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Imidazolin binding sites

Many publications have shown that imidazoline derivatives
such as clonidine, moxonidine or rilmenidine reduce sympa-

thetic tone via a central mechanism and that as a result they
reduce plasma catecholamines and blood pressure (Reid et
al., 1995). This reduction in blood pressure appears not to be

regulated via peripheral, presynaptically localized receptors,
since neither catecholamine depletion by reserpine, or
destruction of the nerve endings with 6-hydroxydopamine

produces a notable weakening of the clonidine-induced blood
pressure reduction (Haeusler, 1974a,b; Kobinger & Pichler,
1976; Finch et al., 1975). In contrast, selective a2-adreno-
ceptor antagonists such as rauwolscine dose-dependently

block hypotension induced by intravertebral application of
clonidine. While some classical a2-adrenoceptor antagonists
such as SKF86466 (in contrast to the imidazoline derivatives

efaroxan and idazoxan) did not inhibit the clonidine-induced
hypotension in the CNS (Ernsberger et al., 1988b; 1994;
Haxhiu et al., 1994), this was discussed to due to under-

dosage of the antagonist (Bock et al., 1999). Hence the e�ects
of clonidine are due to a central a2-adrenoceptor-mediated
mechanism. The ®rst signs that imidazoline derivatives might

also work via non-adrenergic binding sites stem from Ru�olo
(1977); the imadazoline derivative tetrahydrozoline was able
to antagonize oxymetazoline-induced contraction, but not the
contractile response induced by phenylethylamine derivatives

such as noradrenaline, methoxamine or phenylephrine. Clear
indications for a novel receptor type came from Bousquet et
al. (1984), who reported hypotension after microinjection of

clonidine into the rostroventrolateral medulla (RVLM). a-
methylnoradrenaline showed no blood pressure reducing

e�ect in the same model. The authors therefore assumed
that binding sites must be present in the RVLM which
preferentially bind imidazolines. Radioligand binding studies

on RVLM membranes showed selective binding sites for
imidazolines (Ernsberger et al., 1987). These data con®rmed
the assumptions of Ernsberger et al. (1988a; 1992);

Buccafusco et al. (1995) and Bousquet et al. (1984) that the
C1 region of the RVLM appeared to be the decisive area
involved (Reis et al., 1989).
Since then, two di�erent imidazoline binding site subtypes

have been identi®ed (Michel & Insel, 1989; Michel &
Ernsberger, 1992; Ernsberger et al., 1992). The I1-binding
site, which shows a high a�nity binding to [3H]-clonidine, is

localized in the frontal cortex and the ventrolateral medulla
(Bricca et al., 1989; Ernsberger et al., 1990a; 1992; Gomez et
al., 1991), an area associated with central blood pressure

regulation. Functionally, the I1-binding site seems to be
involved in central blood pressure regulation (Ernsberger et
al., 1988b; 1994; Haxhiu et al., 1994; Hamilton, 1992a,b;

Hamilton et al., 1992; Hieble & Ru�olo, 1992), even though
its importance remains largely unclari®ed, since in functional
a2A-adrenoceptor `knock out' mice (D79N; Macmillan et al.,
1996) no evidence of I1-imidazoline binding site-mediated

e�ects was revealed (Zhu et al., 1999). Its amino acid
sequence and the DNA coding for it also remain to be
determined, although an imidazoline binding site antisera

cDNA has been isolated and characterized as encoding a
1504 amino acid protein (IRAS-1) showing properties of an
I1-binding site (Piletz et al., 2000). I1-binding sites have also
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been demonstrated in the spinal cord, kidney and pancreas
(Regunathan et al., 1993; Ernsberger et al., 1995; Schulz &
Hasselblatt, 1989a), but not in the left ventricle (Raasch et

al., 2000).
Unlike the I1-binding site, the role of the I2-binding sites

has been better characterized, whereby I2-binding sites can be
further di�erentiated amongst I2A- and I2B-binding sites

depending on their amiloride sensitivity. I2 binding sites have
been demonstrated in various tissues such as brain (Brown et
al., 1990), liver (Tesson & Parini, 1991) and kidney (Michel et

al., 1989), whereby studies by Tesson et al. (1991) concluded
that they are associated with mitochondria. Further studies
focused their localization to the outer mitochondrial

membrane. Functionally, the I2-binding site has been
characterized as a regulatory subunit of monoamine oxidase
(MAO, Figure 1), and later on it became clear that both

MAO A and B share the same I2-binding site as a novel
domain on the protein (Limon et al., 1992; Olmos et al.,
1993). Moreover, studies on MAO A- and MAO B-de®cient
mice indicate that (1) the I2 binding sites identi®ed by [3H]-

idazoxan reside solely on MAO B, and (2) the binding sites
on MAO A and a 28-kDa protein identi®ed in livers of MAO
A- and MAO B-de®cient mice by photolabelling with 2-[3-

azido-4-[(125)l]iodophenoxyl]methylimidazoline ([125I]-AZIPI)
may represent additional subtypes of the imidazoline-binding
site family (Remaury et al., 2000). In vitro studies have shown

that selective ligands of the I2-binding site reduce MAO
activity (Carpene et al., 1995; Tesson et al., 1995; Raasch et
al., 1996; 1999). Further on, no correlation with a reduced

oxygen utilization could be shown in vitro (Raasch et al.,
1999). After protein molecular studies showed that I2-binding
sites could be found on various MAO isoenzymes with
varying molecular weights (Escriba et al., 1996), and that a

binding domain (Escriba et al., 1999) for imadazoline
derivatives could be identi®ed in the MAO-B (Raddatz &
Lanier, 1997; Raddatz et al., 1997; 1999; 2000), the functional

role of the I2-binding site, unlike the I1-binding site, could be
considered as established. Chronic treatment of rats with
speci®c I2-ligands reduces MAO activity in various organs

and catecholamines increase as a consequence (Raasch et al.,
1999). In pathophysiological states such as heroin depen-

dency or neurodegenerative disorders such as Alzheimer's
disease or Huntington's chorea, the I2-binding site density is
reduced (Garcia-Sevilla et al., 1999), which indicates that I2-

binding sites might also be of clinical signi®cance. In addition
to this correlation to MAO, the I2-binding site has also been
suggested to be involved in cell growth (Regunathan et al.,
1996a) or analgesic e�ects (Olmos et al., 1994; Sastre et al.,

1996a). However, both are isolated ®ndings and require
con®rmation with more detailed investigations. In this view,
the 28-kDa protein identi®ed in livers of MAO A- and MAO

B-de®cient mice (Olmos et al., 1994; Remaury et al., 2000)
may be of some importance (see Figure 1; for detailed
information see corresponding section of this review).

Furthermore, some authors have attributed speci®c func-
tions such as noradrenaline release (Fuder & Schwarz, 1993;
Molderings & GoÈ thert, 1995; Likungu et al., 1996; Molder-

ings et al., 1999b), secretion of gastric acid and pepsin
(Molderings et al., 1998a; 1999a) and insulin from b-cells
(Chan, 1998) to binding sites for which the a�nity pro®le is
not consistent with those of I1- or I2-binding sites (nonI1/non

I2-binding sites see Figure 1).

Clonidine displacing substance

Apart from a speci®c, saturable, high a�nity and reversible

binding, the corresponding anatomical, histological and
subcellular distribution of the putative binding sites as well
as the identi®cation of a physiological function, the establish-

ment of the protein sequence, DNA structure, signal
transduction and the identi®cation of endogenous ligands
are decisive criteria for the establishment of a new receptor
system (Ernsberger, 1999).

Isolation, chemical characterization and receptor
specificity of CDS

On the basis of the fact that the phenylethyl derivative
noradrenaline and the imadazoline derivative clonidine

in¯uence blood pressure via central a2-adrenoceptors and/or
imidazoline binding site-mediated mechanisms, it had to be

Figure 1 Imidazoline binding sites and their suggested functions. Agmatine binds with a moderate a�nity (Ki values are taken
from Li et al.) to a2-adrenoceptors as well as to I1 and I2 binding sites. Some authors (Chan, 1998; Molderings et al., 1998a; 1999a)
attributed functions to binding sites (nonl1/non I2-binding sites) the a�nity pro®le of which is consistent with neither the I1- nor the
I2-binding sites.
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asked whether other non-catecholaminergic and until now
unidenti®ed substances participate in the regulation of blood
pressure and heart rate. Atlas (Atlas & Burstein, 1984a,b;

Atlas et al., 1987) isolated a substance from rat and calf brain
by ion exchange chromatography, electrophoresis and HPLC.
This isolate bound speci®cally to a2-adrenoceptors and
displaced clonidine, but not the a1-ligand prazosin or the b-
ligand cyanopindolol. Because of this property, the substance
was named `Clonidine Displacing Substance' (CDS). Occa-
sionally, this CDS is referred to as `classical CDS' (cCDS) to

emphasize its detection by radioligand binding studies. Even
though Atlas (Atlas & Burstein, 1984a,b; Atlas et al., 1987)
did not clarify its structure, CDS was characterized as a

hydrophobic substance with a molecular weight of 587 Da1

stable to heat, acid hydrolysis and proteolytic enzymes such
as trypsin, chymotrypsin, pronase, papain and pyrogluta-

mase. Moreover it was postulated that CDS was not an
amino acid and that it possessed no amino groups as shown
by a negative ninhydrin and ¯uorecamine reaction. Due to its
electrophoretic properties it was claimed that CDS was

positively charged. Wavelengths of 224 and 276 nm repre-
sented its absorption maxima, which suggested the presence
of aromatic residues in the molecule (see also Table 1; Atlas

& Burstein, 1984a,b; Meeley et al., 1988a,b). Meeley et al.
(1988a,b) developed a speci®c antibody directed against the
clonidine analogue p-aminoclonidine. Since this antibody

revealed a cross-reactivity with CDS, the authors concluded
that there were structural similarities between clonidine and
CDS and claimed that a phenyl and imidazole ring were

mandatory structural characteristics for CDS, which con-
®rmed the ®ndings of Atlas & Burstein (1984a,b) regarding
the relative hydrophobic character and the positive charge at
neutral pH. CDS determined by radioimmunoassays is

referred to in some studies as `immunoreactive CDS' (irCDS)
in order to emphasize its mode of determination. Since the
distribution of irCDS in various organs of rats is directly

correlated with biological activity attributed to cCDS, both
cCDS and irCDS have been suggested to be similar (Meeley
et al., 1988a). For this reason we have not distinguished

between cCDS and irCDS in later sections of this review;
only the term CDS is used irrespective of the way in which it
was determined.
Later on, CDS could be characterized by radioligand

binding studies as being 30 fold selective for imidazoline
binding sites compared to a2-adrenoceptors (Table 1), which
strengthened the hypothesis that CDS might be an

endogenous ligand for the imidazoline binding site (Ernsber-

ger et al., 1988a; 1990b). Studies showing that CDS has only
a weak a�nity towards the inhibitory G-protein also ®t in
with this idea (Atlas, 1991). Unlike clonidine, CDS was

incapable of in¯uencing basal adenylate cyclase activity in
human platelets or the noradrenaline-induced inhibition of
adenylate cyclase at a concentration able to displace clonidine
binding, ®ndings which certainly do not support an a2-
adrenoceptor-mediated mechanism of action for CDS.

Distribution of CDS in central and peripheral tissues

After CDS had initially been isolated from the brains of
several species (Atlas & Burstein, 1984a,b; Meeley et al.,

1986; Ernsberger et al., 1988a; Regunathan et al., 1991a),
CDS was also shown in various peripheral tissues by a
speci®c antiserum directed against CDS (see Table 1; Meeley

et al., 1988b; 1992; Dontenwill et al., 1988; Hensley et al.,
1989). The existence of peripheral CDS was con®rmed by a
speci®c bioassay, which is based on the ability of CDS to
induce contraction of the vas deferens or gastric fundus

(Diamant & Atlas, 1986; Felsen et al., 1987). CDS, which has
been isolated from brain, gastric fundus, heart, small
intestine, kidney, liver, skeletal muscle and serum, contracted

the gastric funds in a manner completely or at least partially
antagonizable by verapamil. CDS isolated from the adrenal
glands, however, relaxed the gastric fundus. The di�erent

extent of antagonism as well as the relaxation by adrenal
CDS was explained by the possible co-extraction of other,
e�ect-masking substances. Finally, Synetos et al. (1991)

isolated CDS from human plasma and showed its biological
e�ectiveness through the contraction of rat aortal vascular
rings. Because of the signi®cantly reduced plasma concentra-
tions of CDS in adrenalectomized rats compared to sham-

operated animals, Meeley et al. (1992) suggested the adrenals
as the possible source of CDS circulating in the blood.

Biological function of CDS

Cardiovascular e�ects of CDS Since CDS and clonidine

compete for a common binding site, it was questioned
whether CDS would have agonistic or antagonistic activity in
a functional test. After central application of CDS, arterial
blood pressure increases signi®cantly without any change in

heart rate both in the cat and the rat (Bousquet et al., 1986;
1987), which in this way is opposite to the e�ects seen after
central dosing of clonidine (see Table 2; Bousquet et al.,

1984). Intracisternal application of CDS produces no change

Table 1 Comparison of physicochemical and physiological properties of CDS and agmatine (according to Atlas (1994; 1995); Meeley
et al. (1992); Raasch et al. (1995a)). The adrenal gland was identi®ed as the organ with the highest CDS, but low agmatine tissue levels,
whereas the small intestine contains high agmatine but very low CDS levels

Property CDS Agmatine

Quantity in brain (cow) 3 ± 4 ng g71 200 ± 400 ng g71

Quantity in rat brain 9+2 units gwet weight71 2.4+0.6 ng gwet weight71

Quantity in rat adrenal gland 114+16 units gwet weight71 6.9+3.3 ng gwet weight71

Quantity in rat small intestine 3+1 units gwet weight71 55.4+9.4 ng gwet weight71

Absorption 224, 276 nm (aromatic) 200 nm (aliphatic)
Ninhydrin reaction Negative Positive
Molecular weight 587.8+2 daltons 130 daltons
Affinity to a2-adrenoceptors 10 ± 12 nM 4 mM
Affinity to imidazoline binding sites 20 ± 40 nM 1 mM
Retention time (RP18) 26 min not retained
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in blood pressure in anaesthetized rabbits (Bousquet et al.,
1987). Furthermore, CDS can antagonize clonidine-stimu-

lated hypotension directly, i.e. the blood pressure reduction is
reduced (Bousquet et al., 1986) and the dose-response curve
for clonidine is clearly shifted to the right by CDS. This
®nding completely contradicts the results of Meeley et al.

(1986), who observed a clear drop in blood pressure and
heart rate after injection of CDS into the C1-region of the rat
RVLM. Combination experiments with clonidine were not

performed in this study. The reasons underlying these
discrepant results may lie in the various solvents used for
isolating and purifying the CDS (Bousquet et al., 1987).

Alternatively, e�ects from CDS-extract impurities such as
aminoacids, CDS-fragments, catecholamines, histamine or
potassium might also have lead to these inconsistencies (Reis

et al., 1992; Szabo et al., 1995; Singh et al., 1995).

CDS stimulates catecholamine release Apart from the above
described property of CDS to contract various organ

preparations, CDS has also been identi®ed as a catechola-
mine releasing substance (Table 2). CDS binds with a high
a�nity to membranes of bovine chroma�n cells, whereby the

displacement of [3H]-idazoxan by CDS was not impeded by
guanosine 5'-(b,g-imido)triphosphate, indicating that the
corresponding imidazoline binding site was not coupled to

a GTP binding protein (Regunathan et al., 1991a). It should
be noted that this was an I2 like site labelled by [3H]-idazoxan
and that I2-binding sites are consistently una�ected by

guanine nucleotides. The concentration-dependent adrenaline
release from chroma�n cells in response to CDS was
comparable to that in response to nicotine, while the CDS-
stimulated noradrenaline release was only about a quarter of

the noradrenaline release induced by nicotine. Unlike the
nicotine response, the release of either catecholamine
following CDS can not be blocked by hexamethonium,

which suggests a nicotine receptor-independent mechanism
(Regunathan et al., 1991a). Since the catecholamine release is
also not inhibited by the speci®c a2-antagonist SKF-86466,

which shows no a�nity towards imidazoline binding sites
(Ernsberger et al., 1990b), but is in¯uenced by cobalt

(Regunathan et al., 1991a), a speci®c imidazoline binding
site-dependent and calcium-dependent release mechanism
induced by CDS is suggested.

Insulinotropic e�ects of CDS For the further functional
characterization of CDS, its in¯uence on glucose stimulated
insulin release was investigated in isolated Langerhans cells

(Table 2 and Figure 2). The existence of imidazoline binding
sites was shown in the pancreas (Schulz & Hasselblatt,
1989a,b), but the imidazoline binding sites of the b-cells of

the pancreas appear to di�er from the known I1- and I2-
binding sites (Figures 1 and 2; Brown et al., 1993a; Chan et
al., 1994; 1995; Morgan et al., 1995), and are also not

identical with the binding site for sulphonylurea derivatives
(Brown et al., 1993b; Rustenbeck et al., 1997). For this
reason Morgan et al. (1999) have speculated about the
existence of a pancreas speci®c I3-binding site. Moreover, it

could be shown that imadazoline derivatives such as efaroxan
or phentolamine increase the release of insulin by in¯uencing
the K-ATP channel (Figure 2; Chan & Morgan, 1990; Dunne

et al., 1995; Plant & Henquin, 1990). CDS isolated from rat
brain potentiated the glucose (6 mM) induced secretory
insulin response concentration-dependently to a similar extent

as efaroxan, and reversed the inhibitory e�ects of diazoxide
on glucose-stimulated insulin release just as other similar
imadazoline derivatives do. That this CDS e�ect is possibly

mediated via imidazoline binding sites can be concluded from
the observation that imadazoline derivatives such as
RX801080 and KU14R antagonize the insulin-releasing e�ect
of CDS. In addition, the e�ects of CDS on insulin secretion

were not altered by pretreatment of the CDS extract
(protease incubation as well 3000 Da molecular ®ltration
centrifugation; Chan et al., 1997), which con®rms the

structural properties of CDS postulated by Atlas & Burstein
(1984a,b), i.e. that CDS is not a peptide, but rather a low
molecular weight substance. In closing, efaroxan-pretreated

Table 2 Biological functions of CDS, agmatine and imidazoline derivatives on various e�ector systems

Effects on CDS Agmatine Imidazoline derivative (moxonidine)

Vascular contraction increase no effect increase
Blood pressure increase after icv. application; no ± moderate increase after icv.; decrease after icv. application

antagonizes clonidine induced synergistic effect to clonidine action
hypotension

Heart rate after no effect increase, decrease and no effects decrease
icv. application
Catecholamine increase (chromaffin cells) increase (chromaffin cells) and decrease decrease in chromaffin cells, isolated
release in isolated vascular preparations and vascular preparations and pithed SHR

pithed SHR
Insulin secretion glucose-induced insulin glucose-induced secretion is decrease (moxonidine) and increase

secretion is potentiated moderately increased not comparable (efaroxan) of insulin release
similar to efaroxan, effect to efaroxan effects: effect is not
is mediated via IBS mediated via IBS

NO competitive inhibitor of NOS
Cell growth increase increase (idazoxan)
Analgesia potentiate analgesic activity of opiates; potentiate analgesic activity of opiates;

improves development of morphine improves development of morphine
tolerance tolerance

Renal function increase of urinary flow and increase of urinary flow and natriuresis
natriuresis

Gastric fundus increase of contraction increase of gastric acid and pepsin increase of gastric acid and pepsin
secretion secretion (moxonidine)
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islet cells appear to be desensitized to CDS concerning insulin
release, which correlates with observations obtained for

efaroxan itself (Chan, 1998).

Agmatine

Synthesis and metabolism of agmatine

Biosynthesis of agmatine Li et al. (1994) succeeded in
identifying and characterizing mammalian agmatine by ion

and molecular weight exclusion chromatography, high
pressure liquid chromatography and mass spectroscopy, as
a candidate for CDS. Agmatine, the decarboxylation product

of the amino acid arginine, was ®rst identi®ed in 1910 by
Kossel in herring sperm and is known as an intermediate in
the polyamine metabolism of various bacteria, fungi,

parasites and marine fauna (Tabor & Tabor, 1984;
Yamamoto et al., 1988; Ramakrishna & Adiga, 1975), where
polyamines have been attributed an important function in
cellular growth. Agmatine is chemically characterized as

follows (Table 1): its molecular mass is 130 Da, the UV
absorption maximum of 200 nm suggests an aliphatic
structure and a ninhydrin positive reaction con®rms the

existence of an amino group. Radioligand binding studies on
membranes of bovine cerebral cortex, the ventrolateral

medulla and on chroma�n cells have revealed Kds towards
a2-adrenoceptors, I1- and I2-binding sites of 4, 0.7 and 1 mM,
respectively (Figures 1 and 3; Li et al., 1994a). It had low

a�nity for the a1- and b-adrenoceptors, 57HT3 serotonin
and D2 dopamine binding sites (Li et al., 1994a), or the k
opioid and adenosine A1-receptors (Szabo et al., 1995). An
interaction with the sigma3 binding site has been shown on

murine neuroblastoma cells (Molderings et al., 1996). As a
functional correlate to CDS, agmatine concentration-depen-
dently releases adrenaline and noradrenaline from chroma�n

cells (Table 2). Since chroma�n cells express imidazoline
binding sites, but not a2-adrenoceptors (Regunathan et al.,
1993), this can be considered as an indication for an agonistic

function of agmatine at these binding sites. However, since
there is a lack of proof that agmatine-induced catecholamine
release can be blocked by antagonists of the I1-binding site, it

is not certain whether these binding sites mediate this e�ect.
Moreover, data showing an inhibitory potency or no e�ect of
agmatine on noradrenaline release (HaÈ user & Dominiak,
1995; HaÈ user et al., 1995; Molderings & GoÈ thert, 1995;

Molderings et al., 1997; 2000; SchaÈ fer et al., 1999b) fuels
doubts as to whether this catecholamine releasing e�ect is
really mediated via a direct mechanism whereby imidazoline

binding sites are involved. On the other hand, it was
suggested that agmatine in¯uences noradrenaline release via
a dual interaction, namely a competitive antagonism and an

allosteric activation of the rat a2D-adrenoceptor, since (1);
noradrenaline, moxonidine- or clonidine-induced noradrena-
line release in segments of rat vena cava was dose-

dependently enhanced or inhibited by agmatine, and (2);
binding of clonidine and rauwolscine was inhibited, the rate
of association and dissociation of clonidine was altered, and
[14C]-agmatine was inhibited from binding to its speci®c

recognition site by agmatine (Molderings et al., 2000).
Agmatine arises enzymatically from the activity of arginine

decarboxylase (ADC) on arginine (Figures 3 and 4) and is

not supplied from nutritional components or bacterial
colonization. ADC isolated from rat brain di�ers from plant
or bacteria-derived ADC concerning localization, since ADC

is associated with the mitochondria rather than the cytoplasm
(as is typical for bacteria). The second di�erence concerns its
substrate speci®city. In contrast to bacterial ADC, mamma-
lian ADC uses ornithine in addition to arginine, whereby it is

not a typical ornithine decarboxylase, since it is neither
cytosolic nor inhibited by di¯ouromethylornithine, a uni-
versal and irreversible inhibitor of all isoforms of ornithine

decarboxylase (ODC) (Hunter et al., 1991). Finally, the
optimum temperature of mammalian ADC is 308C. At the
bacterial temperature optimum of 378C the enzyme activity

of the mammalian ADC is only one third as active as it is at
308C. Only the pH optimum (8.25) is similar between
mammalian and bacterial ADC (Li et al., 1994a; 1995;

Regunathan & Reis, 2000). Inhibition experiments in
macrophages with lipopolysaccharides (LPS), transforming
growth factor-b (TGF-b) and Interleukin-10 (IL-10) showed
that ADC activity is subject to physiological control (Sastre

et al., 1998). The co-localization of I2-binding sites and ADC
on mitochondria has been discussed as a potential intracel-
lular receptor-controlled regulatory loop for endogenous

biosynthesis (Figure 3; Li et al., 1995). However, the organ
speci®c distribution of ADC in rats (Regunathan & Reis,
2000) di�ers from that of agmatine (Raasch et al., 1995a),

Figure 2 Current working hypothesis depicting mechanisms regulat-
ing insulin secretion from pancreatic b-cells and proposed sites for
interference by agmatine. ATP generated by glucose metabolism
shuts down K+-channels, resulting in depolarization and subsequent
in¯ux of Ca2+ through voltage-activated Ca2+-channels. This in¯ux
of Ca2+ increases cytosolic Ca2+ concentration, which is accom-
panied by mobilization of Ca2+ from the endoplasmic reticulum
(ER), an event triggering secretory granule translocation and
exocytotic release of insulin. The respective binding of imidazolines
(such as efaroxan) and sulphonylurea derivatives (such as glib-
enclamide) to I3-binding sites and the sulphonylurea receptor, also
closes the K+-channels. Agmatine does not bind to I3-binding sites.
However, agmatine may enhance insulin secretion via its metabolites,
after it is taken up by speci®c transporters. Putrescine, spermidine are
necessary for proinsulin biosynthesis, whereas spermine may exert a
stimulatory or permissive role in RNA transcription and long-term
insulin release. Polyamines are also probably involved in regulation
of cytosolic Ca2+-concentration by blocking Ca2+-in¯ux and its
release from intracellular stores. Abbreviations: ´´´´" : stimulation;
´´´´*: inhibition.
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revealing some doubt that there is a close correlation between
agmatine and its biosynthetic enzyme.

Organ-speci®c, cellular and subcellular distribution of agma-
tine Using high pressure liquid chromatography, agmatine
has been demonstrated in nearly all organs of the rat (Table
1), whereby the highest concentrations are found in the

stomach (71 ng g71 wet weight), followed by the aorta, small
and large intestine, and spleen; it is found in lower
concentrations (510 ng g71 wet weight) in the lungs, vas

deferens, adrenals, kidneys, heart, liver, skeletal muscle, brain
and testes (Raasch et al., 1995a,b). Gas chromatography
studies by Stickle et al. (1996) con®rmed an organ speci®c

distribution of agmatine. This distribution pattern of
agmatine in various organs (Raasch et al., 1995a) di�ers
widely from that of CDS (Table 1; Meeley et al., 1992). As an

example, high concentrations of CDS but only low
concentrations of agmatine are found in the adrenal gland.
Moreover, the low correlation (r=0.2193) between agmatine
and CDS tissue levels in both studies indicates clearly that

agmatine can not exclusively represent CDS, but that, if at
all, it only represents a member of a whole CDS family.

The concentration of agmatine in rat plasma is only

0.45 ng ml71 (Raasch et al., 1995a,b), which renders it
doubtful that agmatine acts as a circulating hormone since
the Kd values for the I1- (0.7 mM) and I2-binding sites (1 mM;

(Li et al., 1994a) are approximately 200 ± 300 fold higher
compared to rat plasma concentrations. In addition, the
source for circulating agmatine remains unidenti®ed, since (1)

ADC has not been detected in plasma until now, and (2) the
adrenals, which were identi®ed as sources for CDS (Meeley et
al., 1992), contain only minimal amounts of agmatine (see
Table 1; Raasch et al., 1995a). Stimulation experiments on

Figure 3 Schematic representation of an agmatinergic synapse: L-
arginine enters the nerve ending via a transporter and is
decarboxylated by the mitochondrial arginine decarboxylase
(ADC) to agmatine (AGM), which is stored in vesicles and
metabolized to putrescine (PUT) by agmatinase (AGMase).
Agmatine inhibits NO synthase (NOS) as well as monoamine
oxidase (MAO) since it was demonstrated that I2-binding site (I2-
BS) is a regulative binding site of MAO. After agmatine is released
from the neuron it is subject for a speci®c uptake or it interacts
with various pre- and postsynaptic receptors including the I1-
binding site (I1-BS), a2 adrenoceptor (a2-R), NMDA, nicotinic
cholineric (NIC), 57HT3 (via the sigma-2 binding site) receptor.
Furthermore, agmatine enters postsynaptic neurons via nicotinic
and possibly NMDA ion channels. Whether such released agmatine
represents a source for serum agmatine has not yet been
determined. Peripheral e�ects of agmatine on blood pressure and
cell growth are also a matter of debate. Released agmatine binds
to presynaptic imidazoline binding sites and a2 adrenoceptors and
in this way is involved in the regulation of catecholamines.
Agmatine penetrates glial cells where it also modulates the
expression and activity of iNOS.

Figure 4 Metabolism of L-arginine in the mammalian organism.
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animals designed to investigate this question have not been
performed until now. In humans, substantially higher plasma
concentrations (47 ng ml71) were determined when compared

to rats (Feng et al., 1997). The reasons underlying this large
di�erence remain to be clari®ed. An age-dependency for
agmatine tissue concentrations could not be established, with
the exception of the cerebral cortex, where concentrations

declined by nearly 50% with age (Raasch et al., 1995a).
Using immunohistochemistry with speci®c antibodies

against agmatine (Wang et al., 1995), agmatine was found

to be regionally distributed in the cerebral cortex, the lower
brain stem, the midbrain, frontal brain, thalamus and the
hypothalamus in rat brain (Otake et al., 1998). In this way

the distribution of agmatine-containing neurones correlates
with the distribution pattern of a2-adrenoceptors and
imidazoline binding sites to the extent that (1) in most

agmatine containing regions, a2-adrenoceptors and imidazo-
line binding sites are also expressed (Kamisaki et al., 1990; de
vos et al., 1991; 1994; Bricca et al., 1993; Nicholas et al.,
1993; 1996; King et al., 1995; Ruggiero et al., 1995) and (2)

agmatinergic neurones are concentrated in brain regions (e.g.
cerebral cortex), which project to areas (e.g. striatum and
midline thalamus), which contain a2-adrenoceptors and

imidazoline binding sites (Berendse & Groenewegen, 1991;
Jones & Yang, 1985; Saper et al., 1986). There also appear to
be a multitude of interactions between agmatinergic cells and

receptor areas in the corticothalamostriatal regulatory loops.
At the cellular level, agmatine could be shown in smooth

muscle and endothelial cells. Since ADC is expressed only in

endothelial cells and not in smooth vascular muscle cells, it
was concluded that agmatine either originates in the serum or
is taken up from the endothelial cells and stored in the
smooth vascular muscle cells, although a corresponding

transporter for agmatine has not yet been identi®ed in the
vasculature (Regunathan et al., 1996a). There are, however,
reports on an agmatine-transport system of bacterial

(Kashiwagi et al., 1986; Driessen et al., 1988) and neuronal
origin (Sastre et al., 1997). Glial cells not only express
imidazoline binding sites, they also synthesize agmatine

(Regunathan et al., 1995a), whereby the agmatine concentra-
tion and ADC activity in the cultivated cells are substantially
higher than the concentrations in brain, which might indicate
that glial cells represent the main site for synthesis and

storage. It is well known that cells under culture conditions
can undergo alterations in distinct features such as receptor
population, enzyme activity and this might also alter

agmatine content. This could be why there are di�erences
in agmatine content between neuronal and glial cells. In this
respect, interferon-gamma (IFN-g) was able to increase ADC

activity without inducing nitric oxide synthase (iNOS)
activity signi®cantly in astrocytes, whereas LPS stimulated
iNOS but not ADC activity. These data suggest that the

ADC activity in neuronal tissue is subject to regulation, and
that two di�erent stimuli in¯uence two pathways of arginine
metabolism in entirely di�erent ways.
At the subcellular level, agmatine was shown by

immuncytochemistry to be localized mainly in large dense-
core vesicles in the cytoplasm and in the immediate vicinity of
the endoplasmic reticulum and the mitochondria (Figure 3;

Otake et al., 1998; Reis et al., 1998), which correlates well
with the demonstration of a mitochondria-associated ADC
(Li et al., 1995). Moreover, an association of agmatine with

small synaptic vesicles was shown in the rat hippocampus
within the nerve endings, whereby the function of these
endings has not yet been clari®ed. The co-transmitter

function to L-glutamate has been speculated, since inhibitory
e�ects at the N-methyl-D-aspartate (NMDA) receptor have
been attributed to agmatine (Yang & Reis, 1999), which
would suggest a regulation of the excitatory e�ect of L-

glutamate via co-transmission.

Release of agmatine In rat brain slices and synaptosomes, a

release of agmatine, but not of putrescine could be shown in
response to depolarization with 55 mM KCl (Figure 3;
Regunathan et al., 1996b; Reis & Regunathan, 1998). In

the absence of Ca2+, the release of agmatine was signi®cantly
reduced, suggesting a calcium dependent mechanism. Sig-
ni®cant quantities of radiolabelled agmatine could be released

from bovine chroma�n cells by 55 mM KCl and 10 pM
nicotine induced depolarization (Tabor & Tabor, 1984).
Immunocytochemical studies on the storage of agmatine
support the ®ndings of a stimulation-receptive agmatine

release from neuronal tissue, since agmatine-like immuno-
reactivity is primarily associated with small synaptic vesicles
(20 ± 30 nm diameter) in nerve endings that form asymmetric

contacts to the spines of pyramidal cell dendrites. While the
adrenals were identi®ed as a source of circulating CDS
(Meeley et al., 1992), no data exists about the release of

endogenous agmatine into the circulation.

Inactivation of agmatine The existence of a speci®c

transporter system working against a concentration gradient
(Kashiwagi et al., 1986) as well as an agmatine-putrescine
antiporter (Driessen et al., 1988) have been shown in
prokaryotes. In synaptosomes from rat brain, a selective

ATP- and temperature dependent as well as Na-independent
agmatine transporter could be shown (Figure 3; Sastre et al.,
1997). The a�nity of agmatine to this transporter is

extremely low with a Km of 18.8 mM. Other polyamine
transporters, however, have also shown Km values in the
millimolar range (Seiler & Dezeure, 1990). The fact that

agmatine uptake can not be inhibited by amino acids,
catecholamines or polyamines at concentrations (1 mM)
which can be judged as high (with the exception of amino
acids) underscores the speci®city of the transporter. Combi-

nation experiments with carbachol and nicotine have
excluded the possibility that the agmatine-transporter is a
nicotine-associated ion channel; earlier studies showed that

[3H]-agmatine can act as a marker for ion ¯ux through
nicotinergic ion channels (Quik, 1985) and that agmatine acts
as an antagonist of the retinal nicotine receptor (Loring,

1990). The transporter is also no K+
ATP- channel. However,

agmatine-uptake can be suppressed by CoCl2, CdCl2 or
verapamil and doubled by application of a calcium-free

medium, an indication that agmatine is transported through a
calcium channel, although it could be excluded that the
calcium channels were of an L- or T-type (Sastre et al., 1997).
Finally, agmatine-uptake into synaptosomes is blocked by the

imidazoline derivatives idazoxan and phentolamine, but not
by clonidine, moxonidine, rilmenidine or p-aminoclonidine,
so that apart from a guanidine or imidazoline partial

structure, other structural properties also contribute to the
inhibitory e�ect. Recently another agmatine uptake system
was identi®ed and pharmacologically characterized in human
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glioma cells; it was energy dependent, and saturable with a
Km of 8.6 mM and a Vmax of 64.3 nmol min71 mg protein71

but distinct from the putrescine transporter and known

amino acid or monoamine carriers and not associated with a
calcium- or 5-HT3 receptor channel or an organic cation
transporter (Molderings et al., 2001). Those features,
especially the much higher a�nity (*2200 fold), clearly

indicate its di�erence from the agmatine transporter identi®ed
by Sastre et al. (1997). From all these ®ndings it seems
reasonable to suspect that this transporter might be involved

in the regulation of extracellular agmatine concentrations.
From bacterial polyamine metabolism it is well known that

agmatine can be degraded enzymatically by agmatinase

(Satishchandran & Boyle, 1986; Panagiotidis et al., 1987) or
agmatine deaminase (Mercenier et al., 1980). The question is
now whether the same metabolization pattern can be

demonstrated in mammals, and whether an alternative means
for putrescine biosynthesis apart from decarboxylation of
ornithine (Tabor & Tabor, 1984) exists. The ®rst evidence for
a breakdown of agmatine to putrescine with cleavage of urea

(Figures 3 and 4) in rat brain was obtained by Gilad et al.
(1996a). Later, Sastre et al. (1996b) identi®ed a mitochondrial
agmatinase in rat brain with a low a�nity for agmatine

(Km=5.3 mM), and a Vmax of 530 nmol h71 mg71 protein.
These enzyme kinetic parameters are comparable with those
of the bacterial agmatinase (Satishchandran & Boyle, 1986).

When one considers the relatively low concentrations of
agmatine in rat brain (Raasch et al., 1995a) and the very low
a�nity of agmatine to the enzyme, one can reasonably

question the extent to which agmatinase is of any
physiological relevance. Since agmatinase is co-localized with
ADC (Li et al., 1995; Regunathan & Reis, 2000), however,
one can not rule out the presence of mM agmatine

concentrations in intracellular compartments, which would
then represent an adequate substrate concentration for the
agmatinase. The high Vmax might also compensate for the

lower a�nity. A regional heterogeneous distribution of
agmatinase has indeed been shown in rat brain (Sastre et
al., 1996b), with the highest activity in the hypothalamus,

followed by the medulla oblongata and hippocampus, and
the lowest activity in the striatum and cerebral cortex. This
distribution pattern is largely consistent with the imidazoline
binding sites (Mallard et al., 1992), but less so with the a2-
adrenoceptors (Ruggiero et al., 1995). Moreover, the
distribution of agmatinase seems not to be consistent with
the regional pattern of agmatinergic neurones in the CNS as

determined by immunocytochemistry (Wang et al., 1995).
Outside of the CNS, agmatinase could also be demon-

strated in macrophages (Sastre et al., 1998), where its activity

can be stimulated by LPS, but inhibited by TGF-b and IL-10.
Since ADC in macrophages is inhibited by LPS, TGF-b, and
IL-10, and the activity of iNOS is also regulated by these

substances (Wang et al., 1995), it seems reasonable to suggest
that arginine might be metabolized by these three enzymes,
and possibly other enzymes, to agmatine, nitric oxide (NO)
and polyamines. Aside from agmatinase-induced degradation,

agmatine can also be metabolized in the kidney by diamine
oxidase (DAO; Figure 4; Holt & Baker, 1995; Lortie et al.,
1996), where the a�nity of agmatine to this enzyme is in the

micromolar range and therefore substantially higher than
that of agmatinase. Studies with speci®c DAO inhibitors
underscore the importance of DAO in agmatine metabolism.

Indeed, it has been speculated that speci®c inhibition of DAO
by the antidepressant drug phenelzine might lead to an
increase in serum and tissue concentrations of agmatine and

in this way contribute to its antidepressive e�cacy (Holt &
Baker, 1995). However, this hypothesis is weakened by the
fact that (1) no changes in plasma or tissue levels of agmatine
were found during chronic DAO blockade; and (2) no DAO

activity could be demonstrated in the brain (Lortie et al.,
1996), suggesting an organ speci®c metabolism of agmatine,
i.e. degradation by DAO in the kidney and agmatinase in

central tissues. Moreover, it seems feasible that an increase in
histamine due to DAO blockade might participate in
antidepressive e�ects, since an antidepressant-like e�ect, via

activation of H1-receptors, has been suggested elsewhere
(Lamberti et al., 1998).

In studies by Holt & Baker (1995), agmatine (50 mM) had

no in¯uence on either the semicarbazide-sensitive aminox-
idase (SSAO) or MAO. By using speci®c substrates it could
be shown that agmatine does not modulate either MAO-A or
MAO-B; hardly surprising to many, given that other

polyamines such as putrescine are not substrates for MAO
(Blaschko, 1974). These results are somewhat inconsistent
with the fact that the I2-binding site has been characterized as

a regulatory subunit of MAO (Tesson & Parini, 1991; Tesson
et al., 1991; 1995; Carpene et al., 1995; Raasch et al., 1996;
Raddatz et al., 1995; 1997; Escriba et al., 1996; Raddatz &

Lanier, 1997) and that agmatine has been identi®ed as a
ligand at imidazoline binding sites (Li et al., 1994a; Piletz et
al., 1995; 1996a). In this respect, the fact that agmatine is

able, just as other I2-ligands, to inhibit MAO isolated from
rat liver, does not seem completely surprising (Figure 3;
Raasch et al., 1996; 1999). The IC50 value of 167 mM reported
by Raasch et al. (1999) is about 3 fold higher than the

maximal concentration used by Holt & Baker (1995) in their
study. At 50 mM only a minor inhibition of MAO could be
seen, even in Raasch et al.'s (1999) study. However, it seems

more than doubtful that the agmatine-induced inhibition of
MAO in vitro should have some relevance in vivo, since
plasma and tissue concentrations of agmatine are approxi-

mately 500 ± 40,000 fold lower than the EC50 values in the in
vitro assays. Furthermore, an interaction between endogenous
agmatine and MAO inhibitors is unlikely because of their
di�erent sites of action.

Biological functions of agmatine

E�ects of agmatine on the central nervous system
(Antinociceptive e�ects of agmatine) Since the mid 80's it
has been known (Gossop, 1988) that clonidine potentiates the

analgesic activity of opiates, an e�ect which is purportedly
mediated via a2-adrenoceptors (Maze et al., 1988; Quan et al.,
1993). Studies on a2A-knock-out mice have clearly revealed

the participation of a2A-adrenoceptors in analgesia (Hein et
al., 1999; Hein, 2001). In this context, Fairbanks & Wilcox
(1999) demonstrated that the centrally acting antihypertensive
drug moxonidine produces antinociception in mice with

dysfunctional a2A-adrenoceptors (a2A-D79N not a null
mutation; Macmillan et al., 1996), whereby the selective
a2A-adrenoceptor antagonist SK&F86466 (Hieble et al., 1986)

and the I1-binding site/a2A-adrenoceptor mixed antagonist
efaroxan (Haxhiu et al., 1994) antagonizes the moxonidine
e�ects. The following mechanisms may underlie these results:
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(1) other substypes of a2A-adrenoceptor ± either a2B or a2C
± may participate in analgesia (Fairbanks & Wilcox, 1999);
(2) since gene expression of the a2A-adrenoceptor is reduced

by 80% via targeted mutation in the a2A-D79N mice
(Macmillan et al., 1996), there is still the possibility of a
residual activity of the a2A-adrenoceptor. This conclusion is
authoritatively con®rmed by the observation of di�erent

physiological e�ects between mice with fully disrupted a2A-
adrenoceptors (a2A-adrenoceptor knock out mice) and those
with gene-targeted mutation receptors (a2A-D79N, Altman et

al., 1999); (3) imidazoline binding sites may induce anti-
nociceptive e�ects (Figure 1), which raises the question of the
biological relevance of agmatine mediating such e�ects, since

agmatine was shown to be synthesized, stored, released and
metabolized either by uptake or by enzymatic breakdown in
tissue of neuronal origin (for detailed information see

sections above).
Agmatine alone (0.1 ± 10 mg kg71) was ine�ective in the

mouse tail¯ick assay, but after intravenous or intrathecal
application it potentiated the analgesic e�cacy of morphine

dose-dependently by factors of ®ve or nine, respectively,
without a�ecting morphine-induced gastrointestinal transit
(Kolesnikov et al., 1996). Such results were con®rmed by

using slightly modi®ed study protocols of Bradley & Headley
(1997) and HorvaÂ th et al. (1999). The potentiation of
morphine activity by agmatine seems to be mediated via a

d- rather than a k1- or k3 opiate receptor mechanism.
Moreover, chronic studies also showed that agmatine, at a
dose (0.1 mg kg71) which did not potentiate morphine

activity, reduced the development of tolerance during a 10-
day morphine regime. It is not unlikely that this e�ect is
mediated via I2-binding sites, since selective I2-ligands such as
idazoxan or 2-benzofuranylimidazoline also suppressed the

morphine-induced development of tolerance, while selective
I1-ligands or a2-adrenoceptor antagonists did not (Boronat et
al., 1998). How this binding site mediates suppression of the

development of tolerance is still not completely understood,
even considering the fact that I2-binding sites have been
implicated as a regulatory binding site on MAO. Moreover,

results using idazoxan, showing increases in cerebral levels of
3-methoxy-4-hydroxyphenylethyleneglycol (MOPEG) and
3,4,dihydroxy-phenylacetic acid (DOPAC) in morphine-with-
drawn mice and an enhancement of morphine's elevating

e�ects on MAO (Airio & Ahtee, 1999) suggests rather an
interaction with MAO than an increase in cerebral nora-
drenaline turnover and release as a mechanism underlying

idazoxan's overcoming of morphine tolerance. However, such
a noradrenaline release can not be mediated classically via
presynaptic a2-adrenoceptor, since it has repeatedly been

shown that idazoxan inhibits noradrenaline release by this
mechanism (Molderings et al., 1997). Another I2-mediated
mechanism, possibly attributed to the 28-kDa protein which

is present in MAO de®cient mice (Remaury et al., 2000), was
speculated to be involved in the reduction of morphine
tolerance, since an astrocyte hyperplasia following chronic
dosing of I2-selective imadazoline derivatives (Olmos et al.,

1994; Alemany et al., 1995) can antagonize the morphine-
induced suppression of astrocyte growth (Stiene-Martin et al.,
1991; Stiene-Martin & Hauser, 1993). Since astrocytes play

an important role in the regulation of synaptic density
(Meshul et al., 1987), the astrocyte growth can modulate
synaptic plasticity and appears to be associated with chronic

morphine dosing (Nestler et al., 1996). Recently, a functional
interaction between opioid- receptors and I2-binding sites
could be shown. The ®rst results on a so-called Gi-Go

transducer protein have also been obtained, a protein which
appears to play some role in this interaction (Sanchez-
Blazquez et al., 2000). However, the low a�nity of agmatine
to the I2-binding sites compared to the selective I2 ligands

provides reason to doubt this concept. Moreover, the concept
of an I2-mediated mechanism for agmatine's antinociceptive
e�ects contradicts the conclusion derived from the ®ndings

using a2A-adrenoceptor knock out mice, in which if anything
a participation of I1-binding sites was suggested. Overall, it
must be determined whether endogenous agmatine would

participate in such an antinociceptive e�ect. To answer this,
physiological or pathophysiological conditions have to be
identi®ed whereby agmatine levels (e.g. depression; Halaris et

al., 1999) as well as morphine's e�ects are altered.
Aside from improvements in development of tolerance and

morphine's analgesic action, agmatine also dose-dependently
improved (20 ± 40 mg kg71) acute morphine withdrawal

symptoms under naloxone in rats, such as jumping, wet
dog shakes, writhing, defecation, ptosis, teeth chattering and
diarrhoea (Aricioglu-Kartal & Uzbay, 1997). However, this

behavioural pattern could not be induced by giving agmatine
alone. A lacking impediment of locomotor activity under
agmatine alone and in combination with naloxone suggests

that the observed agmatine e�ects were not due to sedation
or muscle relaxation. The authors of this study also
associated the e�ects observed less not so much with an

interaction at a2-adrenoceptors, but much more with an
interaction at imidazoline binding sites or NOS.

(E�ects of agmatine on the NMDA receptor) After it was

recognized that NMDA receptors participate in the develop-
ment of opiate dependency and development of tolerance
(Elliott et al., 1995; Trujillo, 1995), it had to be asked

whether ligands of imidazoline binding sites modulate the
above discussed morphine tolerance via an NMDA receptor-
mediated mechanism. The binding of the NMDA ligand [H]-

(+)-MK-801 to cerebral cortex membranes can be reduced
by various imidazolines with weak potencies (Ki) of 37 ±
190 mM, whereby the potencies of the I1-ligand (moxonidine),
the I2-ligand (idazoxan) and the a2 agonist (RX821002) were

not di�erent (Boronat et al., 1998). This suggests a lack of a
correlation between the potency at NMDA receptors and the
ability to prevent opiate tolerance. Compared to the other

substances, agmatine had the lowest a�nity for the I2-binding
site, but the highest a�nity for the NMDA receptor (Boronat
et al., 1998). Moreover, agmatine di�ered from the other

substances in this study since it had a signi®cantly shallower
Hill-Slope and the curve-®tting characteristics were di�erent.
All these signs could mean that agmatine di�ers from other

imadazoline derivatives in its binding behaviour to NMDA
receptors, and that even if this hypothesis were to be rejected
for the imadazoline derivatives, the agmatine e�ects on
morphine tolerance and potentiation could be mediated via

NMDA receptors (Figure 3).
Against this background, whole cell patch clamp studies on

cultivated hippocampal neurones showed that agmatine

speci®cally induces a voltage and concentration-dependent
block of the NMDA current, but not the AMPA- (a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) or kainate ¯ux
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(Yang & Reis, 1999). This inhibition was reversible and most
potent at hyperpolarizing membrane potentials, and less
e�ective at positive potentials. Even in the presence of 10 mM
glycine, agmatine (100 mM) showed no measurable whole-cell
¯ux, which does not support an NMDA-agonistic e�ect of
agmatine. As a NMDA antagonist, (+)-2-amino-5-phospho-
nopentanoic acid (AP5) inhibits both, the inward and

outward directed NMDA current. In the presence of
agmatine there was an additional inhibition of the AP5-
inhibited NMDA current, comparable to the inhibition under

agmatine alone, making it reasonable to presume that
agmatine is not a competitive NMDA antagonist. It could
be shown, however, that agmatine interacts with the NMDA-

pore directly at a site part-way across the membrane electric
®eld (Yang & Reis, 1999). By investigating various agmatine
structural analogues (arcaine, putrescine, spermine, arginine)

regarding their ability to alter NMDA current, it could be
shown that the guanidine structure of agmatine appears to be
essential for suppressing NMDA current. A similar structure-
activity relationship was also reported concerning the MAO

inhibitory activity of agmatine (Raasch et al., 1999). Since the
agmatine concentration (100 mM) required for an e�ective
NMDA receptor blockade is relatively high, one has to

question the physiological signi®cance of this e�ect, especially
against the background of published agmatine tissue
concentrations (Raasch et al., 1995a; Feng et al., 1997;

Stickle et al., 1996). However, since agmatine is not
uniformly distributed in the CNS, but preferentially dis-
tributed in certain areas and subcellular structures (Otake et

al., 1998; Reis et al., 1998), a concentration adequate to block
NMDA might be reached, providing that the agmatine
becomes released.
Glutamate, the most important excitatory neurotransmit-

ter in the brain, also is potentially neurotoxic (Choi et al.,
1988). Glutamate exposure to primary cultures of cerebellar
granule cells has been characterized as a model for

neurotoxic e�ects, which correlates with e�ects at NMDA
receptors (Lysko et al., 1989). NMDA antagonists are
consequently able to suppress such neurotoxic glutamate

e�ects. In this context, imadazoline derivatives revealed
some neuroprotective e�cacy (Gustafson et al., 1990; Maiese
et al., 1992; Olmos et al., 1996; 1999; Degregorio-
Rocasolano et al., 1999). It therefore seemed natural to

study whether agmatine, as an endogenous ligand of
imidazoline binding sites with NMDA antagonistic activity
(see above), possesses any neuroprotective activity. In

cultivated cerebellar neurones, agmatine suppresses the
NMDA-induced neurotoxic e�ects at concentrations of
between 10 ± 100 mM, but at higher concentrations it becomes

toxic itself (LD50: 700 mM; Gilad et al., 1996b), perhaps by
inhibiting growth e�ects as discussed later. Similar neuro-
protective e�ects in cell cultures were shown by Olmos et al.

(1999), who associated this e�ect of agmatine directly with
an antagonistic activity at the NMDA receptor. In vivo
studies on gerbils revealed neuroprotection after a global
frontal brain ischaemia following an intraperitoneal applica-

tion of agmatine (10 ± 100 mg kg71). These results occurred
in line with a complete (after agmatine treatment) or partial
(controls) recovery of the neurological de®cit within 72 h, as

revealed by the motor performance of the animals (Gilad et
al., 1996b). The importance of endogenous agmatine during
cerebral ischaemia is also stressed by the fact that the

activity of ADC is increased transiently and in parallel to
ODC by about 7 fold (Gilad et al., 1996c). This study seems
to be a very important study, since it was shown that due to

pathophysiological events the rate limiting enzyme of
agmatine's biosynthesis is enhanced, suggesting a biological
function for agmatine. As in many other functional studies,
however, the applied dose of agmatine was indeed very high.

Also, the extent of the agmatine transport is unknown in the
brain and might indeed be limited under normal conditions.
However, it is known that the blood-brain barrier after an

ischaemic insult is damaged very early on and in a long-
lasting manner (Dietrich et al., 1991), which could allow
better access to the brain for exogenous substances.

Nevertheless, circulating agmatine concentrations are very
low (Raasch et al., 1995a), so that it is not very likely that
endogenous agmatine from the periphery will contribute to

neuroprotective e�ects. Apart from this it appears question-
able, especially considering the relatively low a�nity of
agmatine to the NMDA receptor (Ki=219 mM, Olmos et al.,
1999) and the endogenous tissue concentrations, whether

endogenous agmatine could be held accountable for the
survival-promoting e�ects observed in vivo (Gilad et al.,
1996b). But at this point we must refer once again to the

non-uniform distribution of agmatine in the CNS (Otake et
al., 1998) which could theoretically approach e�cacious
concentrations at the NMDA receptor, provided of course

that it is released.

(Agmatine's signi®cance in depression) Various ®ndings

indicate a potential pathophysiological role of imidazoline
binding sites in the development of depression (Figure 1): the
density of I1-binding sites in human platelet plasma
membranes is upregulated in depressive patients and normal-

ized by antidepressive therapy (Piletz & Halaris, 1995; Piletz
et al., 1996b,c). A similar increase in I1-binding sites was
observed in untreated women with dysphoric premenstrual

syndrome (Halbreich et al., 1993). Alterations in various
imidazoline binding site proteins (45-kDa, 29/30-kDa)
could be shown by Western blotting in membranes

from platelets and brains of unipolar depressive patients,
and from cortical autopsy samples from suicidal individuals
(Sastre et al., 1995; Garcia-Sevilla et al., 1996; 1998a). The
concentration of agmatine was raised in the plasma of

depressed patients compared to a control group (70.6+6.5 vs
38.5+5.4 ng ml71, P50.05). After treatment with the
antidepressant bupropion, agmatine plasma concentrations

normalized to 57.0+6.7 ng ml71, but no correlation between
the bupropion and agmatine plasma concentrations was
found (Halaris et al., 1999). At the same time the density of

I1-binding sites and the immunodensity of a 33-kDa band in
platelet membranes from depressive patients increased
compared to controls. Both parameters fell to control levels

with bupropion treatment, whereby the number (Bmax) of I1-
binding sites correlated well with the agmatine plasma
concentration (r=0.800, P=0.005). The ®nding regarding
elevated levels of agmatine and I1-binding sites is surprising,

since upregulation of an endogenous ligand normally occurs
in line with a downregulation of its receptor, and vice versa.
Whatever causes this uniform elevation of those parameters

remains unclear, but the course of disease might play a
signi®cant role. Hence longer-lasting, disease-following stu-
dies on plasma agmatine concentrations and receptor
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densities in platelets are necessary to provide a satisfactory
and plausible explanation. For other neurodegenerative
disorders (e.g. Parkinson's disease, Alzheimer's disease, glial

tumours), alterations in the expression of imidazoline binding
sites in the brain or platelets could also be shown (Garcia-
Sevilla et al., 1998b; 1999; Ulibarri et al., 1999). However,
until today no studies have been performed, analogous to the

depression studies, which have pursued the question of
changes in agmatine plasma concentrations and their
potential role in those diseases.

Cardiovascular properties of agmatine (E�ects of agmatine
on isolated vessels and atria (for overview see Table

3)) Agmatine exerted no e�ect of its own and failed to
alter the concentration-dependent contractile e�ects of the a2-
adrenoceptor agonist UK14304 on the KCI-precontracted

porcine palmar lateral vein, and unlike clonidine, agmatine
did not increase contractility in the endothelium-denuded
thoracic artery of the rat (Pinthong et al., 1995a). These
results were con®rmed both in intact and endothelium-

denuded thoracic aortal segments (Gonzalez et al., 1996;
SchaÈ fer et al., 1999a). Agmatine also did not in¯uence the
contractile responses either to clonidine or phenylephrine

(SchaÈ fer et al., 1999a). Similarly, agmatine failed to impart
any direct inotropic activity in the isolated, electrically
stimulated atrium. In contrast, the imidazoline derivatives

cirazoline and moxonidine produced signi®cant increases in
contractility, which were found to be due to an a1-
adrenoceptor-mediated mechanism (Raasch et al., 2000).

Such negative results on contraction were con®rmed in
studies where agmatine (0.1 ± 100 mM) was ine�ective at
inhibiting electrically stimulated contraction of the rat
isolated vas deferens and isolated guinea-pig ileum (Pinthong

et al., 1995a). This is inconsistent with the e�ects of CDS on
these preparations (Diamant & Atlas, 1986; Felsen et al.,
1987; Meeley et al., 1992), creating some doubt that agmatine

might be CDS. Another explanation may be that the positive
e�ects of the functional tests were due to other substances co-
puri®ed during the CDS isolation. Only Jurkiewicz et al.

(1996) and GonzaÂ les et al. (1996) observed both a clear
agmatine-induced potentiation of electrically stimulated
contraction and a competitive antagonism between agmatine

and clonidine. Those inconsistent observations of Pinthong et
al. (1995a), Jurkiewicz et al. (1996), GonzaÂ les et al. (1996)
and SchaÈ fer et al. (1999a) can presumably be explained by the
use of di�erent tissue preparations, and less so by the use of

di�erent agmatine concentrations, since all authors used
agmatine concentrations up to the millimolar range. How-
ever, the biological relevance of positive e�ects of agmatine

on isolated organ preparations using such high concentra-
tions seems more than dubious, especially when considering
that endogenous agmatine concentrations in vessels and

plasma are in the nanomolar range (Raasch et al., 1995a),
and that Kd values are 0.7 and 1 mM for the I1 ± /I2-binding
sites (Li et al., 1994a). Furthermore, one has to determine

which receptor or binding site mediates agmatine's e�ects on
isolated veins as observed by Jurkiewicz et al. (1996), and
GonzaÂ les et al. (1996) since it was demonstrated that
agmatine was able to compete with [3H]-clonidine binding

in these preparations (Pinthong et al., 1995a), suggesting the
existence of a2-adrenoceptors and/or imidazoline binding
sites. However, the imidazoline binding sites in endothelium

and vascular smooth muscles were characterized as I2- and
less I1-binding sites (Regunathan et al., 1996a). Since the I2-
binding site is implicated in MAO regulation (Carpene et al.,

1995), the observed e�ects are probably mediated via a2-
adrenoceptors. However, the a�nity of agmatine at a2-
adrenoceptors (Kd: 4 mM) is less than it is at the imidazoline

binding site, a fact which weakens this hypothesis. Forskolin-
induced accumulation of [3H]-cyclic AMP in the isolated
palmar lateral vein of the pig is another model for
investigating a2-adrenoceptor e�ects. This phenomenon can

be concentration-dependently antagonized by a2-adrenocep-
tor antagonists, while agmatine has no in¯uence on basal
[3H]-cyclic AMP concentration or forskolin-stimulated [3H]-

cyclic AMP accumulation. The clonidine- or UK-14304-
induced inhibition of forskolin-stimulated [3H]-cyclic AMP
accumulation was also unin¯uenced by agmatine. This

Table 3 E�ects of agmatine on cardiovascular functions

Effect on Tissue/species Concentration/dose Reference

Vascular contraction ? rat thoric aorta, porcine palmar lateral vein, 1079 ± 1073
M (Pinthong et al., 1995a;

rat tail aorta, rat thoric aorta Gonzalez et al., 1996;
SchaÈ fer et al., 1999a)

Inotropy ? rat left atrium 1079 ± 1074
M (Raasch et al., 2000)

Clonidine's CRC on rightward rat tail aorta, rat thoric aorta 1, 5 mM (Gonzalez et al., 1996;
vascular contraction and no SchaÈ fer et al., 1999a)

shift
Blood pressure ; anaesthetized Sprague Dawley rats and 0.1 ± 100 mg kg71 (Sun et al., 1995; Gao

anaesthetized SHR et al., 1995; HaÈ user &
Dominiak, 1995; SchaÈ fer et al.,
1999a,b)

Heart rate ; anaesthetized SHR 33 ± 100 mg kg71 (SchaÈ fer et al., 1999a)
Blood pressure ; pithed SHR 10 ± 100 mg kg71 (SchaÈ fer et al., 1999a)
Heart rate ; pithed SHR 33 ± 100 mg kg71 (SchaÈ fer et al., 1999a)
Clonidine's DRC on no pithed SHR 10 mg kg71 (SchaÈ fer et al., 1999a)
vascular contraction shift
Clonidine induced : anaesthetized SHR 0.3 ± 33 mg 71 (SchaÈ fer et al., 1999a)
BP-reduction

Abbreviations: BP: blood pressure; CBC: concentration response curve; DRC: dose response curve; SHR: spontaneously hypertensive
rat; ?: no change; ;: decrease; :: increase.
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con®rmed at the subcellular level that agmatine exerts neither
agonistic nor antagonistic activity at the a2-adrenoceptor
(Pinthong et al., 1995a). This overall conclusion was contra-

dicted by Molderings et al. (2000), who demonstrated both a
competitive antagonism and an allosteric activation of
agmatine with the rat a2D-adrenoceptor, which seemed to
be concentration-dependent. However, it should be men-

tioned that the a2D-adrenoceptor is an autoreceptor modulat-
ing noradrenaline release from sympathetic nerves and is
di�erent from the postsynaptic a2-adrenoceptors investigated

by Pinthong et al. (1995a).

(Interaction of agmatine with other neurohumoral systems

(NO, sympathetic nerve system)) The question arises as to
why agmatine has no e�ect on its own on isolated vessels and
why it only minimally (at most) antagonizes the contraction

response to clonidine, which is actually what should be
expected from a `clonidine displacing substance', especially
since the existence of a2-adrenoceptors and imidazoline
binding sites within the vascular wall have been con®rmed

(Pinthong et al., 1995a; Regunathan et al., 1995b; 1996b),
and agmatine induces a fall in blood pressure in the pithed
spontaneously hypertensive rats (SHR; HaÈ user & Dominiak,

1995; HaÈ user et al., 1995; SchaÈ fer et al., 1999a). The agmatine
doses required to cause a signi®cant blood pressure reduction
(10 ± 100 mg kg71) were, however, extremely high (*10% of

the lethal dose in the experimental model), which contradicts
the hypothesis of a speci®c vasodilatation, and can be
considered much more as a non-speci®c toxic reaction. When

one compares agmatine with other vasoactive substances such
as bradykinin, noradrenaline or angiotensin II, a 1000 ±
10,000 fold higher dosing is required to bring about the same
blood pressure e�ect (Gao et al., 1995). This also speaks

against a direct e�ectiveness of agmatine as a vascular
neuromodulator.
It is also plausible, but rather unlikely, that a null e�ect of

agmatine on isolated vessels may represent the sum of a
contracting and a dilating e�ect. Regarding potential
interactions with relaxing neurotransmitters, an interaction

with NO (Auguet et al., 1995; Galea et al., 1996; Schwartz et
al., 1997) could be shown, but not with acetylcholine (Colucci
et al., 1998) or bradykinin (Gao et al., 1995). Concerning
interactions with vasoconstrictive neurotransmitters, some

evidence exists for angiotensin II (Regunathan & Reis, 1997)
and catecholamines (Gonzalez et al., 1996; SchaÈ fer et al.,
1999b; Molderings et al., 2000).

At ®rst it was speculated whether agmatine might function
as an alternative substrate for endothelial NOS (Ishikawa et
al., 1995), and in this way contribute towards vasodilatation.

This hypothesis was con®rmed by the fact that agmatine
provokes no relaxation of isolated vessel rings denuded of
endothelium or pretreated with L-NAME. Agmatine itself is

not a precurser for NO-synthase, but is rather a weak
competitive inhibitor of various NOS isoenzymes (Figure 3;
Auguet et al., 1995; Galea et al., 1996). The clearest e�ect
was an inhibition of iNOS, whereby eNOS was maximally

inhibited by 60% with 10 mM agmatine (Galea et al., 1996).
However, even though agmatine has been detected in
endothelium (Regunathan et al., 1996a), such high concen-

trations in the millimolar range are rather unlikely in vivo
(Raasch et al., 1995a). Therefore, the relevance of this in vitro
®nding for the in vivo situation remains dubious.

The stimulation of presynaptic a2-adrenoceptors leads to
vasodilatation, mediated via inhibition of noradrenaline
release from sympathetic varicosities (Langer & Hicks,

1984). Agmatine suppresses noradrenergic neurotransmission
in rat tail arteries, since it inhibits contraction after
transmural nerve stimulation for about 10 min. However,
contraction by exogenous noradrenaline was not inhibited, so

that the authors concluded a presynaptic e�ect of agmatine
(Gonzalez et al., 1996). This was con®rmed by dosing with
idazoxan or rauwolscine which antagonized the agmatine-

mediated e�ect and resulted even in a delayed potentiation of
the contraction response. The unchanged [3H]-noradrenaline
uptake into chroma�n cells showed that this hypothetical

presynaptic e�ect was not mediated by an inhibition of
noradrenaline reuptake into the sympathetic nerve endings
(Gonzalez et al., 1996). An inhibition of noradrenaline release

by presynaptic imidazoline binding sites with a subsequent
vasodilatation could be demonstrated in various vascular
preparations and in the pithed SHR (Figure 3; GoÈ thert &
Molderings, 1991; Molderings et al., 1991; GoÈ thert et al.,

1995; Molderings & GoÈ thert, 1995; HaÈ user et al., 1995;
Raasch et al., 1999; SchaÈ fer et al., 1999b). Nevertheless, the
mechanism by which agmatine modulates noradrenaline

release remains unclear: Firstly, it was demonstrated (SchaÈ fer
et al., 1999b) that agmatine failed to reduce noradrenaline
release when a2-adrenoceptors were blocked reversibly and

irreversibly by rauwolscine and phenoxybenzamine, respec-
tively, but not under selective blockade of I1-binding sites
with AGN192403 (Munk et al., 1996). These data contradict

at least in part (SchaÈ fer et al., 1998) the only sparse ®ndings
published until now regarding AGN192403 (Munk et al.,
1996), which have characterized this agent as a high a�nity
I1-ligand with no a�nity for a2-adrenoceptors, showing

neither agonistic nor antagonistic e�ects on blood pressure
and the sympathetic nervous system. Similar e�ects of
agmatine on noradrenaline release modulated by presynaptic

imidazoline binding sites were also demonstrated in various
vascular preparations (Molderings & GoÈ thert, 1995). This
study suggested that the presynaptic activity of agmatine is

probably related to a regulation of noradrenaline release by
presynaptic imidazoline binding sites. However, a ganglionic
mechanism can not be excluded since (1) I1-binding sites are
present at the cell bodies of sympathetic ganglia and adrenal

medulla (Molderings et al., 1993); and (2) agmatine blocks
nicotinic-cholinergic transmission in sympathetic ganglia
(Loring, 1990). Furthermore, since activation of I1-binding

sites releases prostaglandins (Ernsberger et al., 1995) and
histamine (Molderings et al., 1999a), which were both shown
to diminish noradrenaline release (Wennmalm & Junstad,

1976; GoÈ thert et al., 1999), it also seems likely that agmatine
reduces noradrenaline over¯ow via such an indirect mechan-
ism. Secondly, agmatine was suggested to act as an

antagonist at the ligand recognition site of the a2D-
adrenoceptor and enhances the e�ects of the a2-adrenoceptor
agonist moxonidine probably by binding to an allosteric
binding site on the a2D-adrenoceptor (Molderings et al.,

2000). However, all those e�ects (SchaÈ fer et al., 1999b;
Molderings et al., 2000) were obtained with agmatine
concentrations in the millimolar range, which generates

serious doubts of any in vivo relevance. This dual interaction
of agmatine at a2D-adrenoceptors probably explains the
inconsistent e�ects of agmatine on catecholamine release,
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since data also exists concerning a prosecretory e�ect on
adrenaline and noradrenaline release from chroma�n cells
(Li et al., 1994a), adrenal medulla (HaÈ user et al., 1995) and

vas deferens (Jurkiewicz et al., 1996). It is conspicuous,
however, that divergent results have also been published for
other imidazoline derivatives concerning a catecholamine
releasing e�ect (Regunathan et al., 1991a,b; Reis et al., 1992;

Ohara-Imaizumi & Kumakura, 1992; Ste�en & Dominiak,
1996; Jurkiewicz et al., 1996). Overall, the inconsistent
literature emphasizes that the e�ects of imidazoline deriva-

tives and especially agmatine on the sympathetic nervous
system are complex.

(E�ects of agmatine on blood pressure and heart rate in vivo
(for overview see Tables 3 and 4 and Figure 3)) After
intravenous administration, agmatine reduces the blood

pressure of anaesthetized SHR or Sprague Dawley rats at a
dose of 100 mg kg71 (Sun et al., 1995; Gao et al., 1995;
HaÈ user & Dominiak, 1995; SchaÈ fer et al., 1999a); although
doses of 10 mg kg71 and more showed long-lasting blood

pressure e�ects (until 25 min), no re¯ex tachycardia but
rather a signi®cantly reduced heart rate were observed.
Compared to pithed SHR, agmatine clearly exerts a higher

blood pressure reducing potency in anaesthetized animals
(SchaÈ fer et al., 1999a). After intravenous application,
agmatine exerted no in¯uence on the pressor activity of

clonidine. Even though clonidine has an approximately 700
fold higher a�nity for I1-binding sites and a 115 ± 246 fold
higher a�nity for all three a2-adrenoceptor subtypes,

agmatine even at a 10,000 fold higher dose compared to
clonidine had no e�ect on clonidine-induced blood pressure
increases in pithed rats. Hence, antagonistic or CDS-like
e�ects at the a2-adrenoceptors and I1-binding sites in the

vessel musculature can be excluded. In complete contrast, an
additive blood pressure and heart rate reduction could be
seen in anaesthetized SHR during continuous clonidine

infusion with agmatine doses as low as 100 mg kg71, which
suggests in fact a synergistic e�ect to clonidine (SchaÈ fer et al.,
1999a,b).

The lack of agmatine e�ect on isolated vessels (Gonzalez et
al., 1996; Pinthong et al., 1995a; SchaÈ fer et al., 1999a), as well
as the markedly lower dose required to produce a comparable
reduction of blood pressure in anaesthetized compared to

pithed SHR (SchaÈ fer et al., 1999a), suggests a central
regulation of blood pressure (see Table 4 for an overview).
However, no e�ects of an intracerebroventricular application

of agmatine (1 ± 1000 nmol 5 ml71) on blood pressure and
heart rate were observed (Penner & Smyth, 1996). Also, Head

et al. (1997) saw no increase in heart rate in conscious
rabbits, except at high doses (100 mg kg71) that caused
agitation, tachypnoea, increase in blood pressure and a

reversal of the dose-dependent bradycardia e�ect (0.01 ±
10 mg kg71). These negative ®ndings on blood pressure and
heart rate were also con®rmed by Sun et al. (1995) after an
injection of agmatine into the RVLM of anaesthetized rats.

In contrast, when agmatine was injected into the greater
cisterna of anaesthetized rats (Sun et al., 1995) and conscious
rabbits (Szabo et al., 1995), blood pressure and sympathetic

nerve activity increased, indicating a site dependency of
central application which might be due to di�erences in the
pattern of imidazoline binding sites and a2-adrenoceptors
with di�erent species or di�erent modes of application. This
hypothesis is con®rmed by ®ndings of SchaÈ fer et al. (1999a),
whereby agmatine caused a dose-dependent, signi®cant

increase in blood pressure without changing the heart rate
after its intracerebroventricular injection to SHR, whereas no
change in blood pressure but an increase in heart rate was
observed after its injection into the IV ventricle. A

comparison between moxonidine and agmatine after injection
into the IV-ventricle of conscious rabbits revealed that both
substances caused a similar bradycardial e�ect (Head et al.,

1997). These e�ects were attenuated by efaroxan (I1- and a2-
adrenoceptor antagonist) and 2-methoxy-idazoxan (a2-adre-
noceptor antagonist). From these results Head et al. (1997)

concluded that agmatine might be an a2-adrenoceptor
agonist. The fact that agmatine exerts no hypotensive e�ect
as other agonists for central a2-adrenoceptors contradicts

this. The authors saw an indication that agmatine possessed a
simultaneous hypertensive activity which might mask an a2-
adrenoceptor-induced hypotension. The dual interaction of
agmatine on noradrenaline release via an allosteric activation

or a competitive antagonism at a2D-adrenoceptors (Molder-
ings et al., 2000) could probably contribute to this e�ect and
strengthen the hypothesis of Head et al. (1997). Both in

conscious rabbits and anaesthetized SHR, ventricularly
applied agmatine shows no e�ects on blood pressure after
induction of hypotension by clonidine or moxonidine (Head

et al., 1997; SchaÈ fer et al., 1999a), while bradycardia is
potentiated by agmatine (SchaÈ fer et al., 1999a). If the
functional data for CDS and agmatine after central
administration are compared, there appears to be absolutely

no correlation between the two substances.

Agmatine and its potency on cell growth Since polyamines

participate in DNA replication and cellular proliferation
(Pegg & McCann, 1982), it was a plausible hypothesis that

Table 4 Blood pressure and heart rate changes after central agmatine-dosing

Species Injection site Dose (nmol kg71) BP HR Reference

Conscious rabbit 4. ventricle 0.04 ± 44 ? (Head et al., 1997)
Conscious rabbit 4. ventricle 440 : : (Head et al., 1997)
Anaesthetized SDR greater cistern 132 ± 1320 ? (Szabo et al., 1995)
Anaesthetized SDR intracisternal 300 ± 1200 : (Sun et al., 1995)
Anaesthetized SDR RVLM 300 ± 1200 ? (Sun et al., 1995)
Anaesthetized SDR cerebroventricular 1 ± 1000 ? (Penner & Smyth, 1998)
Anaesthetized SHR cerebroventricular 10 ± 1000 ? (SchaÈ fer et al., 1999a)
Anaesthetized SHR 4. ventricle 10 ± 1000 ? (SchaÈ fer et al., 1999a)

Abbreviations: BP, blood pressure; HR, heart rate; ?: no change; : moderate increase; :: increase, : moderate decrease.

?

:

:
:

: ?
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agmatine might also be involved in cellular growth processes.
Regunathan et al. (1996; 1997; 1999) demonstrated a partial
inhibition of agmatine (100 ± 1000 mM) on foetal calf serum-

stimulated thymidine incorporation in endothelial cells,
vascular smooth muscle cells and asterocytes, whereby
measurements of lactate dehydrogenase release and morpho-
logical examination ruled out a cytotoxic e�ect being

responsible for the inhibition of growth (Regunathan et al.,
1999). The low potency of agmatine compared to idazoxan
regarding proliferation inhibition might be due to its lower

a�nity towards I2-binding sites compared to other imadazo-
line derivatives. However, the manner by which I2-binding
sites (which are associated with MAO and located in

mitochondria) should mediate growth e�ects has not yet
been clari®ed. Due to its rapid metabolism to putrescine
(Gilad et al., 1996a), it might be speculated whether the

antiproliferative e�ects of agmatine can be attributed to other
polyamines. However, putrescine acts as a proliferation
promoter, since it doubled thymidine incorporation (Reg-
unathan et al., 1996a; Regunathan & Reis, 1997), and would

therefore act antagonistically to agmatine. The antiprolifera-
tive e�ects of agmatine and idazoxan in vascular smooth
muscle cells could also be observed following other

stimulatory conditions such as noradrenaline, angiotensin II
or platelet derived growth factor (PDGF; Regunathan &
Reis, 1997). Growth factors, especially PDGF, activate

primarily membrane receptor-associated tyrosine kinases,
which trigger intracellular processes such as activation of
protein kinase C (PKC) and various mitogen-activated

protein kinases (MAP-kinases), which ultimately result in
expression of the immediate-early genes c-fos and c-myc are
involved in DNA-synthesis and cell division (Somlyo &
Somlyo, 1994; van Biesen et al., 1995). Since both angiotensin

II and noradrenaline activate PKC and MAP kinases via a
G-protein coupled mechanism, it has to be assumed that the
antiproliferative e�ect of agmatine is a mechanism occurring

further downstream (Figure 5) since the e�ects of both G-
protein-coupled agents and PDGF (tyrosine kinase mediated)
could not be inhibited. It is not known whether this

interaction occurs within the cytosolic signal transduction
cascade (e.g. Ca2+, PKC, MAP kinase) or at a transcriptional
level. Satriano et al. (1998) also showed that agmatine
suppresses growth of MTC-cells (mouse kidney proximal

tubule cells) by thymidine incorporation experiments, an
e�ect that could be antagonized by putrescine. The authors,
however, pursued a completely di�erent hypothesis to explain

the agmatine-mediated cell growth, which was based on the
following ®ndings: (1) Agmatine time-dependently reduced
the intracellular content of putrescine and spermidine. (2)

Agmatine was not converted intracellularly to polyamines (in
MTC cells). (3) Exogenous agmatine reduced ODC activity
dose- and time-dependently in MTC cells, where even high

agmatine concentrations (1 mM) exert no cytotoxic e�ects;
the speci®city of this e�ect could also be seen with other cell
lines, and such ®ndings were also con®rmed by Vargiu et al.
(1999). (4) Agmatine (1 mM) time-dependently suppressed the

polyamine transporter in MTC cells, and this results in a
reduction of the intracellular content (c. 15% of control
values) of exogenously applied [3H]-putrescine. This result

could also be con®rmed by others, where it was shown that
intracellular spermidine content in rat hepatocytes can be
reduced by an agmatine-induced inhibition of uptake (Vargiu

et al., 1999). (5) Agmatine induced antizyme which regulates
the synthesis and transport of polyamines. This was

established by (a) an agmatine-dependent translational
frame-shift of antizyme mRNA to produce a full-length
protein and (b) a suppression of agmatine-dependent

inhibitory activity by either anti-antizyme IgG or antizyme
inhibitor. Satriano et al. (1998) therefore deduced the
following hypothesis (Figure 4): the intracellular polyamine
content, which plays an important role in DNA-replication

and cell division, is regulated either by endogenous cellular
biosynthesis from arginine to ornithine and further on under
ODC catalysis to putrescine, or by the uptake of exogenous

polyamines. Both the membrane-located polyamine transpor-
ter as well as ODC are subject to regulation by antizyme,
whereby this protein exerts an inhibitory e�ect on both

proteins. Agmatine acts as a regulator of antizyme, which
means that agmatine is able to control synthesis.

A third hypothesis for agmatine's antiproliferative e�ects is

that agmatine regulates the interconversion pathway of
polyamine metabolism at the level of the rate-limiting enzyme
(Figure 5). In hepatocyte cultures agmatine (0.5 mM) inhibits
cell growth and increases the activity of the spermidine/

spermine acetyltransferase (SSAT) about 10 ± 25 fold in a
manner dependent on oxygen saturation (5 vs 21%). This
result was con®rmed at the protein level, i.e. the increase in

activity was due to an increased expression of SSAT (Vargiu
et al., 1999). The content of putrescine simultaneously
increases in line with reductions in spermine and spermidine,

whereby putrescine-accumulation was considered to be
responsible for the reduced ODC activity, since it is also
known that the biosynthesis of putrescine is regulated via a

Figure 5 In¯uence of agmatine on cell growth: Control of cell
growth can be attributed to two di�erent pathways, namely a
membrane receptor controlled pathway, and a pathway dependent on
cellular polyamine content. Putrescine content is regulated by an
active tranport mechanism as well as by arginine metabolism.
Agmatine acts by stimulating an antizyme that inhibits both
processes, so that a reduction in putrescine content occurs which
contributes to an antiproliferative activity for agmatine. Agmatine
also stimulates the spermidine/spermine acetyltransferase (SSAT), the
key rate-limiting enzyme for polyamine intraconversion, and
simultaneously inhibits S-adenosylmethionine decarboxylase
(SAMDC), an enzyme which also has a modulating e�ect on
intracellular polyamine content. Growth factors also stimulate
membrane-located receptors. Following stimulation of protein kinase
C (PKC) and MAP kinase (MAPK), expression of c-FOS and c-
MYC occurs which eventually leads to DNA replication, cell
proliferation and cell growth. Whether agmatine exerts an in¯uence
on this signal cascade has not yet been established.
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negative feedback mechanism (Persson et al., 1986). The
observed increase in activity of S-adenosylmethionine dec-
arboxylase (SAMDC), which catalyses the breakdown of

putrescine to spermidine and spermine, appears to be a
consequence of the increased intracellular putrescine content.
The authors attributed the observed inhibition of cell growth
mainly to the depletion of spermidine and spermine.

However, since cellular putrescine levels increase concomi-
tantly, it seems somehow unclear whether cell growth should
be inhibited, since putrescine causes the opposite e�ects

(Regunathan et al., 1996a; Regunathan & Reis, 1997).
Moreover, Vargiu et al. (1999) attributed the inhibition of
cell growth solely to an agmatine-induced modi®cation of

putrescine metabolism. However, they ignored the observa-
tion that total polyamine content in cells increased by 40%
depending on the agmatine concentration, which would

indicate an alteration in uptake or biosynthesis, although
both were in fact shown to be reduced (Satriano et al., 1998;
Vargiu et al., 1999). Some questions, therefore, remain to be
answered.

Taken together, all three hypotheses failed more or less to
explain whether agmatine's mediated growth e�ects would be
mediated via imidazoline binding sites, a fact which would

strengthen the hypothesis of an endogenous ligand. In case of
a growth control of agmatine via a feedback regulation of
enzyme activity, as shown for ODC (Vargiu et al., 1999),

agmatine would indeed be biologically active, possibly as an
intermediate in the metabolism of arginine and ornithine to
the polyamines, but it would not be a compulsory

endogenous ligand for imidazoline binding sites. Another
limitation of all three hypotheses is the fact that agmatine
inhibits growth at concentrations (0.1 ± 1 mM) which
although non-cytotoxic (Vargiu et al., 1999), are much higher

than circulating agmatine and even tissue concentrations.
Therefore, the biological signi®cance of this agmatine e�ect
remains uncertain.

E�ects of agmatine on renal function Renal sodium regula-
tion is important both under normal and pathological

conditions for circulatory regulation. A range of di�erent
central and peripheral parameters in¯uence sodium excretion
and reabsorption. The role of a-adrenoceptors in this context
has been demonstrated (Michel & Rump, 1996). Radioligand

binding studies succeeded in demonstrating both a2-adreno-
ceptors as well as imidazoline binding sites, where di�erent
distributions could be shown within the kidney (Coupry et

al., 1990; Evans & Haynes, 1995; Ernsberger et al., 1995).
Moxonidine studies suggested a functional participation of
imidazoline binding sites in natriuresis (Allan et al., 1993;

1996), but it is not yet clear whether moxonidine in¯uences
sodium excretion and urinary ¯ow via a central and/or
peripheral mechanism (reviewed by Smyth & Penner, 1999).

In this context the question arises as to the renal function of
agmatine, especially considering its demonstration in both
brain and kidney (Raasch et al., 1995a; Lortie et al., 1996).
At concentrations that induce no changes in haemo-

dynamics or creatinine clearance, agmatine as well as the
I1-ligands moxonidine, clonidine and 2,6-dimethyl-clonidine
increase urinary ¯ow-rate, whereby agmatine ®rst shows

signi®cant changes at *10 fold higher doses (Allan et al.,
1993; Li et al., 1994b; Ernsberger et al., 1995; Penner &
Smyth, 1996). The increase in urinary ¯ow under moxoni-

dine, 2,6-dimethylclonidine and agmatine results from an
increased osmotic clearance, while under clonidine it is due to
an increased clearance of free water, consistent with the

imidazoline-mediated inhibition of the Na+/H+-exchange in
isolated renal tubular cells (Bidet et al., 1990). This suggests
that the osmotic clearance is possibly an imidazoline binding
site-mediated e�ect, but that free water clearance might be

due to an a2-receptor-related mechanism (Smyth & Penner,
1995), since compared to clonidine the relative a�nities of
agmatine, moxonidine and dimethyl clonidine are higher for

imidazoline binding sites than they are for a2-adrenoceptors
(Ernsberger et al., 1995).
In the perfused isolated kidneys of Wistar-FroÈ mter rats,

agmatine dose-dependently and signi®cantly increases the
single nephron glomerular ®ltration rate (SNGFR) and the
absolute proximal reabsorption (APR), after application into

the renal interstitium and the urinary space of surface
glomeruli. In denervated kidneys microperfused in exactly
the same way, the SNGFR, but not the APR, was increased
after agmatine application. The agmatine e�ects were

transient, possibly due to metabolization by DAO (Lortie et
al., 1996). While the I2-ligand BU-224 exerts a similar e�ect
to agmatine, moxonidine was ine�ective (Lortie et al., 1996).

The e�ects of the synthetic and DAO-stable I2-ligand BU-224
were, however, longer lasting, which corresponds well with
the reversible activity of agmatine and its degradation in the

kidney. Because of the application of agmatine into the
urinary space, one can assume that agmatine increases the
SNGFR due to an e�ect on the glomerulus as well as the

associated vessels. The negative results of agmatine on
isolated vessels (Pinthong et al., 1995a; SchaÈ fer et al.,
1999a), however, contradict such a participation. The
simultaneous increase in APR could be directly mediated, a

supposition supported by the ®nding that agmatine increases
the Na+/K+ ATPase in renal membranes (Bidet et al., 1990).
The fact that agmatine increases SNGFR after denervation to

the same extent as that seen in innervated kidneys, excludes
the possibility of a presynaptic mechanism. In contrast to
innervated kidneys, the APR in denervated kidneys was not

raised after agmatine, which allows us to conclude either (1)
that the glomerular and tubular e�ects of agmatine are
mediated by di�erent mechanisms; or (2) that from
denervation and the resulting removal of presynaptic a2-
adrenoceptors, the glomerular balance as well as the APR
response to agmatine are destroyed. It has also been shown
that the agmatine-induced increase in glomerular ®ltration

might be mediated via a NO-synthase-dependent mechanism
(Schwartz et al., 1997).

Metabolic e�ects of agmatine It has long been known that
agmatine increases insulin release from rat pancreatic islets of
Langerhans cells (Alberti et al., 1973; Sener et al., 1989)

glucose uptake into the isolated rat respiratory diaphragm
(Frank, 1927; Weitzel et al., 1971; 1972a,b), glucose oxidation
in isolated fat cells, and the glycogen content in the
respiratory diaphragm (Weitzel et al., 1971; 1972a,b). In all

these cases the agmatine e�ect appeared to be receptor-
independent. Since those studies, however, the existence of a
speci®c imidazoline binding site has been demonstrated in the

pancreas (Schulz & Hasselblatt, 1989a,b), where the imidazo-
line binding sites located on the pancreatic b-cells is not
identical to either of the known I1- and I2 binding sites
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(Figures 1 and 2; Chan et al., 1994; 1995; Morgan et al.,
1995; Tsoli et al., 1995) or the binding site for sulphonylurea
derivatives (Brown et al., 1993b; Ishida-Takahashi et al.,

1996; Rustenbeck et al., 1997), even though I2-binding sites
are expressed abundantly (Brown et al., 1993a). However, the
archetypal I2-ligand idazoxan is not an insulin secretagogue
and displays negligible antagonist activity towards other

imidazoline secretagogues. Equally, there is no convincing
evidence that I1-binding sites are involved in insulin secretion,
especially since few if any I1-binding sites were detected on

pancreatic b-cells (Brown et al., 1993a; Rustenbeck et al.,
1997). For this reason, the existence of a pancreas speci®c I3-
binding site was postulated (Morgan et al., 1999). It could

also be shown that imadazoline derivatives such as clonidine
or moxonidine inhibit insulin release from isolated pancreatic
cells (Langer et al., 1983; Hillaire-Buys et al., 1985; Skoglund

et al., 1988; Tsoli et al., 1995), although efaroxan or
phentolamine increase insulin release by in¯uencing the K-
ATP channels (Figure 2; Chan & Morgan, 1990; Chan et al.,
1991; Plant & Henquin, 1990; Jonas et al., 1992; Berdeu et

al., 1994) and exert vasoconstrictive e�ects on isolated
perfused rat pancreas (Berdeu et al., 1994). Considering that
CDS and even imadazoline derivatives seem to possess insulin

pro-secretory activity, one might ask whether agmatine
possesses insulin regulatory activity.
Under a slightly stimulating glucose concentration

(8.3 mM) and unchanged pancreatic ¯ow rate, agmatine
(0.1 ± 3 mM) induced a moderate increase in insulin secretion.
In comparable studies, efaroxan was substantially more

e�ective, also with combined stimulation by arginine
(10 mM) and glucose (5 mM; Berdeu et al., 1996). Unlike
efaroxan (0.1 mM), even the highest concentration of
agmatine (3 mM) was without e�ect on the vascular ¯ow

rate in isolated pancreas. The lacking insulin secretion under
glucose/arginine stimulation and the moderate release of
insulin under higher glucose concentrations allow us to

presume di�erent mechanisms of release governed by
agmatine and efaroxan. Hence, the hypothesis was forwarded
that the secretolytic e�ect of agmatine (unlike efaroxan) is

not mediated via imidazoline binding sites, as previously
suggested by Weitzel et al. (1971; 1972), but rather by
metabolic products. Polyamines in particular are suggested to
mediate agmatine-mediated insulin secretion, assuming that

agmatine is subject to uptake into b-cells as insinuated by
Sastre et al. (1997) and Molderings et al. (2001) for neuronal
tissue. The polyamines themselves possess no a�nity towards

imidazoline binding sites but were shown to be involved in

regulation and proliferation of pancreatic b-cells and
hormone production by insulin-secreting cells (Figure 2;
Sjoholm, 1993). From the lack of secretolytic and vasopres-

sive activities of agmatine, consistent with the ®ndings of
other authors (Piletz et al., 1995), Berdeu et al. (1996)
concluded that agmatine cannot function as the endogenous
ligand at the imidazoline binding sites of the pancreas or

blood vessels.

Agmatine and its function in the gastrointestinal tract The

following facts suggest a potential role of agmatine in the
gastrointestinal tract: (1) Imidazoline binding sites have been
demonstrated in the stomachs of various animal species,

identi®ed as I2- or non I1-/non I2 binding sites (Houi et al.,
1987; Tesson et al., 1992; Molderings et al., 1995; 1998b;
1999c); (2) Clonidine and clonidine-like substances at high

concentrations stimulate gastric acid secretion (Houi et al.,
1987; Medgett & McCulloch, 1979; del tacca et al., 1982a,b;
Bhandare et al., 1991). However, clonidine may exert this
e�ect by modulating vagal cholinergic stimulation via a2-
adrenoceptors (Blandizzi et al., 1990a,b; 1995); (3) In isolated
organ preparations of the gastric fundus, CDS leads to a
concentration-dependent contraction, due to an interaction

with imidazoline binding sites (Felsen et al., 1987); (4)
Stomach, small and large intestine have been characterized as
the organs with the highest agmatine tissue concentrations

(Raasch et al., 1995a,b). However, since ADC has not been
yet been demonstrated in gastric fundus or the intestine, there
remain some doubts as to whether agmatine in fact originates

from arginine metabolism. Indeed, it may originate from
bacterial colonization or food intake after adsorption by a
transporter (which also remains to be identi®ed in gastric
tissue).

Glavin et al. (1995) were the ®rst to show that agmatine
possesses pro-secretory and ulcerogenic activities, since it
increases the secretion of gastric acid and pepsin, reduces

mucus thickness, and exacerbates stress-induced mucosal
lesions (Table 5). Hence, it appears that agmatine-mediated
e�ects are contrary to those mediated by moxonidine

(Glavin & Smyth, 1995a,b), consistent with the di�ering
activities of moxonidine and agmatine on peristalsis (Table
5; Liu & Coupar, 1997). Since agmatine has been
characterized as an endogenous ligand for imidazoline

binding sites, one should actually expect agonistic e�ects
such as those seen for moxonidine. Since this is not the case,
di�erent mechanisms are probably inferred. For this reason,

an inverse agonism for agmatine at the imidazoline binding

Table 5 E�ects of agmatine on gastric function

Effects on Dosage Species/tissue Reference

Gastric acid secretion : 1 ± 20 mg kg71 i.p. pylorus ligated rat (Glavin et al., 1995)
Gastric acid secretion : 0.5 ± 10 kg71 i.p conscious rat (Glavin et al., 1995)
Secretion volume : 0.1 ± 20 kg71 i.p. pylorus ligated rat (Glavin et al., 1995)
Pepsin secretion : 0.1 ± 20 kg71 i.p. pylorus ligated rat (Glavin et al., 1995)
Adherent mucus ; 10 ± 20 kg71 i.p. restraint stress rat (Glavin et al., 1995)
Stress-induced gastric mucosal injury : 10 ± 20 kg71 i.p. conscious rat (Glavin et al., 1995)
Peristalsis ? 0.01 ± 100 mM rat ileum (Liu & Coupar, 1997)
Fluid transport rate ; 0.3 ± 1 mmol min71 rat ileum and jejunum (Liu & Coupar, 1997)
Histamine release from ELC : 100 ± 1000 mM rat gastric strips (Molderings et al., 1999a,d)
Agmatine content in gastric juice : H. pylori pos. patients (Molderings et al., 1999c)

Abbreviations: ELC: enterochroma�n like cells; H. pylori: Helicobacter pylori; ?: no change; :: increase; ; decrease.
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sites has been suggested (Glavin et al., 1995). Secondly, it
seems feasible that moxonidine-like substances stimulate
gastric acid secretion via a2-adrenoceptors (Daly, 1984),

whereas agmatine acts at imidazoline binding sites of the
non I1-/non I2 subtype (Molderings et al., 1998b; 1999c).
Against this background it has been purported that
imadazoline derivatives do not stimulate acid secretion

directly, but rather indirectly, i.e. by altering endogenous
histamine release from enterochroma�n-like cells (Table 5;
Molderings et al., 1999a). This is further supported by the

facts that imidazoline-induced acid secretion (Molderings et
al., 1999c) can be blocked by an H2-receptor antagonist
(Houi et al., 1987), and that polyamines can regulate

histamine release (Purcell et al., 1994). That prostaglandins
contribute to this indirect agmatine e�ect on gastric function
seems rather unlikely, since (1) an activation of I1-binding

sites releases prostaglandins (Ernsberger et al., 1995); (2) I1-
binding sites were not determined in stomach (Molderings et
al., 1999c); and (3) prostaglandins decrease gastric acid
release and enhance mucus thickness, which are opposite to

agmatine's e�ects (Glavin et al., 1995).
Whether agmatine reveals gastric functions as an

endogenous neurotransmitter is uncertain, especially since

Helicobacter pylori has been shown to generate and release
agmatine (Molderings et al., 1999d). Moreover, H. pylori
expresses ADC and contains adequate arginine (Tomb et

al., 1997). Therefore, it seems reasonable to hypothesize
that agmatine may be responsible for stimulating stomach
acid release during gastrointestinal H. pylori colonization,

especially since H. pylori-induced acid release is not yet
completely understood (el Omar et al., 1995; Courillon-
Mallet et al., 1995; Sobhani et al., 1996). More recently it
was shown that the growth of H. pylori is dependent on

agmatine concentrations in the culture medium and that
cell lines from di�erent stomach biopsies synthesize di�erent
quantities of agmatine (Molderings et al., 1999d). Further-

more, the agmatine content in the gastric juice of H. pylori
positive patients (83.5+18.7 ng ml71) is double that of
gastric juice isolated from H. pylori negative patients

(46.8+18.7 ng ml71; Molderings et al., 1999d, Table 5).
Considering the mechanism of an agmatine-induced secre-
tion of gastric acid, a route via the stimulated release of
histamine from enterochroma�n cells seems the most

probable. It can not, however, be ruled out that an
increased gastrin secretion leads to the increased quantity of
acid, particularly since H. pylori infection is associated with

a raised plasma concentration of gastrin (Peterson, 1996;
Molderings et al., 1999a). However, since there is no
correlation between plasma gastrin concentration and

agmatine concentration in gastric juice, this hypothesis
appears doubtful according to our current state of knowl-
edge. The signi®cance of agmatine in the gastric juice of H.

pylori negative patients remains unclear. Whether agmatine
is subject to degradation to putrescine in both the gastric
juice and fundus itself has not yet been demonstrated. In
H. pylori positive patients, however, an increased putrescine

and spermidine content could be shown in biopsies,
supporting the hypothesis that agmatine can contribute to
the carcinogenic actions of H. pylori by this route, since

polyamines have been attributed an important role in cell
proliferation and carcinogenesis (Berdinskikh et al., 1991;
Leveque et al., 1998; Blachier et al., 1995).

Is agmatine a CDS?

As the preceding paragraphs have described, agmatine can be

characterized as a substance synthesized by an ADC in
mammals (Li et al., 1994a), which is heterogeneously
distributed in various organs (Raasch et al., 1995a) and
subcellular compartments (Otake et al., 1998), released (Reis

& Regunathan, 1998) and inactivated by reuptake (Sastre et
al., 1997; Molderings et al., 2001) or metabolism via
agmatinase (Sastre et al., 1996b) or DAO (Holt & Baker,

1995). Moreover, e�ects on various organ systems have been
shown, even though very high agmatine concentrations were
needed to provoke various biological e�ects. Now we are

faced with the question as to whether agmatine represents the
active principle in the CDS isolated by Atlas (Atlas &
Burstein, 1984a,b; Atlas et al., 1987).

Comparison between CDS and agmatine
regarding their molecular and physiological
properties (overview in Tables 1 and 2)

A molecular mass of 587 daltons has been determined for

CDS (Atlas & Burstein, 1984a,b; Atlas et al., 1987). Its UV
spectrum shows two absorption maxima at 224 and 276 nm,
which suggests an aromatic structure. A ninhydrin-negative

reaction excludes the possibility that it contains an amino
group. The physicochemical properties of agmatine on the
other hand seem to contradict those of CDS completely, i.e. a

molecular weight of 130 daltons, an absorption maximum of
200 nm (suggesting an aliphatic structure), as well as a
ninhydrin-positive reaction con®rming an amine structure.
These chemical di�erences alone, combined with the di�erent

abundance in the brain and the widely di�ering a�nities for
imidazoline binding sites and a2-adrenoceptors, have already
lead Atlas (1994; 1995) to declare that agmatine and CDS are

not identical. Piletz et al. (1995) and Pinthong et al. (1995b)
made similar arguments, when they demonstrated di�ering
a�nity pro®les for agmatine and CDS to imidazoline binding

sites and a2-adrenoceptors by radioligand binding studies and
contradicted the ®ndings of Li et al. (1994a). In the response
from Reis et al. (1994) published in Science to Atlas's
publication (Atlas, 1994), the authors quoted various,

primarily methodological and preparative reasons to explain
the physicochemical inconsistencies. In addition, the authors
emphasized once again that agmatine does not represent CDS

exclusively, but that CDS might represent a family of
substances, of which agmatine is only one member. This
was quite deliberately expressed in the title of their

publication, in which the authors talked of agmatine as
`one' and not `the' CDS.
Since 1994, numerous papers have been published which

have concerned themselves with the physiological and/or
pathophysiological functions of agmatine and discussed the
hypothesis that agmatine might be a neurotransmitter or
neuromodulator (see Table 2, Figure 3). However, the

following ®ndings and considerations contradict this hypoth-
esis: (1) Findings with agmatine against CDS are in some
cases completely contradictory to those published for CDS.

This applies particularly to the cardiovascular system with
respect to agmatine's e�ects on isolated vessels (Table 4) and
after its i.c.v. application (Table 5). After central application,
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CDS shows clear, blood pressure-increasing e�ects and acts
antagonistically to clonidine (Bousquet et al., 1986; 1987;
Pinthong et al., 1995b). Central agmatine dosing leads on the

other hand to hypertensive e�ects, whereby individual
®ndings from di�erent publications appear to be inconsistent,
and as mentioned above, such discrepancies are usually
attributed to the use of di�erent species and/or sites of

application (Sun et al., 1995; Szabo et al., 1995; Penner &
Smyth, 1996; Head et al., 1997; SchaÈ fer et al., 1999a). Unlike
clonidine and CDS (Synetos et al., 1991), at most weak and

usually no e�ects could be shown in isolated organs
(Pinthong et al., 1995a; Gonzalez et al., 1996; SchaÈ fer et
al., 1999a). A clonidine-antagonistic activity could not be

demonstrated. After peripheral agmatine-application, a
hypotensive e�ect was even observed, albeit at extremely
high and non-physiological concentrations (Gao et al., 1995;

SchaÈ fer et al., 1999a). In addition to the cardiovascular
actions, contrary e�ects between CDS and agmatine have
been determined for catecholamine and insulin secretion
which predispose a negation of a CDS-like activity for

agmatine. Clearer e�ects of agmatine could be shown for
gastrointestinal (Table 5) and renal functions, analgesia, as
well as cell growth (Figure 5), whereby CDS was not

investigated for its ability to modulate all these functions.
(2) From a mechanistic viewpoint there is inconsistency
regarding the correlation between agmatine's function on

various biological systems (e.g. growth e�ects, insulin release;
see Figures 2 and 5) and its mediation via imidazoline
binding sites. Although biological e�ects were indeed

observed, they were rather attributed to polyamines derived
from the metabolic breakdown of agmatine. This contradicts
a function as an endogenous ligand for imidazoline binding
sites. (3) Another important objection is the distribution

pattern of agmatine in various organs (Raasch et al., 1995a)
which di�ers widely from that of CDS (Meeley et al., 1992,
see Table 1). As an example, the highest concentrations of

CDS are found in the adrenal gland where only low
concentrations of agmatine exist. Moreover, the low correla-
tion (r=0.2193) between agmatine and CDS tissue levels in

both studies clearly indicates that agmatine can not
exclusively represent CDS, but that it represents rather a
member of a whole CDS family. In addition, since agmatine
is not recognized by the CDS-antibody (Wang et al., 1997),

irCDS can not be agmatine. If one considers that cCDS is
similar to irCDS (Meeley et al., 1992), one therefore has to
conclude that CDS is not agmatine. Whether antibodies

against agmatine (Wang et al., 1995) recognize CDS has not
been investigated until now. (4) The most serious doubt as to
whether agmatine is a CDS is that all in vitro and in vivo

reactions of agmatine, as described in preceding sections, only
occurred at heroic concentrations, usually much higher than
those endogenously present in the corresponding tissues. For

example, the agmatine doses (i.v.) required to cause a
signi®cant blood pressure reduction were approximately
10% of the lethal dose in the experimental model.
Furthermore, when one compares agmatine with other

vasoactive substances such as bradykinin, noradrenaline or
angiotensin II, only a 1000 ± 10,000 fold higher dosage brings
about the same blood pressure e�ect (Gao et al., 1995), which

excludes agmatine as being an endogenous neuromodulator
or neurotransmitter. The extremely high concentrations of

agmatine are probably necessary because of its moderate
a�nity in the micromolar range towards I1- and I2-binding
sites as well as towards a2-adrenoceptors. This di�ers grossly

(25 ± 330 fold) from the a�nities of CDS observed at the
same binding sites and receptors.

Identification of other CDS's from the CDS family

Because of the fact that agmatine appears in the majority of
publications, and that it is seen as a substance within a whole

CDS family, we should now ask whether other substances
with CDS similar properties have been identi®ed.

Arginine is known to be metabolized by NOS to NO and

citrulline, whereby NO acts as a potent vasodilator. As an
alternative to this route it could be shown that arginine can
be degraded to hydroxyarginine, and that this can also be

degraded to NO in a second step, whereby hydroxyarginine
itself has relaxant properties (Zembowicz et al., 1991;
1992a,b,c). As an analogue to this metabolic path, it has
also been shown that the hydroxylation product of agmatine,

just like agmatine itself, is able to dilate aortal rings, whereby
no relaxing e�ect could be seen following preincubation with
a NOS inhibitor (L-NAME) or denudation of the epithelium

(Ishikawa et al., 1995). Such vasoactive properties of
agmatine, however, contradict studies where no relaxing
e�ects for agmatine have been shown. From these observa-

tions the authors concluded that agmatine and hydroxy-
agmatine represent substrates for NOS and in this way
possess endothelium-dependent relaxing activity. However,

until now neither the existence of this substance nor the
metabolic path itself have been con®rmed in the tissue. These
®ndings also contradict those of others (Galea et al., 1996)
who characterized agmatine as an inhibitor rather than a

substrate for NOS.
Modi®ed protocols for CDS preparations have resulted in

the isolation of another `clonidine-displacing substance', for

which it has not yet been de®nitely clari®ed whether it is
di�erent or identical to the substance described by Atlas
(Atlas & Burstein, 1984a,b; Atlas et al., 1987). Spectroscopic

studies and HPLC have shown that this isolated CDS is not
noradrenaline, adrenaline, histamine, agmatine, guanosine,
GMP, GDP or GDP, but that it represents a guanosine
derivative (Grigg et al., 1998; Parker et al., 1999a,b).

Functional studies and binding data, however, remain to be
performed.

To this extent there is some evidence that CDS might

comprise a family of structurally and functionally similar
substances, of which agmatine is one, but speci®c evidence,
especially at a functional level, is outstanding for other CDSs.

The authors would like to thank Dr J.P. Keogh for his linguistic
assistance in preparing the manuscript.
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