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Abstract
Background: Due to the large number of genes in a typical microarray dataset, feature selection
looks set to play an important role in reducing noise and computational cost in gene expression-
based tissue classification while improving accuracy at the same time. Surprisingly, this does not
appear to be the case for all multiclass microarray datasets. The reason is that many feature
selection techniques applied on microarray datasets are either rank-based and hence do not take
into account correlations between genes, or are wrapper-based, which require high computational
cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are
considered, attempts to establish the merit of the proposed techniques are hampered by evaluation
procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy.

Results: We present two realistically evaluated correlation-based feature selection techniques
which incorporate, in addition to the two existing criteria involved in forming a predictor set
(relevance and redundancy), a third criterion called the degree of differential prioritization (DDP).
DDP functions as a parameter to strike the balance between relevance and redundancy, providing
our techniques with the novel ability to differentially prioritize the optimization of relevance against
redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy
while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets.

Conclusion: For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP
enables our filter-based techniques to produce accuracies better than those reported in previous
studies which employed similarly realistic evaluation procedures.

Background
The aim of feature selection is to form, from all available
features in a dataset, a relatively small subset of features
capable of producing the optimal classification accuracy.
This subset is called the predictor set. The following are past

and current stances on the use of feature selection for mul-
ticlass tissue classification:

• Feature selection does not aid in improving classifica-
tion accuracy [1,2], at least not as much as the type of clas-
sifier used.
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• Feature selection is often rank-based, and is imple-
mented mainly with the intention of merely reducing
cost/complexity of subsequent computations (since the
transformed dataset is smaller), rather than also finding
the feature subset which best explains the dataset [1,3].

• Studies proposing feature selection techniques with
sophistication above that of rank-based techniques resort
to an evaluation procedure which is prone to giving overly
optimistic estimate of accuracy, but has the advantage of
costing less computationally than procedures which yield
a more realistic estimate of accuracy [4-7].

In short, there are three ways in which feature selection
has been, and still is regarded for multiclass microarray
datasets: 1) should not be considered at all, 2) as simple
rank-based methods for dataset truncation, and finally, 3)
as more complicated methods with sound theoretical
foundation, but with doubtful empirical results.

A feature selection technique is made of two components:
the predictor set scoring method (which evaluates the
goodness of a candidate predictor set); and the search
method (which searches the gene subset space for the pre-
dictor set based on the scoring method). The technique
becomes wrapper-based when classifiers are invoked in
the predictor set scoring method. Otherwise, the tech-
nique is filter-based. Filter-based techniques, which are
the focus of this study, have several advantages over wrap-
per-based techniques: 1) Filter-based techniques cost less
computationally than wrapper-based techniques. 2) Fil-
ter-based techniques are not classifier-specific. 3) More
importantly, unlike the typical 'black-box' trait of wrap-
per-based techniques, filter-based techniques provide a
clear picture of why a certain feature subset is chosen as
the predictor set through the use of scoring methods in
which inherent characteristic(s) of the predictor set (and
not its prediction ability) is optimized. The last advantage
is particularly crucial since the predictor set scoring
method in a filter-based technique can explain the predic-
tion ability of the predictor set, whereas in a wrapper-
based technique, the score of goodness of the predictor set
is its prediction ability itself, and hence the term 'black-
box'.

An important principle behind most filter-based feature
selection techniques can be summarized by the following
statement: A good predictor set should contain features highly
correlated with the target class distinction, and yet uncorrelated
with each other [8]. The predictor set attribute referred to in
the first part of this statement, 'relevance', is the backbone
of simple rank-based feature selection techniques. The
aspect alluded to in the second part, 'redundancy', refers
to pairwise relationships between all pairs of genes in the
predictor set.

Previous studies [4,8] have based their feature selection
techniques on the concept of relevance and redundancy
having equal importance in the formation of a good pre-
dictor set. We call the predictor set scoring methods used
in such correlation-based feature selection techniques
equal-priorities scoring methods. On the other hand, Guyon
and Elisseeff (2003) [9] demonstrated using a 2-class
problem that seemingly redundant features may improve
the discriminant power of the predictor set instead,
although it remains to be seen how this scales up to mul-
ticlass domains with thousands of features. A study was
implemented on the effect of varying the importance of
redundancy in predictor set evaluation in [10]. However,
due to its use of a relevance score that is inapplicable to
multiclass problems, the study was limited to only binary
classification.

From here, we can state the three levels of filter-based fea-
ture selection for multiclass tumor classification as fol-
lows: 1) no selection, 2) select based on relevance alone,
and finally, 3) select based on relevance and redundancy.
Thus, currently, relevance and redundancy are the two
existing criteria which have ever been used in predictor set
scoring methods for multiclass tumor classification.

Contributions of this study
We propose to go one step further, by introducing a third
criterion: the relative importance placed between rele-
vance and redundancy. We call this criterion the degree of
differential prioritization (DDP). DDP compels the
search method to prioritize the optimization of one of the
two criteria (of relevance or redundancy) at the cost of the
optimization of the other. Unlike other existing correla-
tion-based techniques, our proposed feature selection
techniques do not take for granted that the optimizations
of both elements of relevance and redundancy are to have
equal priorities in the search for the predictor set [11].

Having introduced the element of differential prioritiza-
tion, we stress the importance of applying a more appro-
priate evaluation procedure which gives more realistic
estimates of accuracy than the internal cross validation
(ICV) procedure used in several feature selection studies
for gene expression data [3-5]. This is done by evaluating
our feature selection techniques using the F-splits evalua-
tion procedure.

In this paper, we investigate the efficacy of two DDP-
based predictor set scoring methods on nine multiclass
microarray datasets. Each of the two methods is differen-
tiated from the other method by the measure of correla-
tions between genes used in the method. The first method
is termed the antiredundancy-based WA,S scoring method.
The measure of antiredundancy, US, is used as the meas-
ure of correlations between genes in the WA,S scoring
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method. In the second method, called the redundancy-
based WR,S scoring method, the measure of redundancy,
RS, is used as the measure of correlations between genes.
The DDP parameters for the WA,S and the WR,S scoring
methods are denoted as α and ρ respectively. Larger DDP
means more emphasis on optimizing relevance, VS, and
less emphasis on minimizing correlations between genes
in the predictor set. Conversely, smaller DDP indicates
more emphasis on minimizing correlations between
members of the predictor set and less emphasis on opti-
mizing its relevance.

The main contribution of this study is to show that a
degree of freedom in adjusting the priorities between
maximizing relevance and minimizing redundancy is nec-
essary to produce the best classification performance (i.e.
equal-priorities techniques might not yield the optimal
predictor set). A secondary contribution is to determine
which one of the two measures investigated in this study
is the better measure of correlations between genes in the
predictor set ('predictor genes').

Results
Nine multiclass microarray datasets are used as bench-
mark datasets (Table 1). The Brown (BRN) dataset, first
analyzed by Munagala et al. (2004) [12,13], includes 15
broad cancer types. We also analyzed another version of
this dataset, denoted as BRN14, where one class (skin tis-
sue) is excluded due to its small sample size.

The GCM dataset [2,14] contains 14 tumor classes. For the
NCI60 dataset [15,16], only 8 tumor classes are analyzed;
the 2 samples of the prostate class are excluded due to
small class size.

The PDL dataset [17,18] consists of 6 classes, each class
representing a diagnostic group of childhood leukemia.
The SRBC dataset [19,20] consists of 4 subtypes of small,
round, blue cell tumors (SRBCTs). In the 5-class lung

dataset [21,22], 4 classes are subtypes of lung cancer; the
fifth class consists of normal samples.

The MLL dataset [23,24] contains 3 subtypes of leukemia:
ALL, MLL and AML. The AML/ALL dataset [25,26] also
contains 3 subtypes of leukemia: AML, B-cell and T-cell
ALL.

Except for the BRN, BRN14 and SRBC datasets (which are
only available as preprocessed in their originating stud-
ies), datasets are preprocessed and normalized based on
the recommended procedures in [27] for Affymetrix and
cDNA microarray data. Except for the GCM dataset, for
which the original ratio of training set size to test set size
used in [2] is maintained to enable comparison with pre-
vious studies, for all datasets we employ the standard 2:1
split ratio.

Different values of α and ρ ranging from 0.1 up to 1 with
equal intervals of 0.1 are tested. Predictor sets ranging
from size P = 2 to P = Pmax are formed in each split. The
number of splits, F is set to 10 in this study. The choice of
the value of Pmax is based on previous studies on feature
selection in tumor classification such as [1], where it is
observed that there is no significant change in accuracy at
values of P beyond 150. Therefore, for datasets with larger
number of classes (K>6), we set Pmax to 150, while for
datasets with 6 or less classes, the value of Pmax is
decreased accordingly in proportion to K (Table 1). The
rationale for this is that datasets with smaller number of
classes need less predictor genes to differentiate samples
from different classes than datasets with larger number of
classes. It is easier to distinguish among say, 3 classes than
telling apart samples from 15 different classes (and hence,
a smaller predictor set would be sufficient for the former
whereas a larger number of predictor genes would be nec-
essary to accomplish the latter).

Two feature selection experiments were run on each data-
set: one using the WA,S scoring method and the other, the
WR,S scoring method. The DAGSVM classifier is used in
evaluating the performance of all resulting predictor sets
from both experiments. The DAGSVM is an all-pairs SVM-
based multi-classifier which uses substantially less train-
ing time compared to either the standard algorithm or
Max Wins, and has been shown to produce accuracy com-
parable to both of these algorithms [28].

Two parameters will be used to evaluate the performance
of the WA,S and the WR,S scoring methods. The first is the
best estimate of accuracy. This is simply taken as the largest
among the accuracies obtained from Figure 1 at all tested
values of α or ρ at P = Pmax. By taking the accuracy at fixed
value of P (at Pmax), we further exclude the possibility of
leaking information from the test set into the training

Table 1: Descriptions of benchmark datasets

Dataset Type N K Training:Test set size Pmax

BRN cDNA 7452 15 176:84 150
BRN14 cDNA 7452 14 174:83 150
GCM Affymetrix 10820 14 144:54 150
NCI60 cDNA 7386 8 40:20 150
PDL Affymetrix 12011 6 166:82 120
Lung Affymetrix 1741 5 135:68 100
SRBC cDNA 2308 4 55:28 80
MLL Affymetrix 8681 3 48:24 60
AML/ALL Affymetrix 3571 3 48:24 60

N is the number of features after preprocessing. K is the number of 
classes in the dataset.
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process of forming the predictor set in each split. If a draw
occurs in terms of the estimate of accuracy, we take the
average of the values of α or ρ giving the largest accuracies
as the optimal α or ρ.

For multiclass classification problems, merely attaining a
good estimate of accuracy does not represent excellent
classification performance. There is also the need to
ensure that samples from all classes are predicted with
equally good rate of accuracy. This is especially true when
class sizes are greatly unequal among the classes, which is
often the case for multiclass microarray datasets. A predic-
tor set may achieve high estimate of overall accuracy by
simply predicting test samples as belonging to one of the
classes with large class size at a high frequency. The end
results will be that samples belonging to certain classes
will be correctly predicted most of the time, while samples
from other classes will be wrongly classified at a high rate.

This calls for the second parameter, the range of class accu-
racies, in evaluating the performance of the predictor set
scoring methods. For each class, class accuracy denotes the
ratio of correctly classified samples of that class to the
class size in the test set. Each class accuracy is computed
from the DDP value which produces the best estimate of
accuracy at P = Pmax in the first place. The range of class
accuracies is the difference between the best class accuracy
and the worst class accuracy among the K class accuracies
in a K-class dataset. In an ideal situation, overall accuracy
being exactly 1, each class accuracy is 1, so the perfect
range of class accuracies is 0. Hence, the lower the range
of class accuracies, the better the classification perform-
ance.

Best estimate of accuracy
Overall the WA,S scoring method outperforms the WR,S
scoring method by giving better accuracy in six out of nine
datasets (Table 2). Only in three datasets, GCM, NCI60
and SRBC datasets, does the WR,S scoring method give the
same accuracy as the WA,S scoring method.

Figure 2 shows how the estimate of accuracy at P = Pmax
varies against corresponding value of α and ρ for the WA,S
and the WR,S scoring methods respectively.

Range of class accuracies
The WA,S scoring method gives better performance than
the WR,S scoring method by yielding smaller range of class
accuracies for five datasets: GCM, NCI60, PDL, MLL and
AML/ALL datasets (Table 3). The WR,S scoring method
turns out lower range of class accuracies for only two data-
sets: the lung and BRN14 datasets. For the remaining two
datasets (BRN and SRBC), both methods yield the same
performance.

Figure 3 shows how the range of class accuracies at P =
Pmax varies against corresponding value of α and ρ for the
WA,S and the WR,S scoring methods respectively.

Comparing the WA,S and the WR,S scoring methods
By taking the rightmost columns of Tables 2 and 3, we
assign the overall superior method for each of the nine
datasets in Table 4. At P = Pmax, the WA,S scoring method is
superior to the WR,S scoring method for six out of nine
datasets (15-class BRN, 14-class GCM, 8-class NCI60, 6-
class PDL, 3-class MLL and 3-class AML/ALL). Four of
these six datasets contain large number of classes (more
than 5 classes). The overall superior method is undecided
for two datasets (BRN14 and lung datasets), while for the
SRBC dataset, both methods produce equal performance
in terms of both best estimate of accuracy and range of
class accuracies.

Both methods have been briefly compared in a previous
work [29] using only one dataset (the GCM dataset). Here
we add the binomial test recommended in [30] for com-
paring classifiers in order to compare both methods for all
values of P ranging from 2 to Pmax. For each predictor set
size P = 2,3,...,Pmax, we identify the DDP (α or ρ) value
which gives the best accuracy (averaged across F splits) for
each scoring method. In each split, a classifier is con-
structed using the P-gene predictor set obtained at this
optimal DDP value from each scoring method. We then
compare the two resulting classifiers across splits using the
test sets of all F splits.

Out of these Pmax- 1 comparisons, for each dataset we
record the number of times, A, we reject the null hypo-
thesis that both scoring methods are equal, in favor of the
hypothesis that the WA,S scoring method is better than the
WR,S scoring method at the 0.05 significance level (Table
5). The outcome of the comparisons does not seem
impressive until we take into account the fact that the
number of times, B, we reject the null hypothesis that
both scoring methods are equal, in favor of the hypothesis
that the WA,S scoring method is worse than the WR,S scoring
method, is 0 for all datasets. Moreover, we observe a
strong correlation between the training set size (Table 1)
and A – the larger the training set, the higher the frequency
at which the null hypothesis can be rejected in favor of the
WA,S scoring method as the superior method (Figure 4).
Therefore, we believe that with sufficiently large training
set, it can be irrefutably proven that the WA,S scoring
method is the superior method.

To reinforce the results from the binomial test, we further
conduct the Wilcoxon signed rank test [31] on accuracies
from both methods obtained at the best DDP for each pre-
dictor set size P = 2,3,...,Pmax. The rightmost column of
Table 5 contains the number of times, C, the right-sided p-
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value is below the significance level of 0.05. The right-
sided p-value in this case is the probability that T0 is less
than or equal to the Wilcoxon signed rank test statistic, T.

where θP is the number of test samples the WA,S scoring
method predicts correctly at predictor set size P for all F
splits, and ηP is the number of test samples the WR,S scor-
ing method predicts correctly at predictor set size P for all
F splits. Rank(P) is the rank of (θP - ηP). T0 is computed in
a similar way to T, except that the expression sign (θP - ηP)
is replaced with independent random sign. This means
that the right-sided p-value represents the probability that
the WA,S scoring method is only superior to the WR,S scor-
ing method by random chance, given available observa-
tions of the classification performance of the two scoring
methods. In other words, a right-sided p-value that is near
zero (less than the 0.05 significance level) indicates a high
likelihood that the WA,S scoring method is indeed signifi-
cantly superior to the WR,S scoring method.

The left-sided p-value represents the probability that T0 is
greater than or equal to T. Supporting the results from the
binomial test, the number of times, D, the left-sided p-
value is below the significance level of 0.05, is also 0 for
all nine datasets. Moreover, as in the case of A, C is also
proportionate to the training set size, Mt, of the corre-
sponding datasets (Figure 4). Indeed, as shown in Figure
4, the ratio of C to Pmax - 1 has stronger correlation to Mt
than the ratio of A to Pmax - 1.

Discussion
Comparisons to other studies
Detailed comparisons to previously reported results will
only be made for the four datasets with the largest K. Two
of them, the GCM and NCI60 datasets, have been exten-
sively analyzed in previous studies and have been known
to consistently produce low realistic estimates of accuracy
(<90%) [1,27,32]. Since the WA,S scoring method has
been shown to outperform the WR,S scoring method, we
shall compare results from the WA,S scoring method
against results from other studies.

For the GCM dataset, with a 150-gene predictor set, an
accuracy of 80.2% is achievable with our WA,S scoring
method when the value of α is set to 0.4. This is a signifi-
cant improvement compared to the 78% accuracy
obtained, using all available 16000 genes, in the original
analysis of the same dataset [2]. However, strict compari-
son cannot be made against this 78% accuracy of [2] and
the 81.5% accuracy (using 84 genes) achieved in [32]
since the evaluation procedure in both studies is based on
a single (the original) split of the dataset. We can make a
more appropriate comparison, however, against a com-
prehensive study on various rank-based feature selection
techniques [1]. The study uses external 4-fold cross valida-
tion to evaluate classification performance. In [1], the best
accuracy for the GCM dataset is 63.3%, when no feature
selection is applied prior to classification!

For the NCI60 dataset, using the WA,S scoring method, the
best 10-splits accuracy of 68% occurs at α = 0.1. This is
only marginally better than the best accuracy obtained
from the two studies employing evaluation procedures
similar to ours [1,27]. In [27], the best averaged accuracy
is around 67% (using 200 genes selected from the BSS/
WSS rank-based feature selection technique), whereas the
study by Li et al. (2004) [1] gives similar performance with
an accuracy of 66.7% achieved using the sum minority
rank-based feature selection technique with the same
number of genes as our predictor set, 150. A more recent

T PP P
P

P

= − ⋅
=
∑ sign Rank( ) ( ) ( )
max

θ η 1
2

Table 2: Best estimate of accuracy.

Dataset WA,S WR,S Superior method

BRN 94.3%, α = 0.6 94.0%, ρ = 0.9 WA,S
BRN14 94.7%, α = 0.33 94.5%, ρ = 0.6 WA,S
GCM 80.2%, α = 0.4 80.2%, ρ = 0.5 Equal
NCI60 68.0%, α = 0.1 68.0%, ρ =0.6 Equal
PDL 98.4%, α =0.5 98.3%, ρ =1 WA,S
Lung 94.1%, α =0.4 93.8%, ρ =0.8 WA,S
SRBC 98.9%, α =0.73 98.9%, ρ =0.85 Equal
MLL 98.3%, α =0.3 97.9%, ρ =0.45 WA,S
AML/ALL 97.5%, α =0.5 97.1%, ρ =0.7 WA,S

Best estimate of accuracy from the WA,S and the WR,S scoring 
methods, obtained at P = Pmax, followed by the corresponding value of 
the DDP.

F-splits evaluation procedure at each value of PFigure 1
F-splits evaluation procedure at each value of P.
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study on a wrapper-based feature selection technique [7]
found a LOOCV (leave-one-out cross validation) accuracy
of 76.2% for the NCI60 dataset. Unfortunately no sepa-
rate test set has been formed to validate the efficacy of the
30-gene predictor set which has achieved this accuracy.

The classification of samples from the NCI60 dataset is
well-known for being a difficult problem. Major culprits
include the small class sizes and the heterogeneity of some
of the classes (breast and non-small-cell lung cancer) [27].
Using the current interval size between the DDP values
(0.1), our improvement of accuracy for this dataset is
small. However, we hope that further refinement to our
feature selection technique (through the development of
a method to predict the suitable range of the DDP for the

dataset of interest, which will enable us to test for both
smaller range and interval size for the DDP) will bring
about a significantly better accuracy.

The discriminative margin clustering method used on the
BRN dataset in [12] is geared towards discovering sub-
classes in broad histological types – but manages to yield
good class accuracy (70 to 90%) for four tumor classes
(kidney, lung, ovary and soft tissue). Not surprisingly, the
class accuracy produced by our WA,S scoring method for
each of these classes ranges from 90 to 100%. For this
dataset, we obtain a 94.3% accuracy using a 150-gene pre-
dictor set found at α = 0.6.

This is better than the results reported in [6] where an
81.23% LOOCV accuracy on the BRN dataset is achieved
using a wrapper-based GA/SVM feature selection tech-
nique. However, if the LOOCV accuracy itself is used as
the GA fitness function, as is the case in [6], an external
test set should have been set aside to evaluate the perform-
ance of the technique. It is the accuracy from this test set
that provides a realistic estimate of accuracy for the feature
selection technique (more details in The F-splits evalua-
tion procedure sub-section under the Methods section).
Again, similar to the situation in an aforementioned study
on the NCI60 dataset [7], no such evaluation procedure
has been implemented in [6].

In [33] the authors have eliminated the skin tissue sam-
ples from the 15-class BRN dataset (and thus forming the
14-class BRN14 dataset), also possibly, as in our case, due
to small class size (3 samples). In that study, the nearest
shrunken centroid classifier yields a 10-splits accuracy of
93.5% using 4327 genes for the BRN14 dataset. This is
slightly lower than the 94.7% accuracy from the WA,S scor-
ing method (at α = 0.33). More importantly, we use a
much smaller predictor set (150 genes) to achieve a better
accuracy.

Table 3: Range of class accuracies.

Dataset WA,S WR,S Superior method

BRN 0.80 0.80 Equal
BRN14 0.80 0.71 WR,S
GCM 0.81 0.83 WA,S
NCI60 0.68 0.85 WA,S
PDL 0.18 0.19 WA,S
Lung 0.35 0.32 WR,S
SRBC 0.03 0.03 Equal
MLL 0.05 0.05 WA,S
AML/ALL 0.05 0.06 WA,S

Range of class accuracies from the WA,S and the WR,S scoring methods, 
obtained using the values of DDP shown in Table 2 at P = Pmax

Estimate of accuracy at P = Pmax vs. α or ρFigure 2
Estimate of accuracy at P=Pmax vs. α or ρ. Solid line: 
WA,S scoring method, dashed line: WR,S.
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Therefore, compared to previous studies which used real-
istic evaluation procedures similar to the F-splits evalua-
tion procedure, rather than the potentially overly
optimistic ICV procedure, our WA,S scoring method has
produced better classification performance on highly
multiclass datasets such as the BRN, BRN14, GCM and
NCI60 datasets.

The importance of the DDP
In both scoring methods, it is worth noting from Figures
2 and 3, and Table 2 that the best classification perform-
ance (i.e. highest accuracy and lowest range of class accu-
racies) is not always achieved at values of the DDP where
the technique becomes equal-priorities scoring method
(α or ρ equals 0.5) or rank-based (α or ρ equals 1). There-

fore, without varying the DDP so that it takes any other
values aside from 0.5 or 1, the optimal classification per-
formance would not have been achievable for most of the
datasets. For datasets where the optimal value of the DDP
happens to be exactly 0.5 (for instance, the PDL dataset
where the value of α giving the best estimate of accuracy
is 0.5), it is due to the fact that some characteristic(s) of
the dataset dictate that the optimal value of the DDP for
the dataset should be 0.5.

In [11], we have hypothesized that for a given scoring
method, the value of the DDP leading to the best estimate
of accuracy is dataset-specific. Successfully predicting such
optimal value of the DDP for a dataset gives us savings in
terms of computational cost and time (we will not have to
run feature selection for the full domain of the DDP from
0 to 1). Linking the optimal value of the DDP to dataset
characteristic(s) is the first step towards successful predic-
tion of the optimal value of the DDP for any future
untested datasets.

Since our feature selection technique does not explicitly
predict the best P from the range of [2, Pmax], in order to
determine the value of the DDP most likely to produce the
optimal accuracy, we use a parameter called size-averaged
accuracy, which is computed as follows. For all predictor
sets found using a particular value of the DDP, we plot the
estimate of accuracy obtained from the procedure out-
lined in Figure 1 against the value of P of the correspond-
ing predictor set (Figure 5). The size-averaged accuracy for
that value of the DDP is the area under the curve in Figure
5 divided by the number of predictor sets, (Pmax -1). The
value of α or ρ associated with the highest size-averaged
accuracy is deemed the empirical estimate of α* or ρ* (the
empirical optimal value of the DDP). If there is a tie in
terms of the highest size-averaged accuracy between differ-
ent values of α or ρ the empirical estimate of α* or ρ* is
taken as the average of those values of α or ρ [34]

The overall trend in Figure 6 implies that as K increases, in
order to achieve the optimal classification performance,
the emphasis on

• maximizing antiredundancy (for the WA,S scoring
method) or

• minimizing redundancy (for the WR,S scoring method)

needs to be increased at the cost of the emphasis on max-
imizing relevance. Conversely, maximizing antiredun-
dancy (or minimizing redundancy) becomes less
important as K decreases – thereby supporting the asser-
tion in [9] that redundancy does not hinder the discrimi-
nant power of the predictor set when K is 2. The α* - K
plot follows this trend more closely than the ρ* - K plot.

Range of class accuracies at P = Pmax vs.α or ρFigure 3
Range of class accuracies at P = Pmax vs. α or ρ. Solid 
line: WA,S scoring method, dashed line: WR,S.
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Since the measure of antiredundancy, US, and the meas-
ure of redundancy, RS, play increasingly important roles
compared to relevance, VS, as K increases, the better per-
formance of the WA,S scoring method compared to the
WR,S scoring method for majority of datasets with larger K
(> 5) must be due to the superiority of the measure of
antiredundancy, US, over the measure of redundancy, RS,
in measuring correlations between predictor genes.

The statement above can be substantiated by comparing
the corresponding value of α* to ρ* for each of these data-
sets in Figure 6. The value of α* is always less than the
value of ρ* for all datasets. The role of α or ρ is such that
the smaller the value of α or ρ, the more the emphasis on
maximizing US or minimizing RS, respectively (equations
7 and 8). This implies that US is more useful than RS as a
criterion in finding the optimal predictor set for datasets
with large K. Moreover, we observe from Figure 2 that the
estimate of accuracy from the WR,S scoring method at

small ρ is much lower than accuracy from the WA,S scoring
method at small α, again underscoring the reliability of US
over RS in finding the optimal predictor set.

Most frequently selected genes
Since the WA,S scoring method has been shown to outper-
form the WR,S scoring method, we perform the analysis on
the most frequently selected genes using the optimal pre-
dictor sets found from the WA,S scoring method. The opti-
mal predictor sets consist of the Pmax-gene predictor set
obtained in each split of training and test sets using the
value of α which gives the best estimate of accuracy (Table
2). The most frequently selected genes are identified by
surveying the optimal predictor sets for genes that are
selected 10 times out of 10 splits of training and test sets.
We then rank these genes based on their split-averaged
position in the predictor set. Higher rank is assigned to
genes with consistently high position in the predictor set
in each split. The biological significance of the top 25

Correlations of A and C to training set size, MtFigure 4
Correlations of A and C to training set size, Mt. A (left) and C (right) plotted against training set size, Mt, for all bench-
mark datasets. A and C are normalized by dividing against their maximum value, Pmax- 1.

Table 4: Overall comparison of the WA,S and the WR,S scoring methods.

Dataset Superior method based on best estimate of accuracy Superior method based on range of class accuracies Overall superior method

BRN WA,S Equal WA,S
BRN14 WA,S WR,S Undecided
GCM Equal WA,S WA,S
NCI60 Equal WA,S WA,S
PDL WA,S WA,S WA,S
Lung WA,S WR,S Undecided
SRBC Equal Equal Equal
MLL WA,S WA,S WA,S
AML/ALL WA,S WA,S WA,S

Comparing the WA,S and the WR,S scoring methods through both best estimate of accuracy and range of class accuracies
Page 8 of 19
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genes is briefly described in Tables 6, 7 and 8 for the BRN,
BRN14 and GCM datasets respectively (the three largest
datasets in terms of the number of classes).

For the BRN and BRN14 datasets, we first identify which
of the 25 genes have been found to be markers for specific
tumor types against normal tissues in the originating
study by Munagala et al. [12]. We discover that out of the
25 genes, 10 and 8 genes are included in lists of genes
which differentiate specific tumor types from normal tis-
sues in case of the BRN (Table 6) and BRN14 (Table 7)
datasets respectively. These lists are available at the web-
site [13] of the authors of [12].

Based on existing literature regarding them [35-48], the
remaining 15 (BRN dataset) and 17 (BRN14 dataset)
genes can be divided into four groups. The first group is
similar to the aforementioned 10 and 8 genes; this group
marks a specific cancer class against normal tissues. Thus
it is probable that genes which mark a specific tumor type
against normal tissues also differentiate that tumor type
from all other tumor types.

The second group comprises genes which are known to
either promote or inhibit tumor in general (for example,
genes #9 and #19 in Table 6; and genes #12 and #15 in
Table 7). Our results suggest that these genes are expressed
variably among different tumor types as well as between
tumor tissues and normal tissues.

The third group contains genes which are tissue-specific
(highly expressed in certain tissue relative to other parts of
the body). Examples are genes #22, #24 and #25 in Table
6; and genes #22, #23 and #25 in Table 7. This is expected,
as the classification problem involves distinguishing

among different broad tumor types, each of which origi-
nates from a distinct tissue type.

The fourth group is made of unknown sequences and
genes with either still-unidentified function (genes #3 and
#23 in Table 6; genes #4 and #13 in Table 7) or general
housekeeping roles such as production of normal proteins
and gene regulation (genes #14 and #18 in Table 6; genes
#7 and #21 in Table 7). In other words, these are genes
that ostensibly play no role in influencing the develop-
ment of tumor in general or specific tumor types. How-
ever, the identification of these genes as predictor genes
for multiclass tumor classification points to the possible
cascade effect of these genes in development of specific
tumor types, especially in case of gene #18 in Table 6 (also
gene #21 in Table 7), which is involved in regulating the
expression of other genes.

For the GCM dataset, we also first compare our top 25
genes to the marker genes identified in the originating
study by Ramaswamy et al. [2]. The authors of [2] have
provided a list of OVA (one-vs.-all) marker genes for each
tumor type at the paper website [49]. Each list contains
the top 1000 genes which distinguish a specific tumor
type against all other 13 tumor types in the GCM dataset.
These genes are ranked based on their significance, which
is computed using the permutation test elucidated in [25].
Out of our top 25 genes, 18 genes (72%) are included in
the top 50 of one or more of Ramaswamy et al.'s lists of
OVA marker genes (Table 8).

Of the remaining 7 genes, only 1 gene is not listed in any
of the lists of the top 1000 OVA marker genes of [2]. This
is gene #14 in Table 8, which belongs to the second of the
four groups of genes defined previously. The other 6 genes

Area under the accuracy-predictor set size curveFigure 5
Area under the accuracy-predictor set size curve.

Table 5: Comparing the WA,S and the WR,S scoring methods 
through statistical tests.

Dataset A C

BRN 16 145
BRN14 33 145
GCM 18 145
NCI60 5 112
PDL 24 115
Lung 22 95
SRBC 10 75
MLL 7 55
AML/ALL 11 55

A is the number of times the null hypothesis that the WR,S scoring 
method is as good as the WA,S scoring method is rejected in favour of 
the WA,S scoring method (binomial test). C is the number of times that 
the right-sided p-value associated with the Wilcoxon signed rank test 
statistic is below the significance level of 0.05. The maximum values of 
A and C are both Pmax-1.
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belong to the first of the four groups of genes (markers or
repressors of specific types of tumor) [50-56].

Conclusion
For majority of the benchmark datasets, using the optimal
value of the degree of differential prioritization gives an
accuracy higher than accuracies obtainable using equal-
priorities scoring method (α or ρ fixed at 0.5) or rank-
based technique (α or ρ fixed at 1). Therefore, instead of
limiting ourselves to a fixed universal set of priorities for
relevance and antiredundancy/redundancy (α or ρ fixed
at 0.5 or 1) for all datasets, a suitable range of α or ρ
should be chosen based on the characteristics of the data-
set of interest in order to achieve the optimal accuracy.

Furthermore, the study demonstrates the advantages of
using the measure of antiredundancy over the measure of
redundancy for measuring gene correlations, especially
for datasets with large number of classes. Based on the cri-
teria of best estimate of accuracy and range of class accu-
racies, the antiredundancy-based predictor set scoring
method performs better than the redundancy-based pre-
dictor set scoring method for majority of the benchmark
datasets. Furthermore, the antiredundancy-based predic-
tor set scoring method is the superior method of the two
in four of the datasets with the largest number of classes.
These are the BRN, PDL, GCM and NCI60 datasets, the
last two of which remain the most difficult datasets to
work on in the area of tissue classification.

Finally, a large portion of the genes most frequently
selected into the optimal predictor sets has been identified
by the originating studies on the corresponding datasets
as marker genes of specific tumor types. Majority of the
most frequently selected genes have also been discovered
to be involved in either development or suppression of
specific tumor types by other studies. These findings con-

firm the practical value of our feature selection technique
for the analysis of gene expression data.

Methods
Terminology and objective
For gene expression datasets, the terms gene and feature
may be used interchangeably. The training set upon which
feature selection is to be implemented, T, consists of N
genes and Mt training samples. Sample j is represented by
a vector, xj, containing the expression of the N genes
[x1,j,..., xN,j]T and a scalar, yj, representing the class the sam-
ple belongs to. The target class vector y is defined as [y1, ...,
yMt], yj ∈[1, K] in a K-class dataset. From the total of N
genes, the objective is to form the subset of genes, called
the predictor set S, which gives the optimal classification
accuracy.

Two predictor set scoring methods
A score of goodness incorporating both the elements of
maximum relevance and minimum redundancy ensures
that the predictor set should possess maximal power in
discriminating among different classes (maximum rele-
vance), while at the same time containing features with
minimal correlation to each other (minimum redun-
dancy).

The relevance of a predictor set S is the average of score of
relevance, F(i) of all members of S, as recommended in
[4]:

F(i) is the score of relevance for gene i. It indicates the cor-
relation of gene i to the target class vector y. A popular
parameter for computing F(i) is the BSS/WSS (between-
groups sum of squares/within-groups sum of squares)
ratio used in [4,27]. For gene i,

where I(.) is an indicator function returning 1 if the con-
dition inside the parentheses is true, otherwise it returns

0.  is the average of the expression of gene i across all

training samples, while  is the average of the expres-

sion of gene i across training samples belonging to class k.
The BSS/WSS ratio, first used in [27] for multiclass tumor
classification, is a modification of the F-ratio statistics for
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Relationship between optimal value of the DDP and number of classes in the datasetFigure 6
Relationship between optimal value of the DDP and 
number of classes in the dataset. Optimal value of the 
DDP plotted against number of classes in the dataset for the 
WA,S scoring method (left) and the WR,S scoring method 
(right) for all benchmark datasets.
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one-way ANOVA (Analysis of Variance). It indicates the
gene's ability in discriminating among samples belonging
to the K different classes.

To measure the correlation between genes i and j, the
absolute value of the Pearson product moment correla-

tion coefficient between the two, |R(i,j)|, is used. Absolute
value is used because both extreme correlation and anti-
correlation indicates strong similarity between a pair of
genes. There are two possible schemes for measuring the
correlations among the members of S, each leading to a
different predictor set scoring method. The first scheme

Table 6: Most frequently selected genes for the BRN dataset.

Rank Annotation Remarks Group

1 TYR tyrosinase (oculocutaneous albinism IA) Identified as marker for skin tumor class in [12] M
2 FLJ20624 **hypothetical protein FLJ20624 Related to the gene PAK1, which is associated with pancreatic 

cancer [35]
1

3 DMXL1 Dmx-like 1 Function still unknown, although high level of conservation 
suggests important roles [36]

4

4 CLDN4 claudin 4 Identified as marker for ovarian, bladder, lung, and stomach 
tumor classes in [12]

M

5 TACSTD1 tumor-associated calcium signal transducer 1 Identified as marker for stomach, pancreatic, lung, and breast 
cancer classes in [12]

M

6 M6PR mannose-6-phosphate receptor (cation dependent) Defective function of M6PR leads to hepatocellular carcinoma 
[37]

1

7 PLG plasminogen Identified as marker for stomach cancer class in [12] M
8 SPINT2 serine protease inhibitor, Kunitz type, 2 Found to be under-expressed in epithelial ovarian cancer patients 

[38]
1

9 SORD sorbitol dehydrogenase Suppresses growth arrest induced by a p53 tumor mutant in 
fission yeast [39]

2

10 FGA fibrinogen, A alpha polypeptide Mutation of FGA found in breast cancer patients [40] 1
11 BCL6 B-cell CLL/lymphoma 6 (zinc finger protein 51) Deregulation of BCL6 found in diffuse large cell lymphoma [41] 1
12 APOH apolipoprotein H (beta-2-glycoprotein I) Identified as marker for liver cancer class in [12] M
13 PAX8 paired box gene 8 Verified as marker for ovarian cancer in [12], also identified as 

marker for renal and breast cancer classes in [12]
M

14 APCS amyloid P component, serum Produces normal circulating plasma protein that is deposited on 
amyloid fibrils

4

15 S100A1 S100 calcium-binding protein A1 Identified as marker for breast, kidney, and ovary cancer classes 
in [12]

M

16 AMD1 S-adenosylmethionine decarboxylase 1 Specifically up-regulated in B cell lymphoma [42] 1
17 FABP1 fatty acid binding protein 1, liver Identified as marker for pancreatic cancer class in [12] M
18 HLCS holocarboxylase synthetase (biotin- [proprionyl-

Coenzyme A-carboxylase (ATP-hydrolysing)] ligase)
The enzyme holocarboxylase synthetase plays a role in gene 
regulation (determining whether genes are turned on or off)

4

19 ITIH3 pre-alpha (globulin) inhibitor, H3 polypeptide Its product is predominantly transcribed in liver, and is involved 
in pathological conditions such as tumor invasion and metastasis 
[43]

2

20 KRT18 keratin 18 Identified as marker for CNS (central nervous system) and 
stomach cancer classes in [12]

M

21 LGALS4 lectin, galactoside-binding, soluble, 4 (galectin 4) Verified as marker for pancreatic cancer in [12], also identified as 
marker for stomach, liver, kidney, and breast cancer classes in 
[12]

M

22 HELO1 homolog of yeast long chain polyunsaturated fatty acid 
elongation enzyme 2

Highly expressed in adrenal gland and testis (tissue-specific), 
probably involved in encoding the major histocompatibility 
complex, essential to human immune response [44]

3

23 EST Unknown sequence 4
24 QKI homolog of mouse quaking QKI (KH domain RNA binding 

protein)
Specifically expressed in the central nervous system (CNS) 3

25 NDP Norrie disease (pseudoglioma) Regulates neural cell proliferation and differentiation. Norrie 
disease (caused by mutation of NDP) is also accompanied by 
intraocular tumor [45]

3

Top 25 genes ranked from the most frequently selected genes for the BRN dataset. Group M: identified as a marker or repressor of a specific 
tumor type in originating study. Group 1: identified as a marker or repressor of a specific tumor type in other studies. Group 2: known to either 
promote or inhibit tumor in general. Group 3: tissue-specific genes. Group 4: unknown sequences and genes with either still-unidentified function or 
general housekeeping roles.
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uses direct redundancy. Redundancy is defined as the sum
of all possible pairwise correlations in S and has been
introduced in [4] for use with gene expression datasets.

Theoretically the largest possible value of RS is

which occurs when every pair of genes in S has perfect cor-
relation or anti-correlation (where |R(i,j)| equals 1). Con-
versely, the smallest possible value of RS is zero, when
every pair of genes in S has zero correlation (where |R(i,j)|
equals 0). As |S| approaches infinity, the limit of RS,max is
0.5. Hence RS has theoretical bounds of [0,0.5).

The second scheme uses a measure called antiredundancy
which we proposed in [57]. It quantifies the lack of redun-
dancy in S.

With RS, we have a redundancy-based scoring method in
which the measure of goodness for predictor set S is given
as follows.

where the power factor ρ ∈ (0, 1] denotes the DDP
between maximizing relevance and minimizing redun-
dancy [29].
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Table 7: Most frequently selected genes for the BRN14 dataset.

Rank Annotation Remarks Group

1 FLJ20624 **hypothetical protein FLJ20624 Gene #2 in the BRN dataset (Table 6) 1
2 M6PR mannose-6-phosphate receptor (cation dependent) Gene #6 in the BRN dataset (Table 6) 1
3 PAX8 paired box gene 8 Gene #13 in the BRN dataset (Table 6) M
4 DMXL1 Dmx-like 1 Gene #3 in the BRN dataset (Table 6) 4
5 PLG plasminogen Gene #7 in the BRN dataset (Table 6) M
6 LGALS4 lectin, galactoside-binding, soluble, 4 (galectin 4) Gene #21 in the BRN dataset (Table 6) M
7 APCS amyloid P component, serum Gene #14 in the BRN dataset (Table 6) 4
8 GATA3 GATA-binding protein 3 Verified as marker for breast cancer in [12], also identified as 

marker for bladder cancer class in [12]
M

9 TACSTD1 tumor-associated calcium signal transducer 1 Gene #5 in the BRN dataset (Table 6) M
10 FGA fibrinogen, A alpha polypeptide Gene #10 in the BRN dataset (Table 6) 1
11 FABP1 fatty acid binding protein 1, liver Gene #17 in the BRN dataset (Table 6) M
12 SORD sorbitol dehydrogenase Gene #9 in the BRN dataset (Table 6) 2
13 EST Unknown sequence 4
14 DDOST dolichyl-diphosphooligosaccharide-protein 

glycosyltransferase
Identified as marker for testis cancer class in [12] M

15 ITIH3 pre-alpha (globulin) inhibitor, H3 polypeptide Gene #19 in the BRN dataset (Table 6) 2
16 KIAA0128 KIAA0128 protein; septin 2 Up-regulated in renal cell carcinoma [46] 1
17 BCL6 B-cell CLL/lymphoma 6 (zinc finger protein 51) Gene #11 in the BRN dataset (Table 6) 1
18 AMD1 S-adenosylmethionine decarboxylase 1 Gene #16 in the BRN dataset (Table 6) 1
19 SERPINC1 serine (or cysteine) proteinase inhibitor, clade C 

(antithrombin), member 1
Controls expression of oncogene for hepatocarcinoma [47] 1

20 APOH apolipoprotein H (beta-2-glycoprotein I) Gene #12 in the BRN dataset (Table 6) M
21 HLCS holocarboxylase synthetase (biotin- [proprionyl-

Coenzyme A-carboxylase (ATP-hydrolysing)] ligase)
Gene #18 in the BRN dataset (Table 6) 4

22 QKI homolog of mouse quaking QKI (KH domain RNA binding 
protein)

Gene #24 in the BRN dataset (Table 6) 3

23 Homo sapiens mRNA for putative nuclear protein (ORF1-FL49) Expressed in spinal cord (high tissue-specificity) 3
24 GRHPR glyoxylate reductase/hydroxypyruvate reductase One of the partners of the BCL6 (see Gene #11 in Table 6) 

translocation in follicular lymphoma, which leads to higher risk 
of transformation into aggressive lymphoma [48]

1

25 HELO1 homolog of yeast long chain polyunsaturated fatty acid 
elongation enzyme 2

Gene #22 in the BRN dataset (Table 6) 3

Top 25 genes ranked from the most frequently selected genes for the BRN14 dataset. Group M: identified as a marker or repressor of a specific 
tumor type in originating study. Group 1: identified as a marker or repressor of a specific tumor type in other studies. Group 2: known to either 
promote or inhibit tumor in general. Group 3: tissue-specific genes. Group 4: unknown sequences and genes with either still-unidentified function or 
general housekeeping roles.
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With US, we have an antiredundancy-based scoring
method in which the score of goodness for predictor set S
is given as follows.

WA,S = (VS)α·(US)1-α  (8)

where the power factor α ∈ (0, 1] denotes the DDP
between maximizing relevance and maximizing antire-

dundancy [11]. Codes for both scoring methods are avail-
able as MATLAB M-files [see Additional file 1].

Significance of the DDP
In the previous section it has been stated that a predictor
set is to be found based on two criteria: maximum rele-
vance and either minimum redundancy or maximum
antiredundancy. However, the quantification of the prior-

Table 8: Most frequently selected genes for the GCM dataset.

Rank Annotation Remarks Group

1 Human DNA sequence from clone 753P9 on chromosome 
Xq25-26.1. Contains the gene coding for Aminopeptidase P (EC 
3.4.11.9, XAA-Pro/X-Pro/Proline/Aminoacylproline 
Aminopeptidase) and a novel gene.

Ranked #31 in the OVA marker list for the lymphoma class in 
[2]

M

2 Antigen, Prostate Specific, Alt. Splice Form 2 Ranked #8 in the OVA marker list for the prostate cancer class 
in [2]

M

3 Galectin-4 Ranked #1 in the OVA marker list for the colorectal cancer 
class in [2]

M

4 Homo sapiens mRNA for APCL protein, complete cds Under-expressed in ovarian cancer, and thus a potential tumor 
suppressor gene in ovarian cancer [50]

1

5 Ins(1,3,4,5)P4-binding protein Ranked #24 in the OVA marker list for the leukemia class in [2] M
6 CARCINOEMBRYONIC ANTIGEN PRECURSOR Ranked #4 in the OVA marker list for the colorectal cancer 

class in [2]
M

7 PMEL 17 PROTEIN PRECURSOR Ranked #6 in the OVA marker list for the melanoma class in [2] M
8 KLK1 Kallikrein 1 (renal/pancreas/salivary) Ranked #18 in the OVA marker list for the prostate cancer class 

in [2]
M

9 EST: zt56g08.s1 Soares ovary tumor NbHOT Homo sapiens 
cDNA clone 726398 3', mRNA sequence. (from Genbank)

Ranked #5 in the OVA marker list for the mesothelioma class in 
[2]

M

10 EST: zr71g09.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 
668896 3', mRNA sequence. (from Genbank)

Ranked #5 in the OVA marker list for the CNS tumor class in 
[2]

M

11 Ribosomal protein S19 Ranked #1 in the OVA marker list for the lymphoma class in [2] M
12 PULMONARY SURFACTANT-ASSOCIATED PROTEIN B 

PRECURSOR
Ranked #3 in the OVA marker list for the lung cancer class in 
[2]

M

13 Mammaglobin 2 A marker for breast cancer [51] 1
14 MRJ gene for a member of the DNAJ protein family Associated with a tumor-transforming gene protein [52] 2
15 LPAP gene Its product mediates proliferative and/or morphologic effects on 

ovarian cancer cells [53]
1

16 EST: zq49c07.s1 Stratagene hNT neuron (#937233) Homo 
sapiens cDNA clone 633036 3', mRNA sequence. (from 
Genbank)

Identified as a marker of CNS tumor in [54] 1

17 Eyes absent homolog (Eab1) mRNA Up-regulated in epithelial ovarian cancer [55] 1
18 Pulmonary surfactant-associated protein SP-A (SFTP1) gene Ranked #1 in the OVA marker list for the lung cancer class in 

[2]
M

19 EST: ab17g09.s1 Stratagene lung (#937210) Homo sapiens 
cDNA clone 841120 3' similar to contains LTR7.b2 LTR7 
repetitive element ;, mRNA sequence. (from Genbank)

Ranked #10 in the OVA marker list for the lung cancer class in 
[2]

M

20 TUMOR-ASSOCIATED ANTIGEN CO-029 Ranked #5 in the OVA marker list for the colorectal cancer 
class in [2]

M

21 MLANA Differentiation antigen melan-A Ranked #4 in the OVA marker list for the melanoma class in [2] M
22 LI-cadherin Ranked #3 in the OVA marker list for the colorectal cancer 

class in [2]
M

23 Antigen, Prostate Specific, Alt. Splice Form 3 Ranked #39 in the OVA marker list for the prostate cancer class 
in [2]

M

24 GPX2 Glutathione peroxidase 2, gastrointestinal Found to play a role in colon cancer resistance [56] 1
25 Phosphodiesterase 9A Ranked #28 in the OVA marker list for the prostate cancer class 

in [2]
M

Top 25 genes ranked from the most frequently selected genes for the GCM dataset. Group M: identified as a marker or repressor of a specific 
tumor type in originating study. Group 1: identified as a marker or repressor of a specific tumor type in other studies. Group 2: known to either 
promote or inhibit tumor in general. Group 3: tissue-specific genes. Group 4: unknown sequences and genes with either still-unidentified function or 
general housekeeping roles.
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ity to be assigned to each of these two criteria remains an
unexplored area.

In the antiredundancy-based scoring method, decreasing
the value of α forces the search method to put more prior-
ity on maximizing antiredundancy at the cost of maximiz-
ing relevance. Raising the value of α increases the
emphasis on maximizing relevance (and at the same time
decreases the emphasis on maximizing antiredundancy)
during the search for the predictor set.

A predictor set found using larger value of α has more fea-
tures with strong relevance to the target class vector, but
also more redundancy among these features. Conversely,
a predictor set obtained using smaller value of α contains
less redundancy among its member features, but at the
same time also has fewer features with strong relevance to
the target class vector. At α = 0.5, we get an equal-priorities
scoring method.

WA,S = (VS·US)0.5  (9)

At α = 1, the feature selection technique becomes rank-
based.

WA,S = VS  (10)

There is also the trivial case of α = 0, where only antire-
dundancy is considered in forming the predictor set.

WA,S = US  (11)

The role and significance of ρ in the redundancy-based
scoring method are similar to those of α in the antiredun-
dancy-based scoring method, which has been elucidated
in the paragraphs above. At ρ = 0.5, the redundancy-based
scoring method is effectively the same as one of the scor-
ing methods presented in [4].

The case of ρ = 1 is similar to α = 1.

WR,S = VS  (13)

In the trivial case of ρ = 0, only redundancy is considered
during feature selection.

We posit that different datasets will require different val-
ues of DDP between maximizing relevance and minimiz-

ing redundancy/maximizing antiredundancy in order to
come up with the most efficacious predictor set. Therefore
the optimal range of α or ρ (optimal as in leading to the
predictor set giving the best estimate of accuracy) is data-
set-specific.

Search method

For predictor set search, the linear incremental search
method [4,5] is used, where the first member of S is cho-
sen by selecting the gene with the highest F(i) score. To
find the second and the subsequent members of the pre-
dictor set, the remaining genes are screened one by one for
the gene that would give the maximum WA,S or WR,S. The

procedure is terminated when P has reached Pmax. Pmax is

the size of the largest predictor set we wish to look for.
This search method has a computational complexity of
O(NPmax), which is much lower than that of exhaustive

search, O( ).

Differences of the roles played by antiredundancy, US, and 
redundancy, RS
Substituting equation (4) into equation (6), we express
the relationship between antiredundancy, US, and redun-
dancy, RS, as follows.

US = χ - RS ⇔ RS = χ - US  (15)

where , which, as indicated in equation (5), is

also the largest possible value of RS. As |S| approaches

infinity, the limit of χ is 0.5. Therefore, similar to RS, the

bounds of US is also [0,0.5).

The mathematical difference between the WA,S scoring

method and the WR,S scoring method contrasts the man-

ner the sum of the absolute value of the Pearson product
moment correlation coefficient between all possible pair-

wise combinations in the predictor set S, ,

is minimized between the two scoring methods.

In the WR,S scoring method we directly minimize

 by making it a part of the denominator in

equation (7). In the WA,S scoring method the minimiza-

tion is done indirectly, where we maximize -
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 (note the minus sign) by making

WA,S the product of VS and US in equation (8).

This difference might be a key to the reason the WA,S scor-
ing method works better than the WR,S scoring method.
Since the minimum limit of RS is 0, it is possible in prac-
tical situations to encounter cases where RS approaches
zero. When this occurs, the influence of the denominator
in equation (7) greatly overwhelms the contribution of
the numerator. This is true even for a large part of the
domain of ρ (i.e. at least from 0 to 0.6).

Therefore, rather than the bounds of RS itself, the concern

is on the bounds of the expression  in equation

(7) which is (2,∞ ] for all values of ρ ∈ (0,1]. The upper
limit leads to instability when redundancy is minimal
(near zero), causing the search process to over-emphasize

RS at the cost of VS even at larger values of ρ. On the other

hand, the expression (US)1-α in equation (8) has stable

limits of (0,1] for all values of α ∈ (0,1].

In Figure 7, we plot (US)1-α and  against α and ρ

respectively, along with the (VS)α DDP plot in order to

demonstrate the different ways (US)1-α and 

change with respect to both the values of the DDP and the
two extreme situations of near-maximum redundancy
and near-minimum redundancy. For VS we use a typical

value of 0.22 (based on the split-averaged mean of the val-
ues of F(i) for the top 150 rank-based genes of the GCM
dataset) in both situations.

Figure 7(a) depicts the situation of near-maximum redun-
dancy, where RS approaches 0.5 and accordingly, US

approaches 0. In this case we use the values RS = 0.499 and

thus, based on equation (15), US = 0.001. When the DDP

is low (less than 0.7), (US)1-α is less than 0.1, and thus it

drags the value of WA,S down regardless of the value of VS

since S is a predictor set with near-maximum redundancy.

The aforementioned drag weakens as α increases and thus
moving away the emphasis from antiredundancy to rele-

vance.  is near 2 when ρ is 0 and contributes that

value to WR,S ; the contribution of  decreases as

ρ increases, as explained in the previous section on the sig-
nificance of the DDP. Thus there is no problem with the
behaviour of both parameters in the situation where S has
near-maximum redundancy.

Figure 7(b) shows the plots in situation where S has near-
minimum redundancy, where RS = 0.001 and hence

according to equation (15), US = 0.499. Both (US)1-α and

 now contribute to increase WA,S and WR,S

respectively such that WA,S and WR,S have higher values in

the current situation of near-minimum redundancy than
in the previous situation of near-maximum redundancy.

The value of  for a large part of the domain of ρ

(0 to 0.6) is at least in the order of 10, which is two orders
of magnitude greater than the typical values of (US)1-α and

(VS)α in the same situation (between 0 and 1). Due to this

chasm in magnitude, the contribution of (VS)α (regardless

of its value) will be subjugated by that of  for a

large range of ρ. Conversely, due to the stable limits of

(US)1-α ∈ (0,1], the contributions of (US)1-α and (VS)α are

almost counter-balanced by each other, with the excep-

tion of the extreme cases of α = 0 and α = 1 (Figure 7(c)).

The F-splits evaluation procedure
In several previous studies on feature selection for micro-
array datasets [3-5], feature selection techniques have
been applied once on the full dataset (with no splitting)
before cross validation procedure (be it LOOCV or n-fold
cross validation) is employed to evaluate the classification
performance of the resulting predictor sets. We call this
evaluation procedure the internal cross validation (ICV)
procedure. ICV is known to produce selection bias, which
leads to overly optimistic estimates of accuracy [58]. In
[59], datasets are explicitly split into training and test sets,
but information from the test set is incorporated into the
feature selection process – which results in over-fitting
and again, overly optimistic estimates of accuracy.
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To avoid this pitfall, different splits of the dataset into
training and test sets should be used where feature selec-
tion is repeated for each of the splits. During each split,
our feature selection techniques will be applied only on
the training set of that particular split. No information
from the test set should be 'leaked' into the process of
forming the predictor set (which is precisely what hap-

pens during the ICV procedure). Classifier trained on the
predictor set and the training samples will then be used to
predict the class of the test samples of the current split.
The test set accuracies obtained from each split will be
averaged to give an estimate of the classification accuracy.
We call this procedure of accuracy estimation the F-splits
evaluation procedure (F being the number of splits used).

Limits of (US)1-α and  in extreme situations of near-maximum and near-minimum redundancyFigure 7

Limits of (US)1-α and in extreme situations of near-maximum and near-minimum redundancy. (US)1-α 

and  plotted against α and ρ respectively and (VS)α plotted against the DDP in the cases where (a) redundancy is 

close to the theoretical maximum, and (b) redundancy is close to the theoretical minimum, and (c) magnification of plot (b) for 
(US)1-α and (VS)α.
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Figure 1 shows how we evaluate the performance of each
predictor set scoring method run at a certain value of the
DDP at each value of P.

The selection bias resulting from the ICV procedure makes
it possible for any feature selection technique evaluated
using ICV to produce accuracies which are much higher
than those from the F-splits evaluation procedure. The
overly optimistic estimates of accuracy from the ICV mean
that predictor sets chosen based on the ICV are likely to
give dismal classification performance in the face of fresh,
unknown test samples. The effect of selection bias on mul-
ticlass microarray datasets has been elucidated in [11].

Summary of previous works
The concept of the DDP was first introduced in [57],
where we proposed the antiredundancy-based WA,S scor-
ing method. However, in that study, only one dataset (the
GCM dataset [2]) was analyzed, and no F-splits evaluation
procedure was implemented since only the original (sin-
gle) split of training and test sets used in [2] was investi-
gated. In a following study [29], we added the
redundancy-based WR,S scoring method and made some
simple comparisons between the two scoring methods
(using overall accuracy and range of class accuracies).
Again, only the single split of the GCM dataset was ana-
lyzed.

In our third study on the DDP feature selection tech-
niques [11], five datasets were used as benchmark data-
sets: GCM [2], NCI60 [15], lung [21], MLL [23] and AML/
ALL [25]. All five are included in the set of nine microarray
datasets analyzed in this study. However, the study in [11]
was limited to the WA,S scoring method. It was in the same
study [11] that we first implemented the F-splits evalua-
tion procedure and demonstrated the importance of
avoiding evaluation procedures prone to producing
overly optimistic estimates of accuracy. All of the details
concerning the WA,S and the WR,S scoring methods, and
the F-splits evaluation procedure are described in the
Methods section of this paper.

In our most recent study [34], we presented a procedure
for computing the value of the DDP most likely to pro-
duce the optimal accuracy based on available classifica-
tion results. This procedure is elaborated in The
importance of the DDP sub-section under the Discus-
sion section of this paper.
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