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Abstract

 

The neurotrophins are a family of polypeptide growth factors that are essential for the development and mainte-

nance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could

have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA

in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins

is scarce in this regard. This paper reviews what is known about the expression and possible functions of neuro-

trophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of

transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate

some immune functions. They also play an important role in the development of the thymus and in the survival of

thymocytes.
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Introduction

 

Half a century ago, a polypeptide that induced neuro-

nal growth was discovered and named nerve growth

factor (NGF) (Levi-Montalcini, 1952). Several decades

later, a series of other molecules with similar structure

and functions were identified, and together they form

a family of polypeptide growth factors called the neu-

rotrophins (NTs). Besides NGF, this family comprises

brain-derived neurotrophic factor (BDNF), neuro-

trophin 3 (NT-3) and NT-4/5, all of which are present in

all tetrapods, except NT-4/5, which has not been found

in birds (Hallböök, 1999). In teleosts, two additional

neurotrophins closely related to NGF, namely NT-6 and

NT-7, have been identified (Götz et al. 1994; Lai et al.

1998; Nilsson et al. 1998). NTs probably originated from

the duplication of an ancestral gene, which gave rise

to two intermediate genes that then produced NGF

and NT-3, and BDNF and NT-4/5, respectively (Hallböök,

1999).

NTs bind to two kinds of receptors with dissociation

constants of 10

 

−

 

9

 

 

 

M

 

 and 10

 

−

 

11

 

 

 

M

 

 that denominate low-

and high-affinity receptors, respectively (for references

see Lewin & Barde, 1996; Friedman & Greene, 1999).

The low-affinity receptor is p75

 

NTR

 

. It belongs to the

tumour necrosis factor receptor superfamily, and serves

as a pan-neurotrophin receptor (Rodríguez-Tebar et al.

1990, 1992; Hempstead, 2002). The p75

 

NTR

 

 locus pro-

duces two proteins, a full-length protein and a short

variant lacking a segment of the extracellular domain

(Dechant & Barde, 1997; von Schack et al. 2001). The

functional role of p75

 

NTR

 

 has not yet been fully eluci-

dated (Bothwell, 1996; Lee et al. 2001; Roux & Barker,

2002). It is assumed to function as a co-receptor for the

high-affinity receptors (for references see Esposito et al.

2001; Roux & Barker, 2002) and as a mediator of the

pro-apoptotic programmes induced by NGF depending

on the physiological or developmental stage of the

cells (Carter & Lewin, 1997; Casaccia-Bonnefil et al.

1998; Kuner & Hertel, 1998; Meldolesi et al. 2000;

Miller & Kaplan, 2001; Chao & Bothwell, 2002; Kendal

et al. 2002). Moreover, it mediates the migration of
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Schwann cells (Bentley & Lee, 2000), and is involved in

cell fate decisions in some non-nervous cells such as

macrophages (Caroleo et al. 2001) and vascular smooth

muscle cells (Wang et al. 2001). p75

 

NTR

 

 also interacts

with proteins that promote mitotic cycle arrest,

thereby mediating a role of NTs in the cell cycle (Lopez-

Sanchez & Frade, 2002).

The protein tyrosine kinase Trk receptors TrkA

(gp140

 

trk

 

A)

 

,

 

 TrkB (gp145

 

trk

 

B) and TrkC (gp145

 

trk

 

C)

act as specific, high-affinity neurotrophin receptors

(Meakin & Shooter, 1992; Glass & Yancopoulos, 1993;

Barbacid, 1995; Lewin & Barde, 1996; Huang & Rei-

chardt, 2001). These Trk receptors have an extracellular

domain, which binds the different neurotrophins, and

a cytosolic domain whose tyrosine-kinase activity is

essential for signal transduction. Variants of Trks with

insertions in either the extracellular domain or the

tyrosine kinase domain have been identified for TrkA

(Barker et al. 1993; Shelton et al. 1995) and TrkC (Lam-

balle et al. 1993; Valenzuela et al. 1993; Shelton et al.

1995). In addition, truncated receptors lacking the

kinase domain have been described for TrkB and TrkC,

but not for TrkA (Middelmas et al. 1991; Valenzuela

et al. 1993; Tsoulfas et al. 1996). Variants of the extra-

cellular domain of TrkA have also been detected in cer-

tain tissues (Dubus et al. 2000). Each member of the Trk

family shows preferential ligand bindings among neu-

rotrophins (Ip et al. 1993). TrkA is the preferred recep-

tor for NGF (Kaplan et al. 1991; Klein et al. 1991), but

has a lower efficiency for NT-3 or NT4/5 binding. TrkB

is bound by BDNF and NT-4 and, to a lesser extent, by

NT-3 (Klein et al. 1991; Ip et al. 1992). TrkC has a unique

ligand, NT-3 (Lamballe et al. 1991) (Fig. 1).

As occurs with NTs, the genes codifying for the Trk rece-

ptors probably also originate from a common ancestral

gene (van Kesteren et al. 1998; Hallböök, 1999). Thus both

neurotrophins and Trk receptors are present in all

vertebrates and their sequences are highly conserved

during phylogeny.

The actions of NTs in the nervous system have been

well studied and extensively reviewed (Fariñas, 1999;

Huang & Reichardt, 2001), although the concept that

the role of NTs is confined to cells of the nervous system

is being reconsidered (Tessarollo, 1998). Thus detailed

Fig. 1 Schematic representation of the structure of Trk and p75NTR neurotrophin receptors, and of the neurotrophins that bind 
each of them: thick arrows represent the primary receptor–ligand pairing; thin arrows indicate other binding possibilities. Two 
different isoforms of TrkA have been isolated, and termed TrkAI and TrkAII. Three TrkAI isoforms are known (shown at the left 
of the figure). In the thymus, two specific TrkAI isoforms have been isolated (arrows at bottom left), which show total or partial 
deletion of amino cysteine-rich regions of the extracellular domain. TrkAII differs from TrkAI in that it carries a small insertion 
of six amino acids next to the transmembrane domain (hexagon). With regard to TrkB and TrkC, full-length (FL), tyrosine kinase 
truncated (TK-T1 and TK-T2), and tyrosine kinase inserted (14, 25 and 39, equivalent to the number of amino acids forming the 
insertion) isoforms have been isolated. NH2 CRR, amino cysteine-rich regions; COOH-CRR, carboxy cysteine-rich regions; CRD, 
cysteine-rich domains; LRR, leukine-rich region; TK, tyrosine kinase domain.
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studies have revealed significant actions of neuro-

trophins in a wide variety of tissues outside the nervous

system, especially in the immune system (Otten &

Gadient, 1995; Tessarollo, 1998; Aloe et al. 1999; Aloe,

2001; Sariola, 2001).

It is now well established that NGF is involved in the

normal pattern of sympathetic innervation of the lym-

phoid organs (Kannan et al. 1994, 1996), because they

concentrate NGF conveyed by the lymphoid vessels

from the sources (Carlson et al. 1995, 1998). However,

other functions of NTs in the lymphoid organs are less

clear. The aim of this review is to compile and discuss

current data about the occurrence and distribution of

NTs and their receptors in the lymphoid organs and

immunocompetent cells, focusing on the possible func-

tional significance of these molecules as modulators of

the immune system in health and disease.

 

Presence of the neurotrophins and their 
receptors in the immune system (Table 1)

 

Detailed studies carried out during the last decade about

the tissue distribution and cellular localization of NT rece-

ptors have revealed they are present in cell subpopulations

of primary and secondary lymphoid organs, as well as

in some kinds of immunocompetent cells (see Aloe

et al. 1999). Therefore, both these tissues and cells are

potential targets for NTs. Interestingly, in all vertebrate

species examined, from humans to fishes, NTs and/or

their receptors have been detected in lymphoid organs

(Ciriaco et al. 1996; Hannestad et al. 1997, 2000). Recently,

a major contribution to understanding the 

 

in vivo

 

 func-

tions of NTs has been provided by the study of the pheno-

type of mice lacking NTs or functional NT receptors

(García-Suárez et al. 2000a, 2002; Ruberti et al. 2000).

 

Thymus

 

In the thymus, mRNAs for all NTs and their receptors

have been detected (Timmusk et al. 1993; Laurenzi

et al. 1994; Lomen-Hoerth & Shooter, 1995; Labouyrie

et al. 1997; Parrens et al. 1998). Nevertheless, identifi-

cation of the cells expressing each of them has not yet

been fully accomplished, and it has still not been

proved whether or not mechanisms of autocrinia or

paracrinia exist within the organ.

Table 1 Localization of neurotrophin receptors in lymphoid organs of vertebrates
 

 

Tissue TrkA TrkB TrkC p75

Bone marrow Erythroblasts1 Erythroblasts1 Megacariocytes1 Dendritic cells2,4

Neutrophils1 Promyelocytes1

Megacariocytes1

Haematopoietic cells2

Thymus Dendritic cells5,6,7 Macrophages8 Stromal cells9,10 Dendritic cells7

Epithelial cells2,5,6,7 Dendritic cells9,10 Epithelial cells5,11,12,13

Thymocytes2

Bursa of Fabricius Epithelial cells9,14 Dendritic cells14 Epithelial cells14

Spleen Macrophages2,15 Stromal cells10 Follicular dendritic cells6

Lymphocytes2

Lymphoid nodes Dendritic cells5,16 Dendritic cells16 Dendritic cells6

Macrophages2 Lymphocytes17

Peyer’s patches Dendritic cells18 Macrophages18

Epithelial cells18

Palatine tonsils Dendritic cells6,19 Macrophages19 Interdigitating dendritic cells19 Dendritic cells6

Epithelial cells6,19

Cecal tonsil Epithelial cells20 Macrophages20 Macrophages20

Dendritic cells 20 Dendritic cells20

1Labouyrie et al. (1999); 2Shibayama & Koizumi (1996); 3Cattoretti et al. (1993); 4Caneva et al. (1995); 5Hannestad et al. (1997); 6Labouyrie 
et al. (1997); 7Parrens et al. (1998); 8García-Suárez et al. (1998); 9Ciriaco et al. (1996); 10Hannestad et al. (2000); 11Pescarmona et al. (1993); 
12García-Suárez et al. (2000b); 13García-Suárez et al. (2001); 14Ciriaco et al. (1997); 15Pérez-Pérez et al. (1999); 16García-Suárez et al. (1997); 
17Chesa et al. (1988); 18Levanti et al. (1997); 19Hannestad et al. (1995); 20Hannestad et al. (1998).
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In mammals, TrkA is mainly localized in subcapsular

and medullar epithelial cells (Shibayama & Koizumi,

1996; Hannestad et al. 1997; Labouyrie et al. 1997;

Parrens et al. 1998, 1999; García-Suárez et al. 2000b, 2001;

Yoon et al. 2003), but is not expressed by thymocytes

(Maroder et al. 1996; Hannestad et al. 1997; Labouyrie

et al. 1997; Parrens et al. 1999; Levanti et al. 2001)

(Fig. 2). The thymic TrkA seems to be functional as NGF

administration produces epithelial cell hypertrophy 

 

in

vivo

 

 (Abramchik et al. 1988) and increases IL-6 tran-

scription in epithelial cells 

 

in vitro

 

 (Screpanti et al.

1992). Recently, Dubus et al. (2000) identified thymus-

specific TrkA variants lacking leucine-rich motifs of the

extracellular domain, which have been implicated in

Fig. 2 The upper pictures illustrate the localization of TrkA-(left), TrkB-(middle) and p75NTR (right)-positive cells in the rodent 
thymus; receptor-expressing cells are represented in black. Below are shown the corresponding TrkA (A), TrkB (B) and p75NTR (C) 
immunostained sections. The cells expressing TrkA are subcapsular and medullar thymic epithelial cells (mouse); those showing 
TrkB immunoreactivity, concentrated at the cortico-medullary border (arrows), are macrophages (rat), and p75NTR immuno-
reactivity is confined to a subpopulation of medullar thymic epithelial cells (arrows, rat). The lower images correspond to 
morphological aspects of functionally trkA- and trkB-deficient mice. The trkA-kinase –/– mouse thymus (D) is characterized by 
disorganization of the thymic architecture and the presence of medullar endodermic cysts containing amorphous material and 
cell debris, whereas the trkB-kinase –/– mouse (E) shows images of apoptotic lymphocyte death, especially in the cortex. c, cortical; 
m, medullar. Scale bar = 5 µm.
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modulating NGF binding (Fig. 1). Interestingly, in

malignant thymic epithelial cell tumours the expres-

sion of TrkA is lost (Parrens et al. 1998), and p75

 

NTR

 

 is

expressed (Parrens et al. 1999). Furthermore, during

thymus regeneration of the rat thymus following

acute-induced involution of the organ, the expression

of TrkA mRNA and TrkA is enhanced in cells that nor-

mally express it (Yoon et al. 2003).

Regarding TrkB, the occurrence of mRNA for both

truncated (Lomen-Hoerth & Shooter, 1995) and full-

length isoforms (Laurenzi et al. 1994; Maroder et al.

1996; García-Suárez et al. 2002) has been reported. At

the protein level, TrkB has been detected in thymocytes

(Maroder et al. 1996; Besser & Wank, 1999; García-

Suárez et al. 2002), as well as in stromal cells identified

as ED1+ and F4/80+ macrophages in the rat and mouse,

respectively (García-Suárez et al. 1998, 2002). In addi-

tion, TrkB expression has also been detected in mor-

phologically identified macrophages of the bovine

thymus (Levanti et al. 2001).

To our knowledge, TrkC has not been detected in the

mammalian thymus at the protein level. p75

 

NTR

 

 mRNA

is also present in the thymus, primarily located on the

stroma (Lomen-Hoerth & Shooter, 1995) in both med-

ullar epithelial cells and dendritic cells (Parrens et al.

1998, 1999; García-Suárez et al. 2000b, 2001). Inter-

estingly, exogenously administered NGF, or experi-

mentally induced increased NGF plasma levels with

4-methylcatechol, have proven to induce a shift in p75

 

NTR

 

expression from medullar epithelial cells to macro-

phages. In fact, in control animals p75

 

NTR

 

 expression

was restricted to epithelial cells, whereas in the treated

animals it disappeared from epithelial cells and was ex-

pressed in macrophages (García-Suárez et al. 2000b).

Trk-like proteins have also been detected in the thy-

mus of vertebrates other than mammals (Baig & Khan,

1996; Heinrich & Lum, 2000). In the pigeon, TrkA-like

expression was observed in medullar and a subpopula-

tion of cortical epithelial cells, TrkB-like in medullar

dendritic cells and cortical macrophages, and TrkC-like

in scattered clusters of medullar epithelial cells, includ-

ing Hassal’s corpuscles (Ciriaco et al. 1996). Recently,

expression of Trk-like proteins was observed in the thy-

mus of the teleost 

 

Dicentrarchus labrax

 

 (Hannestad

et al. 2000). Thus the presence of neurotrophins and

their receptors in the thymus appears to be a feature

common to most vertebrates.

NGF is present in the thymus, mostly in the medulla,

and is probably synthesized locally (Katoh-Semba et al.

1993; Aloe et al. 1997; Turrini et al. 2001). Since T cells

are known to produce NGF (Ehrhard et al. 1993b; San-

tambrogio et al. 1994; Lambiase et al. 1997), it could be

hypothesized that this neurotrophin acts in a paracrine

manner on the epithelial cells expressing TrkA. Such an

action could account for the trophic and maturational

dependency of thymic epithelial cells on thymocytes

(Ritter & Boyd, 1993; Shores et al. 1994; Hollander et al.

1995; Haynes & Hale, 1998) (Fig. 4).

BDNF mRNA is present in the thymus (Laurenzi et al.

1994; Yamamoto et al. 1996; Timmusk et al. 1999),

where it is expressed by stromal cells (Maroder et al.

1996), and BDNF signalling through TrkB receptors

present on immature thymocytes seems to be necessary

for thymocyte survival at certain developmental stages

(Maroder et al. 1996) (Fig. 4). The thymus also contains

mRNA and protein for NT-3 (Laurenzi et al. 1994;

Katoh-Semba et al. 1996) and NT-4/5 (Timmusk et al.

1993; Laurenzi et al. 1994), but the cellular source of

these polypeptides, as well as their role in thymic func-

tion, remains to be established.

 

Bursa of Fabricius

 

The bursa of Fabricius is a unique lymphoid organ

present in birds, which provides the microenvironment

for B-lymphocyte maturation and differentiation

(Glick, 1991; Glick & Olah, 1993). Studies from our

group have demonstrated the occurrence of Trk-

like proteins in the pigeon bursa (Ciriaco et al. 1996,

1997). TrkA-like and TrkC-like proteins were found

in the so-called follicle-associated and interfollicular

epithelia, whereas TrkB-like protein was present in

the bursal secretory dendritic cells. The bursa of Fab-

ricius contains high levels of NGF during development

(Ernfors et al. 1988), and this neurotrophin has

been reported to increase the size of bursal lym-

phoid follicles (Bracci-Laudiero et al. 1991), and to

reduce bursal cell mortality 

 

in vitro

 

 (Bracci-Laudiero

et al. 1993a).

 

Spleen

 

The spleen contains detectable amounts of mRNA for

all neurotrophins (Maisonpierre et al. 1990; Timmusk

et al. 1993; Laurenzi et al. 1994; Yamamoto et al.

1996), but at the protein level only NT-3 has been

detected in this organ (Zhou & Rush, 1993; Katoh-

Semba et al. 1996). As for the receptors, p75

 

NTR

 

 as well
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as Trks have been detected at the mRNA level in human

and rat spleen (Laurenzi et al. 1994; Lomen-Hoerth &

Shooter, 1995; Yamamoto et al. 1996).

In humans, follicular dendritic cells express both

p75

 

NTR

 

 and TrkA (Labouyrie et al. 1997). By contrast, in

the rat spleen p75

 

NTR

 

 expression has been localized

to dendritic cells in the PALS (periarteriolar lymphatic

sheath, Pérez-Pérez et al. 2003), and no TrkA expression

has been reported to date. TrkB has been detected in

immunohistochemically identified macrophage sub-

populations of human (Shibayama & Koizumi, 1996),

rat (Pérez-Pérez et al. 1999) and mouse (M. Pérez-Pérez

et al. unpubl. obs.) macrophages (Fig. 3).

 

Lymph nodes, palatine tonsils and Peyer’s patches

 

In human palatine tonsils and lymph nodes, p75

 

NTR

 

 is

present in follicular dendritic cells and dendritic cells, as

well as in periarteriolar macrophages (Pezzati et al. 1992;

Hannestad et al. 1995; García-Suárez et al. 1997; Labouyrie

et al. 1997). As for TrkA, it has been found in cryptic

tonsilar epithelium, dendritic cells and interdigitated retic-

ular cells (Hannestad et al. 1995; García-Suárez et al.

1997; Labouyrie et al. 1997). The same results applied

to bovine lymphoid organs (Levanti et al. 1997, 2001).

In the pigeon caecal tonsil, a secondary gut-associ-

ated lymphoid organ, TrkA-like has been found in the

Fig. 3 The upper pictures illustrate the localization of TrkB-(left) and p75NTR (right)-positive cells in the rat spleen; receptor-
expressing cells are represented in black. Below are shown the corresponding TrkB (A) and p75NTR (B) immunostained sections. 
TrkB-immunoreactive cells include MMM and scattered white pulp macrophages, whereas p75NTR-positive cells are a subpopu-
lation of dendritic cells. PALS, periarteriolar lymphatic sheath; F, follicle; MZ, marginal zone; CA, central arteriole; 
MM, marginal metallophilic. Scale bar = 5 µm.
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intestinal epithelium, whereas TrkB-like and TrkC-like

have been detected in macrophage-dendritic cells. By

contrast, BDNF-like and NT-3-like occur in the intestinal

epithelium covering the lymphoid tissue, mainly in

endocrine cells. Conversely, NGF-like has never been

detected in this organ (Hannestad et al. 1998). In fishes

(

 

D. labrax

 

), Trk-like proteins are present in the head-

kidney and spleen (Hannestad et al. 2000).

 

Neurotrophins and immunocompetent cells

 

Lymphocytes

 

The possibility of neurotrophins acting on lymphocytes

was first reported by Dean et al. (1987), who observed

that NGF increased the blastogenic response of mouse

spleen cells. This observation, which suggested that

lymphocytes (and presumably other immunocompe-

tent cells) expressed neurotrophin receptors, was fol-

lowed by the demonstration that these cells also

synthesized and released neurotrophins, which led to

the proposal that there might be autocrine and para-

crine actions of neurotrophins on these cells (Fig. 4).

Interestingly, the expression of both neurotrophins and

their receptors by lymphocytes is frequently dependent

on cell activation (Kerschensteiner et al. 1999; Moalem

et al. 2000).

Expression of both NGF and TrkA is induced by

mitogen activation in CD4+ T cells (Ehrhard et al.

1993b), and this TrkA receptor seems to be functional

because NGF administration to antigen-stimulated

CD4+ T cells induces expression of c-

 

fos

 

 (Ehrhard et al.

1994). Both CD4+ and CD8+ T cells produce NGF, which

is increased after antigenic stimulation in the Th2 sub-

set (Santambrogio et al. 1994; see Van Eden et al. 2002,

for a review of the Th1 and Th2 cells). In additon,

unstimulated human CD4+ Th1 and Th2 cells, but not

Th0, express both NGF and TrkA (Lambiase et al. 1997);

and Th1 cells express full-length TrkB and low levels of

TrkC (Besser & Wank, 1999), and CD4+ and CD8+ T cells

transcribe BDNF mRNA and produce bioactive BDNF

(Braun et al. 1999; Kerschensteiner et al. 1999), NT-3

and NT-4/5 (Moalem et al. 2000). By contrast, the

expression of p75

 

NTR

 

 by T cells is controversial (Kittur

et al. 1992; Ehrhard et al. 1993b).

In B cells, TrkA (Melamed et al. 1996; Torcia et al.

1996; D’Onofrio et al. 2000) and p75

 

NTR

 

 (Brodie et al.

1996) expression has been reported. However, accord-

ing to Schenone et al. (1996), B cells do not express

mRNA or protein for either p75

 

NTR

 

 or TrkA; these

authors reported TrkB mRNA and protein expression by

B cells, and demonstrated activation of these TrkB

receptors by BDNF. Discrepancies between these results

may be due to the activation state of these cells.

Recently, the occurrence of TrkB on B cells has been

confirmed (Besser & Wank, 1999; D’Onofrio et al.

2000), and the expression of TrkC suggested (D’Onofrio

et al. 2000). As for neurotrophin production, B cells

produce NGF (Santambrogio et al. 1994; Torcia et al.

1996) and NT-3 (Besser & Wank, 1999). Activated T cells

also produce BDNF (Kerschensteiner et al. 1999). Inter-

estingly, NGF appears to be involved in B-cell survival

because it is able to rescue these cells from induced

apoptosis (Kronfeld et al. 2002).

In summary, NGF/TrkA, and possibly other NT/receptor

systems, seem to have a role in both T- and B-cell phys-

iology. Furthermore, each lymphocyte subset appears to

express a characteristic array of NTs and their receptors.

 

Monocyte-macrophage cells

 

Monocytes express TrkA, and this expression increases

after activation, whereas it is down-regulated during

differentiation towards tissue macrophages (Ehrhard

et al. 1993a). As for NTs, NGF, BDNF and NT-4/5 are

expressed by macrophages (Schober et al. 1998; Besser

& Wank, 1999; Boven et al. 1999; Braun et al. 1999;

Caroleo et al. 2001). A recent paper demonstrates that

both NGF and BDNF influence the cytokine expres-

sion pattern in peripheral blood mononuclear cells, as

well as in antigen-specific T cells, modulating the pro-

duction of interleukin-4, and transforming growth

factor-

 

β

 

, tumour necrosis factor-

 

α

 

 and 

 

γ

 

-interferon

(Bayas et al. 2003).

 

Other cells

 

In bone marrow, transcripts for both p75

 

NTR

 

 and all Trks

are present in stromal adventitial reticular cells (Cat-

toretti et al. 1993; Labouyrie et al. 1999), whereas hae-

matopoietic cells express one or several Trk receptor

proteins, but not p75

 

NTR

 

 (Chevalier et al. 1994; Labouyrie

et al. 1999; Simone et al. 1999). Moreover, NGF is prob-

ably produced by bone marrow stromal cells (Auffray

et al. 1996; Grills & Schuijers, 1998). Bone marrow cells

also express TrkB (but not TrkC) as well as low levels of

BDNF and NT-4/5 (but not NGF or NT-3) (Laurenzi et al.

1998).
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Granulocytes express NGF, BDNF and NT-4/5, but not

NT-3 (Laurenzi et al. 1998). Indirect evidence also sug-

gests the occurrence of TrkA receptors in neutrophils

(Kannan et al. 1991, 1992, 1993), and eosinophils (Hamada

et al. 1996), which in turn produce and release NGF

(Solomon et al. 1998; Kobayashi et al. 2002).

Regarding the basophil/mast cell lineage, basophils

express functional TrkA receptors, but neither TrkB nor

TrkC were detected in basophils (Burgi et al. 1996).

Mast cells express TrkA (Horigome et al. 1993; Tam

et al. 1997; Welker et al. 1998) and produce NGF (Leon

et al. 1994), BDNF and NT-3 (Tam et al. 1997).

Table 2 Immunomodulatory roles of neurotrophins
 

 

Cell type Action Neurotrophin Species

B-lymphocytes Proliferation1,2,3; stimulation of antibody synthesis2,4,5,6,7 NGF Human, rat
Differentiation into plasma cells2; expression of IL-2 NGF Human
receptors3,8; induction of CGRP synthesis14 Survival9,10 NGF Human, mouse
Activation of Trks and signalling molecules11,12,13 NGF, BDNF Human

T-lymphocytes Proliferation1,2 NGF Human, rat
T-cell-dependent antibody synthesis6 NGF Rat
Expression of IL-2 receptors8 NGF Human
TrkB phosphorilation, survival (thymocytes)15 BDNF Mouse
Transcriptional activation of c-fos15,16 NGF, BDNF Human, mouse

Monocytes/ Monocytic differentiation17; stimulation of phagocytosis, NGF Mouse
macrophages parasite killing and IL-1β production23; increase in

TNF-α production25; increase in Fcχ receptor expression27

Chemotaxis21 NGF, NT-3 Mouse
Increase in nitric oxide secretion24,25 NT-3 Mouse
Survival18,19,20; increase in oxidative burst22 NGF Human
Increase in cathepsin S expression26 NGF Human

Neutrophils Differentiation17 NGF Human, mouse
Survival28,29; chemotaxis30,31; enhancement of phagocytosis NGF Mouse
and superoxide production28

Eosinophils Differentiation32; survival33; chemotaxis33; release of NGF Human
inflamatory mediators34; increase in cytotoxic activity33;
suppression of leukotriene C4 production35

Basophils Differentiation32,36,37,38; survival39; activation40; increased NGF Human
histamine release41,42; enhanced production of lipid
mediators41,42; stimulation of IL-13 secretion43;
modulation of IgE-mediated responses43

Mast cells Proliferation44,45; degranulation, mediator NGF Rat
release54,55,56,57,58,59; survival49,50,51,52; chemotaxis53

Differentiation17,28,32,46,47,48 NGF Human, mouse

Others Proliferation and differentiation of haematopoietic cells60,61 NGF Human
Shape change of platelets62 NGF Rabbit
Increase of vascular permeability63 NGF Rat

1Thorpe & Pérez-Polo (1987); 2Otten et al. (1989); 3Brodie & Gelfand (1992); 4Kimata et al. (1991a); 5Kimata et al. (1991b); 6Manning et al. 
(1985); 7Brodie et al. (1996); 8Thorpe et al. (1987); 9Torcia et al. (1996); 10Kronfeld et al. (2002); 11Franklin et al. (1995); 12Melamed et al. 
(1996); 13Schenone et al. (1996); 14Bracci-Laudiero et al. (2002); 15Maroder et al. (1996); 16Ehrhard et al. (1994); 17Kannan et al. (1993); 
18Garaci et al. (1999); 19La Sala et al. (2000); 20Caroleo et al. (2001); 21Kobayashi & Mizisin (2001); 22Ehrhard et al. (1993a); 23Susaki et al. 
(1996); 24Barouch et al. (2001a); 25Barouch et al. (2001b); 26Liuzzo et al. (1999); 27Susaki et al. (1998); 28Kannan et al. (1991); 29Kannan 
et al. (1992); 30Gee et al. (1983); 31Boyle et al. (1985); 32Matsuda et al. (1988a); 33Hamada et al. (1996); 34Solomon et al. (1998); 
35Takafuji et al. (1992); 36Matsuda et al. (1988b); 37Tsuda et al. (1990); 38Tsuda et al. (1991); 39Miura et al. (2001); 40Burgi et al. (1996); 
41Bischoff & Dahinden (1992); 42Bürgi et al. (1994); 43Sin et al. (2001); 44Aloe & Levi-Montalcini (1977); 45Aloe (1988); 46Aloe & De Simone 
(1989); 47Matsuda et al. (1991); 48Welker et al. (2000); 49Horigome et al. (1994); 50Kawamoto et al. (1995); 51Bullock & Johnson (1996); 
52Kanbe et al. (2000); 53Sawada et al. (2000); 54Bruni et al. (1982); 55Mazurek et al. (1986); 56Pearce & Thompson (1986); 57Marshall et al. 
(1990); 58Horigome et al. (1993); 59Kawamoto et al. (2002); 60Chevalier et al. (1994); 61Auffray et al. (1996); 62Gudat et al. (1981); 
63Otten et al. (1984).
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Data about the effects of NTs on immunocompetent

cells are heterogeneous and most of them refer to NGF.

Table 2 summarizes the most relevant ones.

The immune phenotype of functionally 
deficient TrkA and TrkB mice

Transgenic mice for NTs and their receptors have added

greatly to our knowledge of the role of neurotrophins

in nervous system development (see Fariñas, 1999).

Occasionally, these animal models have also been used

to address the question of the function of neuro-

trophins in other organs. The thymus of mice with a

tyrosine kinase-deficient trkA gene product (Smeyne

et al. 1994) was recently the subject of in-depth studies

in our laboratory. The thymus of these animals showed

numerous epithelial cell islands, thymic cysts with

endodermal lining, and a much lower density of thy-

mocytes than age-matched controls (García-Suárez

et al. 2000a, 2001). This suggests that functional TrkA is

necessary for the normal differentiation of the thymic

epithelial primordium, and that NGF signalling

through this receptor is probably important for thymic

organogenesis. However, it is still uncertain whether

this abnormal thymic epithelium retains the capacity to

promote positive selection and to provide a suitable

microenvironment for thymocytes maturation, although

the low thymocyte density seems likely to result in

partial or total loss of such capacities. I. Silos-Santiago

(pers. commun.) demonstrated severe T- and B-cell

depletion in these animals.

In functionally deficient TrkB mice, studied at post-

natal day 15, the thymus showed an increase in the

number of pyknotic nuclei, suggestive of apoptotic

lymphocytes, especially in the cortical area. Ultrastruc-

turally, both lymphocytes and stromal cells were

strongly altered. Changes in lymphocytes consisted of

abnormal morphology, fragmentation or absence of

the nucleus and accumulation of cytoplasmic electron-

dense bodies, which probably represented nuclear

fragments with condensed chromatin. The macro-

phages contained numerous secondary lysosomes,

whereas the epithelial cells showed cytoplasmic inclu-

sions and vacuoles, without apparent changes in the

nuclei. The TUNEL method confirmed the massive

apoptosis of cortical lymphocytes in these animals.

These data suggest that the TrkB ligands are involved

in promoting cell survival, especially of the cortical thy-

mocytes (García-Suárez et al. 2002). Finally, the struc-

ture of the thymus in animals lacking the gene coding

for p75NTR was consistent with normality (García-Suárez

et al. 2001).

Fig. 4 Schematic representation of the 
possible sources and targets of NGF and 
BDNF in the mammalian thymus.
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Taken together, these results lend support to the

idea that in the mammalian thymus both the NGF/TrkA

and the BDNF/TrkB systems play important roles in the

development and maintenance of epithelial cells and

thymocytes, respectively, and that both ligand–receptor

complexes are involved in the intercellular communica-

tion between these two main cell types of the thymus.

For lymphoid organs, data are still fragmentary.

Results from our laboratory indicate that the spleen of

newborn mice deficient in p75 shows structural changes

consisting of an absence of innervating sympathetic

fibers as well as a lack of incipient white pulp areas

around the arterioles (Pérez-Pérez et al. 2003). By con-

trast, functional TrkA- or TrkB-deficient mice appear

structurally normal (M. Pérez-Pérez et al. unpubl. obs.),

although the possibility of a functional deficit of B cells

should be addressed in further studies. Ruberti et al.

(2000) observed increased cell death in the spleen of

NGF-deficient adult mice.

The lymphoid organs, and especially the thymus, are

richly innervated by sensory and vegetative nerve

fibres that decrease with ageing (for references see

Bellinger et al. 1997; Cavallotti et al. 1999, 2002). It is

possible that some of the structural changes observed

in the NT-receptor-deficient animals could be related

to a decrease in innervation, but this has yet to be

investigated.

Pathologies associated with changes in the 
neurotrophin system

It is well known that the nervous and immune systems

interact in both health and disease, although the

importance of these interactions is still a matter of

debate (Kinoshita & Hato, 2001; Sternberg, 2001). Dif-

ferent hypotheses aimed at explaining, at least par-

tially, the pathogenesis of several diseases have

emerged on the basis of current knowledge of the role

of NTs in the immune system. Some authors have sug-

gested that NGF, and probably other NTs as well, acts

as a hormone that is liberated into the bloodstream at

times of stress, and in this way is able to act on immune

cells throughout the body. This theory is based on the

observation that NGF levels in plasma increase during

stress and immunological diseases (Bonini et al. 1999).

However, the fact that immune cells express both NT

signalling receptors and NTs themselves suggests that

they probably act on a local level and over short dis-

tances. Nevertheless, the NT/receptor complexes are

likely to participate in the highly complex network of

intercellular communications made up of cytokines,

growth factors, neuropeptides and hormones (Mentlein

& Kendall, 2000). Interleukines and other cytokines act

as intermediaries in most of the inflammatory and

immune actions of NTs in some diseases. There is an

abundance of data on the influences of NTs on the pro-

duction of other cytokines, and the influence of these

on the synthesis of NTs (Aloe & Fiore, 1998; Turrini et al.

1998; Aloe et al. 1999) or their receptors (Besser & Wank,

1999) in different tissues. Nevertheless, little of this

information applies to immune system cells (Screpanti

et al. 1993; Marshall et al. 1999).

The inflammatory role of NGF is well known and its

levels increase during inflammation, allergies and dis-

eases of the immune system (Otten et al. 2000; Stanisz

& Stanisz, 2000). Particularly important is the role of

NGF in inflammatory hyperalgesia (Mendell et al. 1999;

Shu & Mendell, 1999). This effect is probably due to a

direct action of NGF on mast cells and sensory neurones

(Woolf et al. 1996). Local production of NGF by

immune cells, stimulated by IL-1β, in turn stimulated by

TNFα, is probably the source of NGF (Woolf et al. 1997).

Progressive tactile hyperalgesia elicited by repeated

touch stimulation during inflammation is also NGF-

dependent (Ma & Woolf, 1997). It has also been

demonstrated recently that BDNF and NT-4/5 acting

through TrkB, but not NT-3/TrkC, regulate nociceptive

response to noxious heat as does NGF through TrkA

(Shu et al. 1999).

In asthma and other allergic diseases, NGF levels are

increased (Bonini et al. 1996; Lambiase et al. 1997;

Sanico et al. 1999; Renz, 2001; de Vries et al. 2002). The

bronchial hyper-reactivity of asthma is accompanied by

an increase in NGF, probably produced by mononuclear

cells, which enhances local Th2 responses, thereby

increasing the production of IL-4, IL-5, IgG1 and IgE,

but not IFN-γ nor IgG2 (Braun et al. 1998). Some of

these responses may be mediated by p75NTR acting on

Th2 cells (Tokuoka et al. 2001). Moreover, systemic NGF

administration increases histamine-induced bronchial

hyper-reactivity; this effect is probably mediated by

tachykinins because it is abolished by a neurokinin-1

receptor antagonist, and may be exerted indirectly, via

macrophages or mast cells (de Vries et al. 1999).

Increased local levels of BDNF have recently been

detected in allergic asthma (Braun et al. 1999).

During the development of atherosclerotic lesions in

rats, there is induction of NTs and their receptors in the
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vascular smooth cells, whereas in the established lesions

only the expression of p75NTR remains, because the acti-

vation of this receptor is an inductor of the smooth cell

apoptosis observed in those lesions (Wang et al. 2000).

In man, NGF decreases in the atherosclerotic lesions

whereas the expression of p75NTR is increased (Chalda-

kov et al. 2001).

In arthritis, NGF levels are elevated in both serum

(Dicou et al. 1993) and synovial fluid (Aloe et al. 1992;

Aloe & Tuveri, 1997; Halliday et al. 1998), and this

increase is higher in spondyloarthritis than in rheuma-

toid arthritis (Dicou et al. 1996). In the knee joints of

arthritic mice, IL-1β (but not TNFα) increases NGF, and

NGF seems to increase TNFα (Aloe & Fiori, 1998). NGF

serum levels are also higher than normal in systemic

lupus erythematosus (Bracci-Laudiero et al. 1993b;

Dicou et al. 1993) as well as in a murine lupus model

(Bracci-Laudiero et al. 1996). Interestingly, NGF has

been used successfully in the treatment of chronic vas-

culitic ulcers associated with rheumatoid arthritis due

to the keratinocyte proliferation and the vascular

neoangiogenesis promoted by this molecule (Tuveri

et al. 2000).

Post-infectious and autoimmune diseases (Riikonen

et al. 1998), fibromyalgia (Giovengo et al. 1999) and

chronic daily headache (Sarchielli et al. 2001) course

with increased levels of NGF in the cerebrospinal fluid.

Interestingly, NGF receptors are up-regulated in exper-

imental autoimmune encephalomyelitis (Oderfeld-

Nowak et al. 2001), and a gene therapy approach has

been used experimentally, with good results, to down-

regulate the expression of p75NTR (Soilu-Hanninen et al.

2000).

As for skin, in psoriatic keratinocytes NGF levels are

increased, and NGF acts as a mitogen for these cells and

as a T-cell activator (Raychaudhuri et al. 1998). In AIDS,

patients with Kaposi’s sarcoma show higher NGF levels

than patients without Kaposi’s sarcoma, and also

higher than in those with non-AIDS Kaposi, and these

tumour cells express TrkA and proliferate when

exposed to NGF (Pica et al. 1998). In prurigo nodularis

NGF is overexpressed in the skin (Johansson et al.

2002).

It is possible that studies of transgenic mice will con-

tribute greatly to our understanding of the possible

role of NTs in the immune system, and the importance

of these growth factors in health and disease (García-

Suárez et al. 2000a, 2001, 2002). This is the case for an

extremely rare disorder called congenital insensitivity

to pain with anhidrosis (CIPA), which has recently been

shown to be caused by a mutation in the trkA gene

(Indo et al. 1996; Mardy et al. 1999; Kobayashi et al.

2002). Patients with this disorder show neuronal defi-

cits similar to those of trkA knockout mice. Further-

more, despite their normal serum immunoglobulin

levels, they show frequent infections, especially osteo-

myelitis, indicating a possible defect in B-cell function.

These findings are of interest, taking into account the

aforementioned data on the possible role of the NGF/

TrkA system in B cells. Unpublished data by I. Silos-

Santiago and colleagues demonstrate that mice lack-

ing functioning trkA have a strong immunodeficiency

affecting both T and B cells.

Concluding remarks and future directions

Through their widespread expression in the immune

organs and immunocompetent cells, NTs are candidate

molecules for regulating immune as well as neuroim-

mune interactions. Accurate studies in transgenic and

knockout mice, especially in adult surviving animals,

are revealing hitherto unknown roles of NTs in vivo.

This will open up new perspectives for a potential ther-

apeutic use of NTs when pathologies are due to the

absence, increased or defective production of NTs, or

by mutations in their receptors.

Based on the available data mentioned in this review,

it seems likely that NTs may be involved in immune

pathologies. Thus an altered concentration of circulat-

ing or tissular NGF levels is associated with autoim-

mune inflammatory diseases, allergic diseases and

parasitic infections. Furthermore, NTs, or dysregulation

of NT receptor expression, may be involved in regulat-

ing the growth, differentiation and apoptosis of some

kinds of non-neuronal tumours (see for a review Rubin

& Segal, 2003), such as pancreatic ductal adenocarci-

noma (Miknyoczki et al. 1999), melanoma (Innominato

et al. 2001), prostate cancer (Satoh et al. 2001) and

lung cancer (Ricci et al. 2001).

In the past few years, NTs and in particular NGF have

been used with varying degrees of success in a variety

of disorders, including peripheral metabolic and toxic

neuropathies (Pradat et al. 2002; Apfel, 2002), spinal

cord injuries (Blesch et al. 2002; Bregman et al. 2002;

Murray et al. 2002), neurodegenative diseases (Batch-

elor et al. 1999; see also Dechant & Barde, 2002), and

cutaneous (Matsuda et al. 1998) and corneal (Lambiase

et al. 2000) wound repair. In tumours the Trk receptors
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are also viable molecular targets for medical interven-

tion (see Ruggeri et al. 1999; Miknyoczki et al. 2002).

Regarding diseases in which the immune system is

particularly involved, NGF has proved to have useful

effects in vasculitis-induced rheumatoid arthritis (Tuveri

et al. 2000; Aloe, 2001) and is now being considered as

a new therapeutic strategy in the blockade of NT over-

expression during the allergic or inflammatory process.

Nevertheless, it must be emphasized that there are seri-

ous pharmacological problems with the use of NTs in

human therapy, especially because of the manner and

site of administration. Virus transfer and the transplan-

tation of engineered cells, which have been performed

experimentally, may represent promising perspectives

for NT delivery or NT-receptor blocking in the near

future.
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