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Abstract
Background: Automated comparison of complete sets of genes encoded in two genomes can
provide insight on the genetic basis of differences in biological traits between species. Gene
ontology (GO) is used as a common vocabulary to annotate genes for comparison. Current
approaches calculate the fold of unweighted or weighted differences between two species at the
high-level GO functional categories. However, to ensure the reliability of the differences detected,
it is important to evaluate their statistical significance. It is also useful to search for differences at
all levels of GO.

Results: We propose a statistical approach to find reliable differences between the complete sets
of genes encoded in two genomes at all levels of GO. The genes are first assigned GO terms from
BLAST searches against genes with known GO assignments, and for each GO term the abundance
of genes in the two genomes is compared using a chi-squared test followed by false discovery rate
(FDR) correction. We applied this method to find statistically significant differences between two
cyanobacteria, Synechocystis sp. PCC6803 and Anabaena sp. PCC7120. We then studied how the
set of identified differences vary when different BLAST cutoffs are used. We also studied how the
results vary when only subsets of the genes were used in the comparison of human vs. mouse and
that of Saccharomyces cerevisiae vs. Schizosaccharomyces pombe.

Conclusion: There is a surprising lack of statistical approaches for comparing complete genomes
at all levels of GO. With the rapid increase of the number of sequenced genomes, we hope that
the approach we proposed and tested can make valuable contribution to comparative genomics.

Background
Comparison of two completely sequenced genomes sheds
lights on the genetic basis of differences in biological traits
between species. Of particular interest is the comparison
of complete sets of genes and gene products encoded in
two genomes. Manual comparison is important but time-

consuming and labor-intensive at the whole-genome
scale and thus must be aided by automated approaches.

Unambiguous automated comparison requires that both
genomes be annotated with the same structured, control-
led vocabulary. Currently, the most common choice for
such a vocabulary is gene ontology (GO) [1]. The Novem-
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ber 15, 2005 version of GO contained 19,025 terms in
three hierarchical structures—as Directed Acyclic Graphs
(DAGs)—termed Biological Processes, Cellular Compo-
nents, and Molecular Functions. Every branch in the
graph represents a biological concept progressing from
general to specialized with increasing graph depth. The
depth of the branches in the graphs varies, with levels
ranging from 2 to 15.

The GO web site currently lists 31 genomes that have been
annotated with GO [2]. The annotations that are of the
highest quality and updated most frequently are usually
carried out by researchers who sequence and study a par-
ticular species; these annotations are primarily stored in
species-specific databases such as SGD [3] for Saccharomy-
ces cerevisiae, FlyBase [4] for Drosophila melanogaster,
WormBase [5] for Caenorhabditis elegans, MGI [6] for Mus
musculus, and TAIR [7] for Arabidopsis thaliana. Since these
species-specific databases are located in different sites on
the web, there is need for integrated, searchable databases
that contain annotations for multiple species. The GO
Consortium has developed such a resource, called
AMIGO [8], that allows users to search and browse GO
annotations integrated from many species-specific data-
bases. Additionally, the European Bioinformatics Institute
(EBI) has developed the Gene Ontology Annotation
(GOA) database [9] that provides GO annotations for
non-redundant proteins from many species in UniProt
[10,11]. We compare these two resources in the Methods
section. In addition to sequences annotated with GO,
15,754 functional domains in the InterPro domain data-
base [12] have been linked to 2,627 GO terms [13].

Using the above-mentioned resources, there are two main
types of methods developed to automatically annotate
new gene products with GO terms: sequence similarity-
based methods such as GOFigure [14], Goblet [15], Onto-
Blast [16], GOtcha [17], and Blast2GO [18], and sequence
domain-based methods such as InterProScan [19] and
GOTrees [20]. For genome-scale GO annotations the sim-
ilarity-based, in particular BLAST-based methods have
been the preferred choice [17,21-24]. BLAST is signifi-
cantly faster than InterProScan and can annotate many
more GO terms than InterProScan can. A recent evalua-
tion showed that assigning GO terms of the top BLAST hit
gave satisfactory results when compared with several more
complex methods [25]. Thus we chose the BLAST
approach in our work.

After the sets of genes encoded in the two genomes are
annotated with GO, they can then be compared. The goal
is to find functional categories that differ between the two
genomes, which may explain differences in biological
traits or suggest interesting families for further detailed
investigation. The most common practice is to use tools

such as GOslim [26,27] to tally the number of genes that
fall within each functional category at the first level under
Biological Processes, Cellular Components, and Molecu-
lar Functions, and then to compare between the two
genomes. Because the two genomes usually differ in size,
the absolute numbers of genes in each functional category
need to be weighted before they are compared; they are
often divided by the total number of genes in the respec-
tive genomes [28-30]. The results of the unweighted and
weighted comparisons are usually presented as bar charts
or fold changes.

The unweighted and weighted GO-based genome com-
parisons, although useful, have two drawbacks. First,
focusing only on the high-level functional categories may
miss differences that are detectable only at more refined
levels. Second, bar charts or fold changes alone are not
sufficient to separate true functional differences from
those occurring by chance; thus, statistical testing of sig-
nificance is necessary. Lessons can be learned from
another, more extensively researched application of GO—
the detection of significantly enriched GO categories in a
set of co-expressed or differentially expressed genes in
microarray experiments. Several tools have been devel-
oped to search complete GO trees (rather than just the
high levels) and apply statistical testing of significance
(e.g., Onto-Express [31]; FatiGO [32]; for an evaluation of
these tools, see ref. [33]).

Contrary to the situation in microarray analysis, there is a
surprising lack of statistical approaches for GO-based
comparison of two genomes. Here we propose such a sta-
tistical approach to find reliable differences between the
complete sets of genes encoded in two genomes at all lev-
els of GO. For each GO term the abundance of genes in
the two genomes is compared using chi-squared test fol-
lowed by false discovery rate (FDR) correction. Further-
more, to analyze the reliability of the differences detected,
we studied two important issues. First, when new
sequences are assigned GO terms by similarity (as deter-
mined by BLAST) to other sequences having known GO
assignments, the choice of BLAST cutoff may affect the
results. We therefore analyzed the effects of employing a
wide range of BLAST cutoffs. Second, we studied how the
results vary when only subsets of the genes were used. To
our knowledge, our work is the first to address all the
aforementioned issues.

We used this statistical approach to compare two cyano-
bacterial genomes, Synechocystis sp. PCC6803 and Ana-
baena sp. PCC7120. Cyanobacteria (also called blue-green
bacteria, blue-green algae, cyanophyceae, or cyanophytes)
are important model organisms for the study of photosyn-
thesis, nitrogen fixation, evolution of plant plastids, and
survival in diverse environments [34-41]. Two of the most
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widely studied cyanobateria species are Synechocystis sp.
PCC6803 and Anabaena sp. PCC7120. PCC6803 is a fresh
water unicellular cyanobacterium incapable of nitrogen
fixation [42]; PCC7120 is a filamentous, heterocyst-form-
ing cyanobacterium that has long been used to study the
genetics and physiology of cellular differentiation, pattern
formation, and nitrogen fixation [43]. These interesting
biological differences as well as the appropriate evolution-
ary distance between PCC6803 and PCC7120 make them
a popular pair of species to compare and contrast[34,44-
50]. We compared PCC6803 and PCC7120 genomes
using our statistical method and evaluated the detected
statistically significant differences against known biologi-
cal differences. To analyze how results change when only
subsets of the genes are used, a larger set of statistically sig-
nificant differences is desirable and we used the compari-
son of human vs. mouse and that of Saccharomyces
cerevisiae vs. Schizosaccharomyces pombe genomes.

Results
Whole-genome GO annotation
To annotate a new sequence, we used BLAST to compare
it against a database of sequences with known GO anno-
tations. Such a database should contain as many anno-
tated sequences as possible from as many species as
possible. AMIGO and GOA are two primary choices for
such a database. We compared AMIGO and GOA, as
shown in Table 1. Both databases have unique merit.
AMIGO has been integrated to a greater extent with other
databases and provides a better browsing function on the
web, whereas GOA contains more sequences. For our pur-
pose, it was attractive to have a larger collection of
sequences for comparisons using BLAST, and thus we
chose the GOA database. We set the default BLAST cutoff
E-value to be 1E-20. With this method, a gene is assigned
the GO terms of its top BLAST hit in GOA; it is also linked
to all parent GO terms by propagating the DAG structures.
Finally, the number of genes assigned to each GO term is
tallied, representing the abundance of genes in each GO
function within the genome.

We were able to annotate 2,224 genes in the PCC6803
genome to 1,933 GO terms, and 3,348 genes in the
PCC7120 genome to 1,947 GO terms.

Testing the statistical significance of detected differences 
between genomes
For each GO category, we used the chi-squared test to
determine whether the numbers of genes from the two
genomes were statistically significantly different [51].
Since the total number of GO categories is large, a large
number of tests is required. We adopted the widely used
FDR correction (q-value cutoff = 0.01) to control the over-
all false positive rate [52]. We chose rather strict criteria to
ensure reliability of the results; they can be set differently
by other users.

We found seven terms in the GO Biological Process cate-
gory that were statistically significantly different between
the two genomes, including "transition metal ion trans-
port" (GO:0000041, q-value 6.1E-6), "di-, trivalent inor-
ganic cation transport" (GO:0015674, q-value 6.1E-6),
"cobalt ion transport" (GO:0006824, q-value 7.3E-05),
"metal ion transport" (GO:0030001, q-value 0.00056,),
"protein amino acid phosphorylation" (GO:0006468, q-
value 0.0021), "cellular biosynthesis" (GO:0044249, q-
value 0.0022) and "nitrogen fixation" (GO:0009399, q-
value 0.0094). These differences are shown in Figure 1
and discussed below. (The differences detected in the
Molecular Function and Cellular Component categories
are available in the Additional file 1)

The PCC7120 genome contains significantly more genes
in "cobalt ion transport" (GO:0006824) compared with
PCC6803, likely a consequence of the multicellular nature
of PCC7120. Close inspection showed that the statisti-
cally significant difference in parent nodes "transition
metal ion transport" (GO:0000041), "di-, trivalent inor-
ganic cation transport" (GO:0015674), and "metal ion
transport" (GO:0030001) is a consequence of the differ-
ence in the subfamily "cobalt ion transport"

Table 1: Comparison of AMIGO and GOA

GO Annotation Database AMIGO1 GOA2

Curator GO Consortium European Bioinformatics Institute (EBI)
URL http://www.godatabase.org/ http://www.ebi.ac.uk/GOA/
Total number of species 129,722 96,203
Total number of associations 7,745,168 7,600,805
Total number of non-redundant sequences 219,341 1,605,096
Total number of GO terms 10,916 9,258
Total number of other databases integrated 143 14

1AMIGO monthly release (November 1, 2005) downloaded from http://archive.godatabase.org/full/2005-11-01/go_200511-seqdb-data.gz
2GOA version 33.0 (October 25, 2005) downloaded from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_uniprot.gz.
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(GO:0006824) rather than a cumulative effect of any
other subfamilies. PCC7120 contains significantly more
genes than PCC6803 in "protein amino acid phosphor-
ylation" (GO:0006468). These genes are responsible for

critical protein kinase functions in the multicellular
PCC7120 [53-55]. The significantly greater number of
genes in "nitrogen fixation" (GO:0009399) in PCC7120
is consistent with its ability to fix nitrogen, a function the

Comparison of PCC6803 and PCC7120 using our statistical approachFigure 1
Comparison of PCC6803 and PCC7120 using our statistical approach. Comparison of PCC6803 and PCC7120 in the 
biological process category of GO, using the chi-squared test followed by FDR correction, with the q-value cutoff set to 0.01. 
The colors denote levels of statistical significance of differences between genomes, with the non-significant parent nodes of sig-
nificant child nodes shown in tan color. (Results for the Molecular Function and Cellular Component categories are available in 
the Additional file 1)
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simpler organism PCC6803 does not have. The "cellular
biosynthesis" (GO:0044249) family differs from those
above in that it is significantly more abundant in
PCC6803 than in PCC7120. This result may be a conse-
quence of PCC6803's rapid growth capability.

We compared the two genomes with regard to the GO
molecular function category and obtained similar results.
We then compared them with regard to the GO cellular
component category and found three statistically signifi-
cant differences: "cytoplasm" (GO:0005737), "integral to
membrane" (GO:0016021), and "intrinsic to membrane"
(GO:0031224), all of which are more abundant in
PCC6803 than in PCC7120.

We compared our results with results from traditional
GO-slim-based, weighted comparison. As shown in Fig-
ure 2, the fold difference in the GO-slim-based compari-
son ranged from 0.7 to 1.5. The fold difference gave only
a rough indication of how much PCC6803 and PCC7120
differ in each high-level functional category. In addition,
GO-slim-based approach compares two genomes at only
the high level, as opposed to our approach that compares
at every level and every node. Many important functional
differences between two genomes may be detectable only
at a finer level. For instance, GO-slim-based approach
found little difference between the two cyanobacteria for
GOslim term "metabolism, GO:0008152" in the Biologi-
cal Process category (fold difference 1.03), whereas our
approach found that the two species differ significantly in
the sub-term "nitrogen fixation, GO:0009399", one of the
most important known functional differences.

Effect of different BLAST cutoffs
We varied the BLAST E-value cutoff to study its effect on
the number of statistically significant terms detected as
well as the number of common terms between adjacent
cutoffs. As shown in Figure 3, when the E-value cutoff is
high (i.e., less strict, on the left end of the plot), the result
is sensitive to the change in cutoff. The results stabilize
around cutoff values of 1E-20 to 1E-40. We chose a default
cutoff of 1E-20, which coincides with that chosen by
GOblet [56].

Effect of partial data
Using the GO-based comparison method, we compared
the human and mouse genomes and found 458 statisti-
cally significantly different GO terms. We randomly sam-
pled 90% from each of the input gene sets for 1,000 times
and compared the statistically significantly different GO
terms from each sampling with those from the whole
data. As shown in Figure 4 (Hatched bars, "Common GO
terms"), most of the GO terms occurred in the majority of
the samplings; 298 of the 458 GO terms occurred 1,000
times in all sampling results, whereas at the lower extreme

three GO terms occurred only 169 times. This analysis
offers an additional measure of reliability of the signifi-
cant terms detected. The more times a term occurs in the
samples, the more reliable it may be. We plotted the dis-
tribution of the "unique GO terms"—significant terms
detected in one or more of the samples but not in the
whole data set—and found that they occurred in as few as
one and as many as 247 samples (Figure 4, open bars). As
shown in Figure 4, the histogram distributions of the
common and unique GO terms overlap slightly. We sam-
pled 60%, 70%, and 80% of the input genes, respectively,
and observed similar patterns (see the supplementary fig-
ures in the Additional file 1). We performed analysis of
the comparison of the two yeast genomes of Saccharomyces
cerevisiae and Schizosaccharomyces pombe and also observed
similar patterns (Figure 5 and supplementary figures in
the Additional file 1).

Discussion
BLAST and InterProScan are two most widely used auto-
mated GO annotation methods. BLAST is the preferred
choice for genome-scale annotation because it runs much
faster and, perhaps more importantly, can annotate many
more GO terms than InterProScan can. We had used Inter-
ProScan to annotate and compare PCC6803 and
PCC7120, and found that it missed some important dif-
ferences including "nitrogen fixation, GO:0009399".
However, BLAST has its own limitations. Accurate func-
tional assignment is difficult in cases where the match is
less well defined due to lower sequence similarity [57]. In
future research we will investigate how to combine results
from BLAST and InterProScan to improve annotation
quality and use grid computing to reduce computation
time.

We used BLAST E-value cutoff as the criteria in assigning
GO terms. Local sequence alignment programs such as
BLAST may prefer short strong matches to long weak
matches and may cause inaccurate GO assignment. The
strict E-value cutoff we chose in our analysis ensured the
relatively high quality of the results. It was reported that a
match between two sequences is most likely reliable if the
alignment is at least 70 residues in length with at least
40% sequence identity [58]. We investigated the quality of
the HSP (High scoring Segment Pair) in our BLAST results
(detail provided in the Additional file 1). With E-value
cutoff 1e-20, the minimum length of HSP was 64 and the
minimum sequence identity was 68%. Thus the assign-
ments in our results were reliable. It is possible that false
negatives may occur with a strict cutoff. In our analysis we
prefer accuracy to coverage. Others can use different crite-
ria depending on their individual goals. The statistical
testing we proposed in this paper is independent of the
GO assignment method. We suggest doing the compari-
son and comparing the results using different E-value cut-
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GOslim-based weighted comparison of PCC6803 and PCC7120Figure 2
GOslim-based weighted comparison of PCC6803 and PCC7120. The bars show the fold difference between PCC6803 
and PCC7120 in each GOslim functional catalogory, calculated by the weighted number of genes belonging to the functional 
category in PCC6803 divided by that in PCC7120. If there is no difference, the fold difference is equal to 1.
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offs and different subsets of the input gene sets to identify
the most reliable differences between two genomes.

In any GO analysis, the quality of the original GO anno-
tation is critical. The GO annotation data are continu-
ously expanded; however, the present data are incomplete
and noisy [59], and the annotation quality is uneven, with
a mix of literature-supported annotations and those
inferred automatically. We did not modify the GO anno-
tation data for our present study, but further research will
consider the quality of the original GO annotations when
assessing the reliability of the results. One limitation of
our approach is that it only compared the number of
genes in each functional category. It cannot capture differ-
ences in the level of gene expression. Another inherent
limitation of GO is that it does not map directly to path-
ways. As a result GO-based comparison cannot detect dif-
ferences at the pathway level. We have recently used the
KEGG Orthology (KO) as an alternative controlled vocab-
ulary in a KO-Based Annotation System (KOBAS) and
demonstrated that KOBAS is effective in automated anno-
tation and pathway identification [60]. In future research

we will investigate KO-based comparison to compare two
genomes at the pathway level.

Our goal is to achieve higher confidence in the differences
detected between two genomes. Towards this end, we
applied rigorous statistical testing followed by FDR correc-
tion instead of simply relying on fold changes. We also
tested a wide range of BLAST cutoff values and different
subsets of the input genes to provide additional measures
of confidence in the results. If results beyond those having
the highest confidence are required, then the cutoff values
can be relaxed. The advantage of the statistical approach
presented here is that, no matter what cutoff values are
chosen, the resulting p-values, q-values, and sampling
analysis can be used to assess the confidence in the results.

There are other procedures available to correct false posi-
tive rates resulting from multiple testing, including the
Bonferroni correction, Sidak stepwise correction, Holm
stepwise correction, Hochberg's stepwise correction, and
others [61,62]. We chose the FDR correction because of its
overall high quality and computational speed [63,64]. It
is also the most common procedure used in GO-related
and microarray analyses [62,65,66].

Conclusion
Contrary to the situation in microarray analysis, there is a
surprising lack of statistical approaches used in GO-based
comparison of two complete genomes. Our work is the
first to propose and test a statistical approach to compar-
ing the complete sets of genes in two whole genomes at all
levels of GO and study the effect of varying BLAST cutoffs
and using subset of the input gene sets. We believe that
such an approach can provide a measure of confidence in
the identified differences and help ensure the reliability of
the results.

Methods
Supplementary materials and related programs for the
paper are provided on-line [See Additional file 1].

Whole-genome GO annotation
We set the default BLAST cutoff E-value to be 1E-20. In
Part 3 of results, we study the cutoff's effect on the final
results. We parsed the BLAST result to obtain the GOA ID
for the top hit and used the ID to query the GOA associa-
tion database to retrieve the corresponding GO annota-
tion and assign it to the query sequence. The result is
written to a file in the format specified by the GO Consor-
tium [67].

We parsed the gene ontology DAGs and stored the GO
terms and their hierarchical relationships in a local data
structure. The genes in a genome are linked to GO terms
using the aforementioned approach; they are also linked

Effect of different BLAST cutoffs on GO resultsFigure 3
Effect of different BLAST cutoffs on GO results. This 
figure illustrates how much the result changes when the 
BLAST cutoff is changed. Circles show the number of signifi-
cant GO terms ("Sigcount") at each cutoff. The symbol '× ' 
indicates the number of significant GO terms common 
between a given cutoff and its nearest right neighbor. The 
BLAST cutoff values range from 1E-100 to 10 (1E-100, 1E-90, 
1E-80, 1E-70, 1E-60, 1E-50, 1E-40, 1E-30, 1E-20, 1E-10, 1E-5, 
0.001, 0.01, 1, 10). The results stabilize around cutoff values 
of 1E-20 to 1E-40. We chose a default cutoff of 1E-20.
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to all parent GO terms by propagating the DAG structures.
If a gene has been assigned more than one GO terms that
have a common parent GO term, the gene is counted only
once in the parent GO term. Finally, the numbers of genes
assigned to each GO term in the DAGs are tallied, repre-
senting the abundance of genes in each GO function
within the genome.

The complete set of known and predicted genes in
PCC6803 and PCC7120 genomes were downloaded from
Cyanobase [68]. The PCC6803 genome contains
3,573,470 bp with 3,167 predicted ORFs; the PCC7120
genome contains 6,413,771 bp with 5,362 predicted
ORFs.

Testing the statistical significance of detected differences 
between genomes
The goal is to identify all GO terms for which two
genomes (A and B) are statistically significantly different.
Define:

N = the total number of annotated genes in Genome A

n = the total number of annotated genes in Genome B

X = the number of genes in Genome A that are assigned
the GO term currently under consideration

x = the number of genes in Genome B that are assigned the
GO term currently under consideration

We used the chi-squared test to address whether the ratios,

 and , come from the same distri-

bution, either:

H0: p0 = p1 or

H1: p0 ≠ p1

The p-value is calculated as the upper tail probability of
the chi-squared distribution with one degree of freedom
using the CPAN Statistics::Distributions modules [69].

Because the number of tests performed equals the number
of GO terms, which may be thousands, multiple hypoth-
eses testing is important to control the overall Type I error
rate. We used the commonly applied FDR correction. For
every test result that is considered statistically significant,
the FDR correction calculates a q-value to measure the
minimum FDR when calling that result significant. A q-
value cutoff, α (alpha), guarantees that the expected pro-
portion of false positives is α (alpha) among the set of sig-
nificant features produced [52,66]. The default for α
(alpha) was set to 0.01 in our study. The conservative FDR
correction was implemented according to the GenTS
package [70].

p
x

n x0 =
−

p
X

N X1 =
−

Histogram of sampling analysis results of the comparison between Saccharomyces cerevisiae and Schizosaccharomyces pombe genomesFigure 5
Histogram of sampling analysis results of the comparison 
between Saccharomyces cerevisiae and Schizosaccharomyces 
pombe genomes.
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Histogram of sampling analysis results of the comparison between human and mouse genomesFigure 4
Histogram of sampling analysis results of the com-
parison between human and mouse genomes. The x-
axis shows the number of samplings containing a significant 
GO term, grouped by 50. The y-axis shows the number of 
terms. The "Common GO terms" are those that occur both 
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from the whole data set. For example, the right-most bar 
shows that 346 "Common GO terms" occurred in the 
results from 950 or more samples; the left-most bar shows 
that 109 "Unique GO terms" occurred in the results from 
less than fifty samples.
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The statistically significantly different GO terms detected
between two genomes are stored in text format, sorted by
increasing q-value. We also modified the GO TermFinder
package [71] to show the results graphically, with differ-
ent colors showing different levels of significance.

All related programs are attached in Additional file 1

Effect of different BLAST cutoffs
We studied how the BLAST cutoff value can affect the
comparison of results between two genomes of PCC6803
and PCC7120. We tested a wide range of BLAST E-value
cutoffs, from 1E-100 to 10, and recorded the number of
statistically significantly different GO terms between the
two cyanobacterial genomes at each cutoff. We then
recorded the number of common statistically significantly
different GO terms between adjacent cutoffs to show how
much the result changes when the cutoff is varied.

Effect of partial data
We performed the random sampling to study how the
results are affected when only part of the data is used. For
each sample, we randomly selected 90%, 80%, 70%, and
60% of the annotated genes in each genome, and recom-
puted the statistically significantly different GO terms. We
then compared the result of each sampling with that for
the complete data sets and counted the numbers of com-
mon and unique GO terms. Because comparison of the
two cyanobacteria resulted in too few significant GO
terms to make this analysis meaningful, we analyzed the
comparison of human vs. mouse and Saccharomyces cerevi-
siae vs. Schizosaccharomyces pombe. The GO annotations for
these four genomes were retrieved from the Gene Ontol-
ogy Consortium web site.
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