http://www.stockton-press.co.uk/bjp

Prostanoid receptors involved in the relaxation of human bronchial preparations

*^{,1}Xavier Norel, ¹Laurence Walch, ¹Carlos Labat, ¹Jean-Pierre Gascard, ²Elisabeth Dulmet & ¹Charles Brink

¹CNRS ERS 566, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France and ²Laboratoire d'Anatomopathologie, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France

1 Iloprost and cicaprost (IP-receptor agonists) induced relaxations in the histamine- (50 μ M) contracted human bronchial preparations (pD₂ values, 6.63 ± 0.12 and 6.86 ± 0.08 ; E_{max} values, 90 ± 04 and $65\pm08\%$ of the papaverine response for iloprost (*n*=6) and cicaprost (*n*=3), respectively).

2 Prostaglandin E_2 (PGE₂) and misoprostol (EP-receptor agonist) relaxed the histamine-contracted human bronchial preparations (pD₂ values, 7.13±0.07 and 6.33±0.28; E_{max} values, 67±04 and 57±08% of the papaverine response for PGE₂ (*n*=14) and misoprostol (*n*=4), respectively). In addition, both relaxations were inhibited by AH6809 (DP/EP₁/EP₂-receptor antagonist; 3 μ M; *n*=5-6).

3 The PGE₂-induced relaxations of human bronchial preparations were not modified by treatment with AH23848B (TP/EP₄-receptor antagonist; 30 μ M; n=4).

4 The contracted human bronchial preparations were significantly relaxed by prostaglandin D_2 (PGD₂) or by BW245C a DP-receptor agonist. However, these responses did not exceed 40% of the relaxation induced by papaverine. In addition, the relaxations induced by PGD₂ were significantly inhibited by treatment with a DP-receptor antagonist BWA868C (0.1 μ M; n=3).

5 These data suggest that the relaxation of human isolated bronchial preparations induced by prostanoids involved IP-, EP_2 - and to a lesser extent DP-receptors but not EP_4 -receptor.

Keywords: Human bronchial preparations; relaxation; prostanoid receptors; prostaglandin; misoprostol; cicaprost; AH6809; BW245C; BWA868C; AH23848B

Introduction

In asthmatic patients, pretreatment with oral prostaglandin E₁ (PGE_1) has been shown to prevent the bronchoconstriction to both inhaled histamine and methacholine (Manning et al., 1989). In addition, PGE_1 or prostaglandin E_2 (PGE₂) may attenuate allergen-induced early and late asthmatic response (Pavord et al., 1993; Pasargiklian et al., 1976). These clinical results suggest a role for the EP-receptors in the relaxation of the human airway smooth muscle tone. Most of the pharmacological studies performed in airways derived from animals have demonstrated that the EP-receptors are involved in the prostanoid-induced relaxations. The EP2-receptor has been characterized in the cat trachea (Gardiner & Collier, 1980), while the EP₄-receptor has been detected in the rat trachea (Lydford & McKechnie, 1994). Prostacyclin (PGI₂) analogues are ineffective as airway muscle relaxants on isolated trachea derived from cat, guinea-pig (Dong et al., 1986) and rat (Lydford & McKechnie, 1994), suggesting no role for the IP-receptor in the relaxation of large airways. In contrast, these PGI₂ analogues relax human bronchial preparations (Haye-Legrand et al., 1987). However, the effect of inhaled PGI₂ does not alter airway calibre in normal or asthmatic subjects (Hardy et al., 1985; Bianco et al., 1979). Together, the results obtained in these studies suggest that the subtypes of prostanoid-receptors involved in the relaxation of airway

smooth muscle vary between species. The DP-receptor and the EP-subtypes have not been systematically investigated in human airways. The aim of the present study was to characterize the different prostanoid receptors involved in relaxation of human bronchial preparations.

Methods

Isolated preparations

Human lung tissues were obtained from patients (26 male and 2 female) who had undergone surgery for lung carcinoma. The mean age was 65 ± 2 years. Bronchial preparations were removed, dissected free from adjoining connective tissue and lung parenchyma, placed in Tyrode's solution (concentration mM): NaCl 139.2, KCl 2.7, CaCl₂ 1.8, MgCl₂ 0.49, NaHCO₃ 11.9, NaH₂PO₄ 0.4 and glucose 5.5; pH 7.4 and maintained at 4° C. All tissues were used within 1-12 h postsurgery. Bronchial preparations were cut as rings (3-6 mm internal diameter, 3-5 mm in length). The rings were then set up in 10ml organ baths containing Tyrode's solution, gassed with 95% $O_2/5\%$ CO₂ and maintained at 37°C. An optimal load (2 g) which ensured maximal physiological responses to the agonists used was applied to each ring. Changes in force were recorded by isometric force displacement transducers (Narco F-60) and physiographs (Linseis). Subsequently, preparations were allowed to equilibrate for 90 min with bath fluid changes taking place every 10 min.

^{*}Author for correspondence; E-mail: xnorel@hotmail.com

Experimental protocol

After the equilibration period, the bronchial preparations were incubated 30 min with BAY u3405 (1 μ M), atropine (1 μ M), indomethacin (1.7 μ M) and 15 min with L-NOARG (0.1 mM). These agents were used to avoid any physiological effects induced by the activation of TP- or muscarinic receptors and by the release of endogenous prostanoids or nitric oxide. When PGE₁ or iloprost were used as the relaxant agonist, AH6809 $(3 \ \mu M)$ was added to the previous drug combination (30 min) to avoid any physiological effects induced by the activation of EP₁-receptors. After incubation, the preparations were contracted with histamine (50 μ M), when the response reached a plateau, increasing concentrations of prostanoid receptor agonists (PGE₂, PGE₁, PGD₂, cicaprost, iloprost, BW245C or misoprostol) were applied in a cumulative fashion. The maximal relaxation was obtained for each preparation with papaverine (0.1 mM) at the end of the experiment.

The same protocol was performed to determine the affinity values of prostanoid receptor antagonists (AH23848B, AH6809 or BWA868C) which were added simultaneously with the drug combination during 30 min before the histamine-induced contraction.

Data analysis

The changes in force were measured from isometric recordings and expressed in grams (g). The relaxations produced with the different agonists were expressed as per cent of the relaxations induced with papaverine. The E_{max} value was the maximal relaxation produced with the highest agonist-concentration used and EC₅₀ value was the concentration which produced $E_{max}/2$. These values were interpolated from the individual agonist concentration-effect curves. The pD₂ values were calculated as the negative log of EC_{50} values. When the pD_2 values obtained in the presence and absence of an antagonist were significantly different, the equilibrium dissociation constant for the antagonist (K_B value) was calculated. The following equation was used: $K_{\rm B} = [{\rm B}]/({\rm DR} - 1)$, where [B] is the concentration of the antagonist and DR (dose ratio) is the ratio of EC₅₀ values of agonist in the presence and absence of antagonist. The pK_B values were calculated as the negative log of the $K_{\rm B}$ values. All results were expressed as means \pm s.e.mean of data derived from *n* different lung samples. Statistical analysis was performed using ANOVA with a confidence level of 95% and taking into account the preparations derived from the same or different lung samples (covariate).

Compounds

PGE₂, PGE₁, PGD₂ and misoprostol ((\pm)-11, 16-dihydroxy-16-methyl-9-oxoprost-13-en-1-oic acid methyl ester) were purchased from Cayman Chemical Company, Ann Arbor, MI, U.S.A. Iloprost (5-[(E)-(1S,5S,6R,7R)-7-hydroxy-6-[(E)-(3S,4RS)-3-hydroxy-4-methyl-1-octen-6-inyl]bicyclo[3.3.0]-octan-3-ylidene]pentanoic acid) and cicaprost ([-2-[hexahydro-5hydroxy-4-(3-hydroxy-4-methyl-1,6-nonadinyl)-2-(1H)-pentalenylidene]ethoxy] acetic acid) were a gift from Schering AG, Berlin, Germany. AH6809 (6-isopropoxy-9-oxaxanthene-2carboxylic acid) and AH23848B ([$1\alpha(z), 2\beta, 5\alpha$]-(\pm)-7-[5-[[(1,1'-biphenyl)-4-yl]methoxy]-2-(4-morpholinyl)-3-oxo-cyclopentyl]-4-heptenoic acid) were a gift from Glaxo Wellcome, U.K. BAY u3405 (3(R)-3-(4-fluorophenylsulphonamido)-1,2,3,4-tetrahydro-9-carbazole propanoic acid) was a gift from Bayer, Stokes Poges, U.K. BW245C (5-(6-carboxyhexyl)-1(3 - cyclohexyl - 3 - hydroxypropyl) hydantoin) and BWA868C (3-benzyl-5-(6-carboxyhexyl)-1-(2-cyclohexyl-2-hydroxyethylamino) hydantoin) were a gift from Wellcome Research Laboratories, Beckenham, U.K. Histamine dihydrochloride, L-NOARG (N^G-nitro-L-arginine), indomethacin and atropine sulphate were purchased from Sigma Chemical Co., St. Louis, MO, U.S.A. Papaverine was obtained from Meram Laboratories (77020 Melun, France).

Results

In each experiment, the human bronchial preparations contracted with histamine (50 μ M: 2.37 \pm 0.16 g, n=28) and at the end of the protocols the preparations were relaxed with papaverine (0.1 mM: 2.90 \pm 0.18 g, n=28). The combination of inhibitors and antagonists (indomethacin, L-NOARG, BAY u3405 and atropine) with which the bronchial preparations were incubated, had no significant relaxant effect on the basal tone of these preparations (-0.06 ± 0.06 g; n=28).

PGE₁ as well as two stable PGI₂ analogues, iloprost and cicaprost, produced concentration-dependent relaxations (Figure 1 and Table 1) in human bronchial preparations. PGE₂ and misoprostol also relaxed the histamine-contracted human bronchial preparations (Figure 2 and Table 2). Concentration-dependent relaxations produced by PGE₂ and misoprostol were significantly shifted in presence of AH6809 (3 μ M; Figure 2). The pK_B value for this antagonist against PGE₂ is presented in Table 2. On the contrary, no significant displacement of the relaxation curves induced by PGE₂ was observed after an incubation with AH23848B (30 μ M, Figure 3 and Table 2). In paired bronchial preparations, derived from the same lung sample, the pD₂ values obtained in presence of AH23848B were not statistically different from the control values (6.97±0.11, n=4).

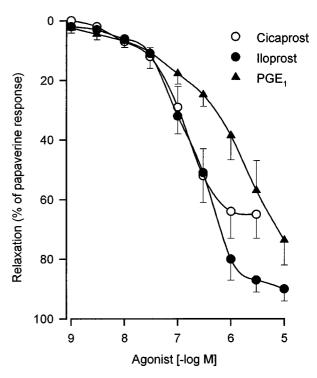
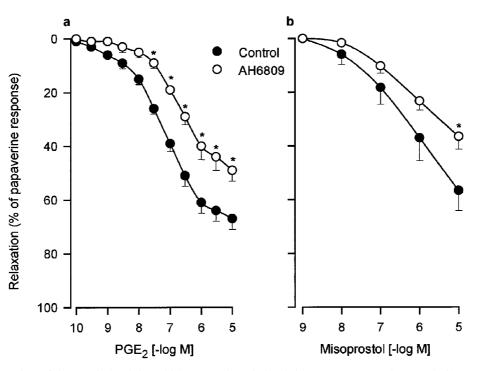



Figure 1 Relaxation of human isolated bronchial preparations induced by cicaprost, iloprost or PGE_1 . Responses were expressed as per cent of the papaverine (0.1 mM) relaxation. Values are means \pm s.e.mean and the number of lung samples used are indicated in Table 1.

Figure 2 Relaxation of human isolated bronchial preparations induced by PGE_2 (a) or misoprostol (b). Some bronchial preparations were treated 30 min with AH6809 (3 μ M). Responses were expressed as per cent of the papaverine (0.1 mM) relaxation. In each panel, values are means \pm s.e.mean and the number of lung samples used are indicated in Table 2. *Values significantly different when results from control (Tyrode) and treated tissues were compared.

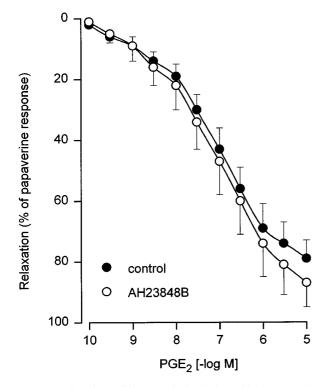


Figure 3 Relaxation of human isolated bronchial preparations induced by PGE₂ in absence or in presence of AH23848B (30 μ M). Responses were expressed as per cent of the papaverine (0.1 mM) relaxation. Values are means ± s.e.mean derived from four lung samples.

While PGE_2 , misoprostol, PGE_1 and PGI_2 analogues totally reversed the histamine contraction, PGD_2 and BW245C induced only a partial reversal of this contraction. Concentration-dependent relaxations of human bronchial preparations

 Table 1
 Relaxant effects of IP-receptor agonists on the isolated human bronchial preparations

Agonist	n	E_{max} (%)	pD_2 value	
Cicaprost	3	65 ± 08	6.86 ± 0.08	
Iloprost	6	90 ± 04	6.63 ± 0.12	
PGE ₁	4	74 ± 08	6.05 ± 0.09	

The maximal response (E_{max}) were expressed as per cent of the relaxation induced by papaverine (0.1 mM). Values are means \pm s.e.mean, (*n*) indicates the number of lung samples used. The relaxations induced by PGE₁ or iloprost were performed in presence of AH6809 (3 μ M).

produced by PGD₂ and BW245C are shown in Figure 4 and Table 2. In addition, BWA868C (0.1 μ M) significantly reduced the relaxation induced by PGD₂ (Table 2).

AH6809, AH23848B and BWA868C at the concentrations used had no significant effect on the basal tone.

Discussion

These data suggest the involvement of IP- and EP₂-receptors and to a lesser extent DP-receptor in the relaxant response produced by prostanoids in human airways.

Gardiner & Collier (1980) and Lydford & McKechnie (1994) have demonstrated that in the guinea-pig and in the rat trachea, relaxations induced by the prostanoids are attributed to the activation of EP-receptors. Data (present report) are in contrast to the classical description of prostanoid receptors in the airways derived from animals. Actually, the relaxations induced by cicaprost (IP-receptor agonist; Stürzebecher *et al.*, 1985), indicate the presence of IP receptor in human bronchial preparations. Similar results were obtained with iloprost (EP₁/IP-receptor agonist; Schrör *et al.*, 1981; Sheldrick *et al.*, 1988) when the EP₁-receptors were blocked by AH6809 (DP/EP₁-

Table 2	Relaxations of	of isolated h	human bron	chial pre	eparations:	effect of	f EP- an	d DP-rec	eptor agonist	s or antagonists

		Agonist					
Treatment	Concentration	n	E_{max} (%)	pD_2 value	pK_B value		
			Misoprostol				
Tyrode		4	57+08	6.33 ± 0.28			
AH6809	3 µм	5	$36\pm 05*$	6.39 ± 0.18	NC		
			PG	PGE_2			
Tyrode		14	67+04	7.13+0.07			
AH6809	3 μM	6	49 + 04*	6.68 + 0.08*	5.78		
AH23848B	30 µм	4	87 ± 08	6.96 ± 0.27	NC		
			PGD_2				
Tyrode		4	25 + 08	6.12 ± 0.18			
BWA868C	0.1 <i>µ</i> м	3	$11 \pm 01^{*}$	NC	NC		
	<i>BW245C</i>						
Tyrode		5	36 ± 11	7.28 ± 0.53			

The maximal responses (E_{max}) were expressed as per cent of the relaxation induced by papavarine (0.1 mM). Values are means \pm s.e.mean, (*n*) indicates the number of lung samples used, NC: not calculable. *Values significantly different when results from control (Tyrode) and treated tissued were compared.

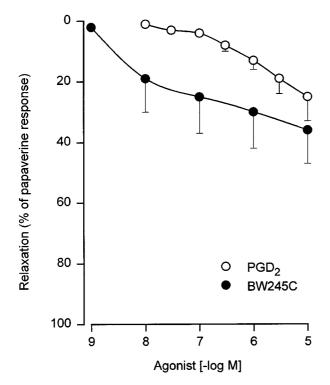


Figure 4 Relaxation of human isolated bronchial preparations induced by PGD_2 and BW245C. Responses were expressed as per cent of the papaverine (0.1 mM) relaxation. Values are means \pm s.e.mean and the number of lung samples used are indicated in Table 2.

receptor antagonist; Coleman *et al.*, 1985; Eglen & Whiting, 1988; Keery & Lumley, 1988). These results (present report) are in agreement with data obtained by Haye-Legrand *et al.* (1987) describing relaxations induced by iloprost, cicaprost (ZK 96480) and PGI₂ in the human isolated airways. These authors demonstrated that PGI₂, the natural agonist activating IP-receptor, induced quite variable relaxations of the human bronchial preparations. These variations may be due to the short half life of this prostaglandin. Blair & McDermot (1981), Corsini *et al.* (1987) and Adie *et al.* (1992) have shown that PGE₁, a more stable endogenous prostanoid, is a potent agonist for the IP-receptor in both binding and physiological studies. The effective relaxations of the human bronchi

observed with PGE_1 (present report) suggest that, this prostaglandin, may be the preferential natural activator for IP-receptor in human airways *in vivo*.

Kennedy et al. (1982) and Gardiner (1986) have demonstrated that the EP₂-receptor is involved in the relaxation of guinea-pig and cat tracheal preparations. These studies were based on the effects induced by butaprost, a PGE₁ analogue. In human bronchial preparations, butaprost induced concentration-dependent relaxations (Gardiner, 1986; Norel et al., 1991), these results suggest the presence of EP₂-receptor on human airways. Additional evidence consistent with the involvement of the EP_2 -receptor in the relaxation of human bronchial preparations is suggested by the following observations. First, PGE₂ and misoprostol, two preferential agonists for the EP-receptors, were potent airway muscle relaxants. These relaxations cannot be attributed to the activation of the IP-receptor, since these agonists are totally ineffective on the IP-receptor as in human pulmonary arteries (Walch et al., 1999). Misoprostol is a preferential agonist for EP₂- and EP₃receptors (Coleman et al., 1988; Reeves et al., 1988; Lydford & McKechnie, 1994). Wise & Jones (1994) showed that this agonist was 10 fold less potent than PGE₂ in producing an inhibition of intracellular free calcium in the rat neutrophils (EP₂- and IP-receptors). In contrast, Smith et al. (1994) demonstrated that misoprostol was 145 fold less potent than PGE₂ for inducing dilatation of the foetal rabbit ductus arteriosus (EP4- and IP-receptors). In human bronchial preparations (present report), misoprostol was only 6 fold less potent than PGE₂ in provoking relaxations. Such a ratio is in agreement with the activation of an EP2-receptor when the IPreceptor is present in the same preparation. Secondly, the TP/ EP₄-receptor antagonist (AH23848B) failed to inhibit the relaxation induced by PGE₂, these data suggest that EP₄receptor is probably not involved in the relaxations produced by either PGE₂ or misoprostol in human bronchial preparations. Finally, evidence in support of the presence of EP2receptor is derived from a new effect of AH6809 reported recently (Woodward et al., 1995; Brown et al., 1997) which indicates AH6809 as an EP2 antagonist. The concentrationdependent relaxations induced by both EP agonists (PGE₂ or misoprostol) were significantly shifted in presence of this antagonist (present report) suggesting the presence of EP2receptor.

The human bronchial preparations relaxed to PGD_2 and BW245C (present report). These compounds have been

described as DP-receptor agonists. Actually, Narumiya & Toda (1985) and Eglen & Whiting (1989) have shown that BW245C is ineffective on the EP_2 -receptor in the guinea-pig trachea. In a similar fashion, the relaxation induced by PGD₂ may not be attributed to the activation of IP-receptors since PGD₂ was totally ineffective on human pulmonary arteries (Walch et al., 1999). The involvement of DP-receptors in human bronchial relaxation, is suggested by the 15 fold greater potency of BW245C in comparison with PGD₂. This result is in agreement with those obtained by Narumiya & Toda (1985) and Giles et al. (1989) in human washed platelets. Furthermore, the relaxation induced by PGD₂ (present report) is significantly reduced in presence of BWA868C a DPantagonist (Giles et al., 1989). This antagonist does not block the EP₂- or IP-receptors as demonstrated by Giles et al. (1989), Chen & Woodward (1992) and Bhattacherjee et al. (1993). Taken together, these results (present report) suggest that PGD₂ and BW245C induced relaxations by the activation of DP-receptors. However, these agonists produced relaxations which were less than 50% of the papaverine response. These results suggest a lower density of the DP-receptor or a less effective coupling of this receptor with adenylate cyclase when compared with EP₂- or IP-receptors in human airways.

The venous preparations exhibited a similar or a greater sensitivity to the prostanoid-receptor agonists (Walch *et al.*, 1999) than the bronchial preparations (present report). A

References

- ADIE, E.J., MULLANEY, I., MCKENZIE, F.R. & MILLIGAN, G. (1992). Concurrent down-regulation of IP prostanoid receptors and the alpha-subunit of the stimulatory guanine-nucleotide-binding protein (Gs) during prolonged exposure of neuroblastoma x glioma cells to prostanoid agonists. Quantification and functional implications. *Biochem. J.*, 285, 529-536.
- ARMSTRONG, R.A., LAWRENCE, R.A., JONES, R.L., WILSON, N.H. & COLLIER, A. (1989). Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. *Br. J. Pharmacol.*, 97, 657–668.
- BHATTACHERJEE, P., RHODES, L. & PATERSON, C.A. (1993). Prostaglandin receptors coupled to adenylyl cyclase in the irisciliary body of rabbits, cats and cows. *Exp. Eye. Res.*, **56**, 327– 333.
- BIANCO, S., ROBUSCHI, M., GRUGNI, A., CESERANI, R. & GANDOLFI, C. (1979). Effect of prostacyclin on antigen induced immediate bronchoconstriction in asthmatic patients. *Prosta*glandins Med., 3, 39-45.
- BLAIR, I.A. & MCDERMOT, J. (1981). The binding of [³H]prostacyclin to membranes of a neuronal somatic hybrid. Br. J. Pharmacol., 72, 435-441.
- BROWN, C.J., BOERSMA, J.I. & CRANKSHAW, D.J. (1997). Effects of AH6809 on prostanoid-induced relaxation of human myometrium *in vitro*. Br. J. Pharmacol., **120**, 338P.
- CHEN, J. & WOODWARD, D.F. (1992). Prostanoid-induced relaxation of precontracted cat ciliary muscle is mediated by EP₂ and DP receptors. *Invest. Ophthalmol. Vis. Sci.*, **33**, 3195–3201.
- COLEMAN, R.A., DENYER, L.H. & SHELDRICK, R.L.G. (1985). The influence of protein binding on the potency of the prostanoid EP₁-receptor blocking drug, AH6809. *Br. J. Pharmacol.*, **86**, 203P.
- COLEMAN, R.A., HUMPHRAY, J.M., SHELDRICK, R.L.G. & WHITE, B.P. (1988). Gastric antisecretory prostanoids: actions at different prostanoid receptors. Br. J. Pharmacol., 95, 724P.
- CORSINI, A., FOLCO, G.C., FUMAGALLI, R., NICOSIA, S., NOE, M.A. & OLIVIA, D. (1987). (5Z)-carbacyclin discriminates between prostacyclin-receptors coupled to adenylate cyclase in vascular smooth muscle and platelets. *Br. J. Pharmacol.*, **90**, 255–261.
- DONG, Y.J., JONES, R.L. & WILSON, N.H. (1986). Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable protacyclin analogues. *Br. J. Pharmacol.*, 87, 97–107.
- EGLEN, R.M. & WHITING, R.L. (1988). The action of prostanoid receptor agonists and antagonists on smooth muscle and platelets. *Br. J. Pharmacol.*, **94**, 591–601.

marked difference was observed with the prostacyclin analogues in bronchial versus pulmonary vascular preparations even though the E_{max} were the same. These results suggest that there is a difference at the receptorial level between the IPreceptor present in human pulmonary vessels and that in human airways. These data are in agreement with previous reports (Corsini et al., 1987; Armstrong et al., 1989; Merritt et al., 1991; Wise et al., 1995; Takechi et al., 1996) suggesting a heterogeneity of the IP-receptor in various tissues or cells. A comparison of the relaxation induced by PGE₂ in the airways (present report) and in the human pulmonary veins (Walch et al., 1999) demonstrates a difference in sensitivity and in maximal relaxations. These differences are consistent with the presence of two different subtypes of EP-receptor in these tissues. While an EP₂-receptor is involved in human bronchial preparations, the subtype of EP-receptor involved in venous preparations remains to be characterized.

In conclusion, the results (present report) suggest a major involvement of IP- and EP_2 -receptors and a minor role for the DP-receptor in the bronchial relaxation induced by the prostanoids in the human lung.

The authors would like to thank Yvette Le Treut and Dominique Gusmini for excellent technical assistance.

- EGLEN, R.M. & WHITING, R.L. (1989). Characterization of the prostanoid receptor profile of enprostil and isomers in smooth muscle and platelets *in vitro*. *Br. J. Pharmacol.*, **98**, 1335–1343.
- GARDINER, P.J. (1986). Characterization of prostanoid relaxant/ inhibitory receptors (ψ) using a highly selective agonist, TR4979. *Br. J. Pharmacol.*, **87**, 45–56.
- GARDINER, P.J. & COLLIER, H.O.J. (1980). Specific receptors for prostaglandins in airways. *Prostaglandins*, 19, 819-841.
- GILES, H., LEFF, P., BOLOFO, M.L., KELLY, M.G. & ROBERTSON, A.D. (1989). The classification of prostaglandin DP-receptors in platelets and vasculature using BWA868C, a novel, selective and potent competitive antagonist. Br. J. Pharmacol., 96, 291–300.
- HARDY, C., ROBINSON, C., LEWIS, R.A., TATTERSFIELD, A.E. & HOLGATE, S.T. (1985). Airway and cardiovascular responses to inhaled prostacyclin in normal and asthmatic subjects. *Am. Rev. Respir. Dis.*, **131**, 18–21.
- HAYE-LEGRAND, I., BOURDILLAT, B., LABAT, C., CERRINA, J., NOREL, X., BENVENISTE, J. & BRINK, C. (1987). Relaxation of isolated human pulmonary muscle preparations with prostacyclin (PGI₂) and its analogs. *Prostaglandins*, **33**, 845–854.
- KEERY, R.J. & LUMLEY, P. (1988). AH6809, a prostaglandin DPreceptor blocking drug on human platelets. Br. J. Pharmacol., 94, 745-754.
- KENNEDY, I., COLEMAN, R.A., HUMPHREY, P.P.A., LEVY, G.P. & LUMLEY, P. (1982). Studies on the characterisation of prostanoid receptors: a proposed classification. *Prostaglandins*, 24, 667– 689.
- LYDFORD, S.J. & MCKECHNIE, K. (1994). Characterization of the prostaglandin E_2 sensitive (EP)-receptor in the rat isolated trachea. *Br. J. Pharmacol.*, **112**, 133–136.
- MANNING, P.J., LANE, C.G. & O'BYRNE, P.M. (1989). The effect of oral prostaglandin E_1 on airway responsiveness in asthmatic subjects. *Pulm. Pharmacol.*, **2**, 121–124.
- MERRITT, J.E., HALLAM, T.J., BROWN, A.M., BOYFIELD, I., COOPER, D.G., HICKEY, D.M.B., JAXA-CHAMIEC, A.A., KAU-MANN, A.J., KEEN, M., KELLY, E., KOZLOWSKI, U., LYNHAM, J.A., MOORES, K.E., MURRAY, K.J., MCDERMOT, J. & RINK, T.J. (1991). Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br. J. Pharmacol., 102, 251–259.
- NARUMIYA, S. & TODA, N. (1985). Different responsiveness of prostaglandin D₂-sensitive systems to prostaglandin D₂ and its analogues. Br. J. Pharmacol., 85, 367–375.

- NOREL, X., LABAT, C., GARDINER, P.J. & BRINK, C. (1991). Inhibitory effects of BAY u3405 on prostanoid-induced contractions in human isolated bronchial and pulmonary arterial muscle preparations. *Br. J. Pharmacol.*, **104**, 591–595.
- PASARGIKLIAN, M., BIANCO, S. & ALLEGRA, L. (1976). Clinical, functional and pathogenetic aspects of bronchial reactivity to prostaglandins F_2 alpha, E_1 and E_2 . Adv. Prostaglandin. Thromboxane. Res., **1**, 461–475.
- PAVORD, I.D., WONG, C.S., WILLIAMS, J. & TATTERSFIELD, A.E. (1993). Effect of inhaled prostaglandin E₂ on allergen-induced asthma. Am. Rev. Respir. Dis., 148, 87–90.
- REEVES, J.J., BUNCE, K.T., SHELDRICK, R.L.G. & STABLES, R. (1988). Evidence for the PGE receptor subtype mediating inhibition of acid secretion in the rat. *Br. J. Pharmacol.*, **95**, 805P.
- SCHRÖR, K., DARIUS, H., MATZKY, R. & OHLENDORF, R. (1981). The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK36374) equi-potent to PGI₂ in vitro. Naunyn-Schmiedebergs Arch. Pharmacol., **316**, 252–255.
- SHELDRICK, R.L.G., COLEMAN, R.A. & LUMLEY, P. (1988). Iloprost a potent EP₁ and IP agonist. *Br. J. Pharmacol.*, **94**, 334P.
- SMITH, G.C., COLEMAN, R.A. & MCGRATH, J.C. (1994). Characterization of dilator prostanoid receptors in the fetal rabbit ductus arteriosus. J. Pharmacol. Exp. Ther., 271, 390–396.

- STÜRZEBECHER, C.S., HABEREY, M., MULLER, B., SCHILLIGER, E., SCHRÖDER, G., SKUBALLA, W. & STOCK, G. (1985). Pharmacological profile of ZK96480, a new chemically and metabolically stable prostacyclin analogue with oral availability and high PGI₂ intrinsic activity. In *Prostaglandins and other Eicosanoids in the Cardiovascular System.* ed. Schrör, K. pp. 485–491. Basel, Switzerland: Karger.
- TAKECHI, H., MATSUMURA, K., WATANABE, Y., KATO, K., NOYORI, R., SUZUKI, M. & WATANABE, Y. (1996). A novel subtype of the prostacyclin receptor expressed in the central nervous system. J. Biol. Chem., 271, 5901-5906.
- WALCH, L., LABAT, C., GASCARD, J.P. de MONTPREVILLE, V., BRINK, C. & NOREL, X. (1999). Prostanoid receptors involved in the relaxation of human pulmonary vessels. MS1: no 980074 submitted to *Br. J. Pharmacol.*, **126**, 859-866.
- WISE, H. & JONES, R.L. (1994). Characterization of prostanoid receptors on rat neutrophils. Br. J. Pharmacol., 113, 581-587.
- WISE, H., QIAN, Y.M. & JONES, R.L. (1995). A study of prostacyclin mimetics distinguishes neuronal from neutrophil IP receptors. *Eur. J. Pharmacol.*, 278, 265-269.
- WOODWARD, D.F., PEPPERL, D.J., BURKEY, T.H. & REGAN, J.W. (1995). 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) a human EP₂ receptor antagonist. *Biochem. Pharmacol.*, 50, 1731–1733.

(Received January 14, 1998 Revised March 8, 1998 Accepted November 26, 1998)