutations; see
Knupson (2001) for a history of this hypothesis and
BARRETT (1986) for supporting experimental evidence.
For instance, the age incidence of retinoblastoma is
consistent with a two mutations scenario (HETHCOTE
and Knupson 1978) while the age incidence of colo-
rectal cancer is consistent with five successive muta-
tions (KNupson 2001). However, while there seems to
be general agreement that cancer has an early and a
late stage there are biological doubts on the exact
number of stages. ARMITAGE (1985) argues that two-
stage models explain several cancers.
In this article we propose a simple stochastic model
based on the two successive mutations hypothesis to
compute cancer risks.

THE MODEL

We assume that cells susceptible to the first muta-
tion undergo a fixed number D of divisions over the
lifetime of the tissue and that there is a probability W,
per division of producing a cell with a type 1 mutation.
Assuming that all divisions are stochastically indepen-
dent, the (random) number of type 1 mutation cells
produced over the lifetime of the tissue is Poisson dis-
tributed with mean m = Dp;. Once a type 1 cell appears
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it starts a branching process. More precisely, the process
starts with a single type 1 cell and after a unit time it
may die with probability 1 — p; or divide in two type 1
cells with probability p;. Successive generations of type 1
cells follow the same rules independently from each
other. Hence, the mean number of daughter cells per
cell is 2p,. It is well known (see, for instance, Section 1.9
in ScHINAZI 1999) that the branching process survives
forever with positive probability if and only if p; > %

We also assume that at each division of a type 1
cell there is a probability o for each daughter cell that it
be a type 2 cell. The probability, denoted by S(py, pe),
that a branching process started by a single type 1 cell
eventually gives birth to at least one type 2 cell may be
computed exactly:

St =150 (1= T 4= 1= o))

2 (1 - }"“2)2

(see ScHINAzI 2006). Assuming that branching pro-
cesses started by different type 1 cells are independent
of each other we get that the number of type 1 branch-
ing processes that eventually give birth to at least
one type 2 cell is also Poisson distributed with mean
Dy S(pr1, pe) = mS(p1, me). Hence, the probability of can-
cer over the lifetime of a particular tissue is

R(m7 b p‘?) =1- eXp(_mS(pl7 IJ“Q))'

As Figure 1 illustrates the parameter m (the mean
number of first mutations over the lifetime of the tissue)
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F1GUrE 1.—The plot of the risk R of a two mutations cancer
as a of function of p; for m = u1D = 0.01 and e = 107°.

has a dramatic effect on R. For m = 0.01 the risk of
cancer is <1% even for values of p; near 1, that is, even
if the first mutation is extremely advantageous. On
the other hand the parameter o is almost irrelevant for
low values of m (see Figure 2).

If mis large then the crucial parameter is p;. A neutral
or slightly disadvantageous first mutation (that is, p; =
0.5) lowers the risk of cancer dramatically (see Figure 3).
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FiGUure 2.—This plot illustrates our claim that for low m the
mutation rate o is practically irrelevant in a two mutations
cancer. We plot the difference between the cancer risks for
the models with py = 107 and pe = 107® as a function of
1. For both models we set m = p,D = 0.01.
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F1Gure 3.—The plot of the risk R of a two mutations cancer
as a of function of p; for m = 100 and pe = 10°°.

For p; = 0.5 the parameter pe becomes important (as
can be checked by direct computation).

DISCUSSION

Our model shows that even if mutated cells multiply
exponentially (as they do in a branching process with
p>3) a two mutations cancer has a low risk provided
m = w1 D is small. Moreover, for small m the risk of can-
cer, in this model, does not depend on the second muta-
tion probability wo.

If we assume that only stem cells are susceptible to the
first mutation then m = w,;D represents the mean of
first mutations for D divisions of stem cells. Our model
predicts that a good strategy to prevent cancer is a low
m. For low m the risk of cancer is low even if the first
mutation is advantageous (i.e., p; > %) and if the second
mutation rate po is high. This is consistent with the
picture of CAIRNS (2002) regarding carcinogenesis. In
particular, he conjectures that stem cell mutation rates
are low and that this affords protection against cancer.

In the case where m is large the cancer risk depends
crucially on whether the first mutation is advantageous
or not. If the first mutation is disadvantageous or neu-
tral the risk of cancer drops dramatically.

Branching processes, such as the ones used here, have
long been used in biology. For a recent example, see, for
instance, JoHNSON and BarToN (2002). Mathematical
modeling of the successive mutations hypothesis goes
back to at least ARMITAGE and DoLL (1954), who pro-
posed a pure birth process model. They successfully
modeled the increase in the number of cancers as a power
law of age. This power law is observed in a number of



countries and for a number of cancers. In contrast, the
model proposed here is suitable to test hypotheses at
the cell level rather than at the population level.

There are at least two recent articles that propose
mathematical models for the role of stem cells in the
appearance of cancer. FRANK et al. (2003) assume that
each cell (mutated or not) must undergo a certain
deterministic number of divisions before being killed.
They find the number of divisions for stem cells and
transit cells that minimizes the risk of cancer. For their
model, unlike ours, the mutation rate for stem cells
seems to have little influence on the risk of cancer (see
Figure 3 in their article). MICHOR et al. (2003) are in-
terested in the same type of question with the par-
ticular goal of finding the proportion of stem cells in a
tissue that minimizes the risk of cancer. There too
the mutation rate of stem cells seems to have a role com-
parable to the subsequent mutation rates [see (2.6) and
(2.7) in MicHOR et al. 2003]. Hence, ours seems to be
the first model that predicts a possible preponderant
role for the mutation rate of stem cells.

We thank an anonymous referee for carefully reading a previous

version of this manuscript and making several comments that im-
proved it.
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