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1 Adenosine produced a biphasic lowering of the mean BP with a drastic bradycardic e�ect at the
highest doses. The ®rst phase hypotensive response was signi®cantly reduced by the nitric oxide
(NO) synthase inhibitor L-NAME.

2 The A2a/A2b agonist NECA produced hypotensive and bradycardic responses similar to those
elicited by adenosine, which were not signi®cantly modi®ed by the A2b antagonist enprofylline.

3 The A2a agonist CGS 21680 did not signi®cantly in¯uence basal HR while induced a hypotensive
response antagonized by the A2a selective antagonist ZM 241385, and reduced by both L-NAME
and the guanylate cyclase inhibitor methylene blue.

4 The A1 agonist R-PIA showed a dose-dependent decrease in BP with a drastic decrease in HR at
the highest doses. The A1 selective antagonist DPCPX signi®cantly reduced the bradycardic activity
and also the hypotensive responses obtained with the lowest doses while it increased those obtained
with the highest ones.

5 The A1/A3 agonist APNEA, in the presence of the xanthinic non-selective antagonist 8-pSPT,
maintained a signi®cant hypotensive, but not bradycardic, activity, not abolished by the histamine
antagonist diphenhydramine.

6 The selective A3 agonist IB-MECA revealed a weak hypotensive and bradycardic e�ect, but only
at the highest doses.

7 In conclusion, in the systemic cardiovascular response to adenosine two major components may
be relevant: an A2a- and NO-mediated hypotension, and a bradycardic e�ect with a consequent
hypotension, via atypical A1 receptors. Finally, an 8-pSPT-resistant hypotensive response not
attributable to A3 receptor-stimulation or to release of histamine by mastocytes or other immune
cells was observed.
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Introduction

Four classes of membrane surface adenosine receptors are
described, de®ned A1, A2a, A2b and A3, through which the

nucleoside in¯uences many functions in humans and other
animals (Ralevic & Burnstock, 1998).
As far as the cardiovascular system is concerned, adenosine

slows heart rate (HR) and atrioventricular conduction and
antagonizes the cardio-stimulatory e�ects of catecholamines
via cardiac A1 receptors in di�erent mammals (Belardinelli et

al., 1989; Olsson & Pearson, 1990). An increase in blood
pressure (BP) and HR has been described in rats and in cats
via central A1 receptors (St Lambert et al., 1994; Silva-
Carvalho et al., 1993). In contrast, a dose-related decrease in

BP and HR is observed after microinjection of adenosine into
the caudal nucleus of tractus solitarii in the rat (Lo et al.,
1998).

As regards a direct e�ect on blood vessels, A1 purinocep-
tors mediate vasodilation in the porcine coronary artery

(Merkel et al., 1992) but they are involved, on the contrary,
in vasoconstrictor responses, i.e. in the rat kidney (Jackson,
1991), in guinea-pig pulmonary artery and aorta (Biaggioni et

al., 1989; Stoggall & Shaw, 1990) and in hamster skin
(Stojanov & Proctor, 1990; Proctor & Stojanov, 1991).
Moreover, a signi®cant role of A1 receptors in the

regulation of BP also appears to be linked to a prejunctional
regulation of transmitter release, such as from perivascular
sympathetic nerves (Goncalves & Queiroz, 1996) or capsai-
cin-sensitive sensory neurons (Rubino et al., 1993).

A2 receptors (according to the old nomenclature used by
Fredholm et al., 1994) are implicated in many vessels in the
hypotensive activity of adenosine, due to the presence of

speci®c membrane receptors in many vessels (Rongen et al.,
1997). A nitric oxide-dependent vasorelaxant e�ect via A2-
adenosine receptors on the vascular endothelium has been
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described in porcine coronary vasculature (Abebe et al.,
1995), while an endothelium-independent A2-receptor-
mediated vasodilation is reported in human and guinea-pig

coronaries (Sabouni et al., 1990; Vials & Burnstock, 1993).
As regards the particular A2 receptor subtype involved in the
adenosine-mediated hypotension, there are di�erent indica-
tions: A2a receptors are reported to mediate relaxation of rat

aorta and bovine, rat and pig coronary artery (Hutchison et
al., 1989; Conti et al., 1993) while A2b receptors mediate
adenosine-induced relaxation in guinea-pig pulmonary artery

(Szentmiklosi et al., 1995) and rat mesenteric arterial bed
(Rubino et al., 1995).
A role for A3 receptors at the cardiovascular level has also

been suggested by di�erent authors: a hypotensive e�ect of
adenosine analogues in the presence of both A1 and A2

receptor blockade has been reported in anaesthetized and

pithed rats, which was antagonized by the A3 antagonist BW-
A522 (Fozard & Hannon, 1994) and was linked to mediator
release from mast cells (Hannon et al., 1995); in contrast, a
vasoconstrictor response to adenosine via A3-mediated mast

cell degranulation has been described in in vivo hamster
(Shepherd et al., 1996). At the cardiac level, A3 receptor
stimulants, administered prior to and during an ischaemic

episode, have shown a protective action on heart cells in
human and other animals (Strickler et al., 1996; Stambaugh
et al., 1997; Tracey et al., 1997; Carr et al., 1997). Finally, a

decrease in BP without any change in HR, mediated by A3

receptor stimulation was observed in the rat by Stella et al.
(1998).

The overall evidence reported above seems to indicate that
all the four subclasses of P1 purinoceptors may be involved
in cardiovascular responses to adenosine with di�erences,
depending on experimental animals and conditions em-

ployed.
As no data have been reported about the systemic e�ects of

the nucleoside on BP and HR in in vivo guinea-pig, the aim

of the present work was to study the in¯uence of P1 receptor
subtypes stimulation on the above parameters in anaesthe-
tized guinea-pigs, evaluating also the participation of an NO-

mediated component in the adenosinic responses.

Methods

Male Dunkin-Hartley guinea-pigs, weighing 300 ± 400 g, were
used in the present study; the experiments were carried out in

accordance with the legislation of the Italian authorities
(D.L. 27/01/1992 n8 116) concerning the care and use of
laboratory animals, in conformity also with the CEE

Directive 86/609.
Groups of 2 ± 3 animals were housed in cages, with a grid

on the bottom, and kept at a temperature of 20+28C with a

light ± dark cycle of 12 h. A standard guinea-pig diet was
given to the animals, and drinking water was supplied ad
libitum.
All animals were anaesthetized with sodium pentobarbi-

tone (50 ± 70 mg kg71 i.p.) and their trachea cannulated and
connected to a rodent ventilator pump (mod. 7025 Basile,
Varese, Italy). The animals were paralyzed with 2 mg kg71

i.v. of pancuronium bromide, in order to block the
spontaneous breathing and to obtain a standardized ventila-
tion provided by the above ventilator pump operating at 50

strokes min71, with a volume per stroke of 1 ml of room air
per 100 g of animal body weight.

All drugs were injected i.v. as a bolus through a cannula

connected to the right jugular vein at the cervical level. Blood
pressure (BP) and heart rate (HR) monitoring was performed
via the left carotid artery, which was cannulated with an
heparinized catheter (20 IU ml71 heparin in 0.9% NaCl

solution) connected to a pressure transducer (mod. Keller
7016 Basile), in turn connected to a Bichannels microdynam-
ometer (mod. Gemini, Basile). After surgery and immediately

subsequent pancuronium injection, at least 15 min was
allowed before treatment with other drugs or simply with
the drug vehicle. An additional dose (25 mg kg71 i.p.) of the

anaesthetic was administered during this period in order to
extend the deep anaesthesia.

After the stabilization period, adenosine antagonists, or

other substances tested for their inhibiting ability vs
adenosinic e�ects, or their vehicle, were injected i.v.; after a
further 10 min, dose-response curves to the agonists were
performed.

Only a single dose-response curve in each animal was
carried out, the intervals between doses being su�cient to
allow a plateau response to develop, and in any case not

shorter than 5 min.

Drugs and solutions

The following drugs were used: adenosine hemisulphate, L-
NAME (L-NG-Nitro-arginine methyl ester) hydrochloride,

enprofylline (3-propylxanthine) and methylene blue, obtained
from Sigma-Aldrich, Italy; R-PIA ((7)-N6-(R-phenylisopro-
pyl)adenosine), NECA (5'-N-ethylcarboxamidoadenosine),
8-pSPT (8-p-sulphophenyltheophylline), APNEA (N6-(2-(4-

aminophenyl)ethyl)-adenosine) and DPCPX (8-cyclopentyl-
1,3 dipropylxanthine) from Sigma-RBI, Italy; CGS 21680
(2- [p-(2-carboxyethyl)-phenethylamino] -5'N-ethyl-carboxami-

doadenosine), ZM241385 (4-[2-[7-amino-2-(2-furil)-1,2,4-tria-
zolo[1,5-a][1,3,5]triazin-5-oyl-amino]ethyl]phenole) and IB-
MECA (N6-(3-iodobenzyl)adenosine-5'-N-methyluromide)

from Tocris Cookson, U.K.; sodium pentobarbitone from
Carlo Sessa, Italy; pancuronium bromide (Pavulon) from
Organon Teknika, Italy. A concentrated calcium heparin
solution (25000 IU ml71) was obtained from Italfarmaco,

Italy. L-NAME hydrochloride, methylene blue and sodium
pentobarbitone were dissolved completely in saline (0.9%
NaCl w v71). All the adenosine receptor ligands stock

solutions (1072 M) were prepared in DMSO and then diluted
to the required concentration with saline immediately before
use, with the exception of 8-pSPT which was dissolved

directly in saline at 378C and enprofylline which was
dissolved in 10% NaOH 1N in saline. All the drugs were
administered at a volume of 1 ml kg71.

Data evaluation and statistics

Blood pressure (BP) was recorded as mean (diastolic-systolic)

arterial pressure and measured as mmHg decrease or increase
from baseline. Heart rate (HR) was measured in beats min71.
In the dose-response curves, the responses to single doses of

agonists were reported as percentages of the resting BP or
HR, measured immediately before the ®rst dose of the
agonist.
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Di�erences between groups were evaluated by the unpaired
Student's t-test (for two groups) or by variance analysis
(ANOVA) (for more than two groups). A P value 40.05 was

taken to be signi®cant.
The ED50 values reported in Table 2 represent the mean

doses at which a 50% decrease in the BP and HR baseline
values was obtained; they were calculated by means of the

computer-aided program Prism 3.0 (GraphPad Software, San
Diego, CA, U.S.A.), after a non-linear regression analysis of
the curves.

Results

The basal mean blood pressure (BP) and heart rate (HR)
were 52.2+1.4 mmHg and 367.6+8.3 beats min71, respec-

tively (n=60).
For all the drugs used, control experiments, carried out

employing the speci®c solvent solution, did not reveal any
signi®cant in¯uence on the baseline BP and HR.

Adenosine

The curve obtained with exogenously administered adenosine
(1079 ± 1075 mol kg71 i.v.) produced a biphasic lowering of
the basal mean BP: the lowest doses (1079 ±

361077 mol kg71) induced a gradual decrease to about
70% of the resting value, while the highest doses had a
powerful hypotensive e�ect, with a reduction to about 20%

of the baseline (Figure 1A). Contemporaneously to the latter
phase, a drastic bradycardic activity was observed (Figure
1B), with a total block of heart activity at the two highest
doses (361076, 1075 mol kg71).

After pretreatment of the animals with the nitric oxide
synthase inhibitor L-NAME (50 mg kg71 i.v.), a signi®cant
enhancement of the baseline BP (to 76.6+1.4 mmHg; n=4)

and a reduction in the basal HR (to 320+5 beats min71;
n=4) were observed. Moreover, this pretreatment induced a
modi®ed in¯uence of adenosine on the BP: a signi®cant

reduction by L-NAME of the BP decrease induced by the
lowest doses of adenosine was observed (Figure 1A), while no
di�erent response to the nucleoside was present in the HR
parameter. (Figure 1B).

Synthetic agonists

The A2a/A2b agonist NECA (10710 ± 1077 mol kg71 i.v.) had
an in¯uence on BP and HR similar to that observed with
adenosine, although in a range of doses two orders of

magnitude higher and with a less clear distinction between
the two phases (Figure 2A, B). A signi®cant decrease in the
BP baseline (to 37.0+4.1 mmHg; n=4) and a poor and non-

signi®cant increase in the HR were shown after enprofylline
treatment (10 mg kg71 i.v.), while the A2b antagonist did not
signi®cantly modify the response to NECA either at the BP
or the HR level.

The A2a selective agonist CGS 21680 (10711 ±
1077 mol kg71 i.v.) produced an hypotension similar to that
observed with the lowest doses of adenosine and NECA, with

a maximal reduction to about 65% of the baseline (n=6)
(Figure 3A). The A2a agonist did not produce, on the
contrary, any signi®cant e�ect on HR (Figure 3B).

The hypotensive response to CGS21680 was almost totally
abolished by the A2a selective antagonist ZM241385

(1 mg kg71; n=4), by the nitric oxide synthase inhibitor L-
NAME (50 mg kg71 i.v.; n=4) and by the guanylyl cyclase
and NO-synthase inhibitor methylene blue (10 mg kg71 i.v.;

n=4). All the three drugs, L-NAME, methylene blue and
ZM241385, enhanced the baseline BP (Table 1).
The A1 agonist R-PIA (10710 ± 361077 mol kg71 i.v.)

induced an apparently monophasic response with a drastic
decrease in BP contemporaneously to a drastic reduction in
heart activity. Pretreatment with the A1 selective antagonist

DPCPX (0.1 mol kg71 i.v.; n=4) signi®cantly modi®ed the
response to R-PIA, increasing the hypotensive e�ect of the
lowest doses and decreasing that of the highest ones (Figure
4A). The R-PIA-mediated bradycardic e�ect was signi®cantly

reduced, too (Figure 4B).
The A1/A3 agonist APNEA (1079 ± 1076 mol kg71 i.v.),

induced a dose-dependent BP and HR decrease similar to

that observed with R-PIA, but at higher doses. (Figure 5).
The responses to this agonist were examined also in animals
pretreated with a high dose (40 mol kg71 i.v.) of the non

B

A

Figure 1 Cardiovascular responses to adenosine (1079 ±
1075 mol kg71 i.v.) in anaesthetized guinea-pig in the absence and
in the presence of L-NAME (50 mg kg71 i.v.). Each point in the
curves is the mean´+s.e. of 4 ± 6 experiments; *P40.05. Values are
reported as per cent of resting mean blood pressure (BP) or heart rate
(HR) just prior to starting the agonist dose-response curve:
47.7+4.5 mmHg and 338.8+27.0 beats min71 (control);
75.8+1.4 mmHg and 338.5+18.2 beats min71 (L-NAME-treated).
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selective adenosine antagonist 8-pSPT. This drug almost
completely abolished the response to APNEA at the cardiac

level, while at the vascular level, it had a lower antagonistic
e�cacy (Figure 5). The residual BP response to APNEA in
the presence of 8-pSPT was, then, re-evaluated in the

presence of the histamine antagonist diphenhydramine, in
order to verify an analogy with the APNEA response
reported in experiments in anaesthetized rats (Fozard &

Hannon, 1994; Fozard et al., 1996).
As shown in Figure 5A diphenhydramine had no e�ect on

the 8-pSPT-resistant response to APNEA.

Finally, the selective A3 agonist IB-MECA (1079 ±
1076 mol kg71 i.v.) had very weak hypotensive and brady-
cardic e�ects and only at the highest doses employed (Figure
6).

Discussion

The biphasic dose-response curve obtained for BP with
adenosine suggested that more than one receptor subtype is

implicated in the hypotensive response to the nucleoside; the
involvement of at least two subtypes can be hypothesized:

one mediating a slight hypotensive response which maximally
reduced the basal BP value by about 30%, and another
subtype mediating a powerful decrease of the mean artery

pressure by about 80% of basal value. A clear distinction
between the ®rst and the second phase of the hypotensive
response to adenosine was supported by the drastic

bradycardic activity that was contemporaneous with the
second phase. A hypotensive response closely linked to an
action of adenosine at the cardiac level has been already
reported in the rat (Webb et al. (1990)). A variety of evidence

demonstrates the presence of adenosinic receptors responsible
both for the negative chronotropic and the inotropic and
dromotropic e�ects on cardiac function; they are mostly

described as belonging to the A1 subtype in experiments in
di�erent mammals including humans (Belardinelli et al.,
1989; Pelleg & Belardinelli, 1993; Olsson & Pearson, 1990;

A

B

Figure 3 Cardiovascular responses to CGS21680 (10711 ±
1077 mol kg71 i.v.) in anaesthetized guinea-pig; in the absence of
pretreatment and in the presence of L-NAME (50 mg kg71 i.v.),
methylene blue (10 mg kg71 i.v) or ZM 241385 (1 mg kg71 i.v). Each
point in the curves is the mean+s.e. of 4 ± 6 experiments; *P40.05.
Values are reported as per cent of resting mean blood pressure (BP)
or heart rate (HR) just prior to starting the agonist dose-response
curve: 48.3+8.5 mmHg and 371.7+15.0 beats min71 (control);
65.6+4.4 mmHg and 368.5+14.2 beats min71 (L-NAME-treated);
70.0+6.3 and 390+11.6 beats min71 (methylene blue-treated);
65.6+4.2 and 375.5+11.6 beats min71 (ZM 241385-treated).

A

B

Figure 2 Cardiovascular responses to NECA (10710 ±
1077 mol kg71 i.v.) in anaesthetized guinea-pig in the absence and
in the presence of enprofylline (10 mg kg71 i.v.). Each point in the
curves is the mean+s.e. of 4 ± 6 experiments. Values are reported as
per cent of resting mean blood pressure (BP) or heart rate (HR) just
prior to starting the agonist dose-response curve: 56.3+1.2 mmHg
and 360.0+12.8 beats min71 (control); 38.8+1.4 mmHg and
390.5+16.2 beats min71 (enprofylline-treated).
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Linden, 1991); these receptors represent the basis for the
therapeutic use of adenosine in the treatment of supraven-
tricular tachycardia, and for the use of adenosine receptor

antagonists in the treatment of bradyarrhythmias (Ralevic &

Burnstock, 1998). Thus, the bradycardic e�ect of adenosine
in our experiments is in agreement with literature where the
occurrence of a cardiac block following high doses has

already been reported (Belardinelli et al., 1989). In spite of
the inhibitory activity on adenosine response by the selective
A1 antagonist DPCPX, in our experiments, the order of
potency of the synthetic adenosine agonists (NECA4R-

PIA4APNEA=adenosine, Table 2) is not compatible with
A1 receptor subtype stimulation, but rather with an A2

stimulation (Fredholm et al., 1994). However, the involve-

ment of A2a or A2b receptors was not con®rmed: the A2a

agonist CGS 21680 did not show any bradycardic e�ect, and
the A2b antagonist enprofylline did not signi®cantly in¯uence

the bradycardic e�ect of NECA (Feoktistov & Biaggioni,
1997).
A protective e�ect following A3 receptor stimulation at the

cardiac level has been described in di�erent animal models
(Strickler et al., 1996; Stambaugh et al., 1997; Tracey et al.,
1997) but the lack of any signi®cant e�ect of the A3 selective
agonist IB-MECA (Gallo-Rodriguez et al., 1994) suggests

that an A3-mediated in¯uence of adenosine on cardiac
function can be excluded.
It is di�cult to justify our results invoking in¯uences by

pharmacokinetic variables, because the i.v. administration of
the drugs excludes di�erences in the absorption phase;
moreover, the heart is the drug target, and it is promptly

reachable after i.v. administration by all the compounds;
perhaps a blood-protein bond giving a di�erent free drug
component could be hypothesized, but as no data is now

available in literature in this connection it should be
speculative. On the other hand, another possible explanation,
pharmacodynamic in nature, has been suggested by recent
evidence obtained by Gardner & Broadley (1999): they

described in the guinea-pig isolated atria atypical character-
istics of adenosine receptors mediating negative inotropic and
chronotropic responses of the tissue. Only a knowledge of the

primary structure of these receptors or molecular biology
studies will clarify their exact nature. Indeed, the cloning and
characterization of a pharmacologically distinct A1 adenosine

receptor from guinea-pig brain has already been reported
(Meng et al., 1994): this `A1 receptor' displayed a high a�nity
for the antagonist DPCPX, but a very low a�nity for some
selective agonists, including R-PIA.

Martynyuk et al. (1996) and Shimoni et al. (1996) reported
an e�ect by adenosine at the cardiac level mediated by the
synthesis of NO; in our experiments, we can exclude the

involvement of an NO-mediated action since the NO-

Table 1 E�ects on baseline blood pressure and heart rate of
drugs used before dose-response curve to adenosine or
adenosine agonists

Mean-BP changes HR changes
Drugs (mmHg) (beats min±1)

L-NAME (50 mg kg71) +30.4+4.2 738.0+5.6
Methylene blue (10 mg kg71) +20.5+5.0 ±
ZM241395 (1 mg kg71) +15.4+2.3 ±
DPCPX (0.1 mg kg71) 710.0+4.1 ±
Enprofylline (10 mg kg71) 720.7+2.5 +15.0+4.0
8-pSPT (40 mg kg71) 710.8+3.5 ±
Diphenhydramine (1 mg kg71) +10.2+3.3 ±

BP (blood pressure), HR (heart rate). Each mean+s.e.
derives from 4 ± 6 experiments. All drugs were i.v. adminis-
tered.

A

B

Figure 4 Cardiovascular responses to R-PIA (10710 ±
361077 mol kg71 i.v.) in anaesthetized guinea-pig in the absence
and in the presence of DPCPX (0.1 mg kg71 i.v.). Each point in the
curves is the mean´+s.e. of 4 ± 6 experiments; *: P40.05. Values are
reported as per cent of resting mean blood pressure (BP) or heart rate
(HR) just prior to starting the agonist dose-response curve:
52.7+4.1 mmHg and 355.8+17.1 beats min71 (control);
44.8+1.8 mmHg and 342.5+15.2 beats min71 (DPCPX-treated).

Table 2 7Log ED50 on blood pressure and heart rate for
adenosinic agonoists

7Log ED50

Agonist Hypotension Bradycardia

Adenosine 6.25+0.14 6.27+0.03
NECA 8.15+0.13 8.19+0.06
CGS21680 n.d. n.d.
R-PIA 7.14+0.38 7.35+0.11
APNEA 6.32+0.07 6.32+0.04
IB-MECA n.d. n.d.

EC50: dose (mol kg71) including a 50% decrease in the
blood pressure or heart rate baseline value. Each mean+s.e.
derives from n=4±6 experiments; n.d. non-detectable.
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synthase inhibitor L-NAME was ine�ective on the adenosinic
HR decrease. On the contrary, a role for nitric oxide has

been clearly evident as regards the ®rst phase response to the
nucleoside at the vascular level, which was signi®cantly
reduced by L-NAME. This response reproduced by the A2a

agonist CGS21680 (Collis & Hourani, 1993) was antagonized
by the A2a antagonist ZM 241385 (Poucher et al., 1995) and
blocked not only by L-NAME but also by methylene blue, a

guanylate cyclase and NO-synthase inhibitor (Mayer et al.,
1993). We can exclude that the e�ect of methylene blue, L-
NAME and ZM 241385 is due to the hypertensive action of
these drugs since similar hypertensive activity induced by the

a1-adrenergic agonist methoxamine did not modify the dose-
response curve to adenosine (data not shown).
The A2a-mediated hypotension was not accomplished by

any activity at the cardiac level, con®rming the results
obtained in anaesthetized rats (Patel et al., 1994); in
conscious rats, on the contrary, Monopoli et al. (1998)

reported that the stimulation of A2a receptors produced, in
addition to a systemic hypotension, a tachycardic action
probably re¯ex in nature. Then, in our experimental model,
the absence of a cardiac activity, in response to a direct

hypotensive action, is probably to be reconduced to a
cardiovascular re¯ex abolition by anaesthesia.

A very di�erent pro®le in the response to the A2a selective

agonist CGS 21680 was observed in our guinea-pig model
with respect to the data reported for rats. In our experiments,
CGS21680 gave a maximal fall in BP of about 30% of the

baseline while in rat the same agonist elicited a reduction in
basal BP similar to that observed with NECA and CPA
(about 75% of baseline) (Patel et al., 1994). In spite of these

di�erences, our data con®rm an important role for A2a

receptors in vascular tone regulation, and suggest that the
systemic response mediated by these receptors is prevalently
linked to the release of NO, probably from endothelial cells.

The role of endothelial receptors in the response to adenosine
was previously suggested by the evidence from Nees (1989),
who observed that after i.v. administration, the nucleoside

was largely entrapped inside endothelial cells. The participa-
tion of A2a receptors in the maintenance of physiological BP
values has also demonstrated using transgenic mice: high

A

B

Figure 5 Cardiovascular responses to APNEA (1079 ±
1076 mol kg71 i.v.) in anaesthetized guinea-pig in the absence of
pretreatment and in the presence of 8-pSPT (40 mg kg71 i.v.) alone
or in addition to diphenhydramine (1 mg kg71 i.v). Each point in the
curves is the mean´+s.e. of 4 ± 6 experiments; *P40.05. Values are
reported as per cent of resting mean blood pressure (BP) or heart rate
(HR) just prior to starting the agonist dose-response curve:
53.1+5.5 mmHg and 379.8+24.3 beats min71 (control);
44.1+2.0 mmHg and 368.4+7.2 beats min71 (8-pSPT-treated);
48.1+3.0 mmHg and 377.4+7.2 beats min71 (8-pSPT+diphenhy-
dramine-treated).

Figure 6 Cardiovascular responses to IB-MECA (1079 ±
1076 mol kg71 i.v.) in anaesthetized guinea-pig in the absence of
pretreatment. Each point in the curves is the mean´+s.e. of 4 ± 6
experiments; *P40.05. Values are reported as per cent of resting mean
blood pressure (BP) or heart rate (HR) just prior to starting the agonist
dose-response curve: 47.7+4.5 mmHg and 338.8+27.0 beats min71.
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blood pressure was, in fact, observed in A2a receptor gene
knockout-mice (Ledent et al., 1997).
A possible role also for A3 receptors in the adenosinic

response at the BP level was investigated in our work, since a
residual hypotension to APNEA persisted in spite of
treatment with a high dose of the xanthinic antagonist 8-
pSPT (40 mg kg71 i.v.). Nevertheless, the very weak

cardiovascular activity of the A3 selective agonist IB-MECA,
allow us to exclude an involvement of A3 receptor
stimulation at peripheral and central levels; IB-MECA, in

fact, is reported to elicit central e�ects after i.p. administra-
tion (Jacobson et al., 1993), thus revealing the ability to pass
the blood brain barrier. In the presence of the histamine

antagonist diphenhydramine, the 8-pSPT-resistant compo-
nent of the response to APNEA was not modi®ed. These
data are not in agreement with those reported for

experiments in anaesthetized rats, where the hypotensive
xanthine-resistant response to APNEA was well correlated
with histamine plasma increase and blocked by the A3

antagonist BW-A522, and by the mast cell stabilizer sodium

chromoglycate (Fozard & Hannon, 1994; Patel et al., 1994;
Hannon et al., 1995). It should be underlined that the role
observed for A3 receptors on rat mast cells (Fozard et al.,

1996) is not con®rmed in other animals such as dogs and
humans (Auchampach et al., 1997; Feoktistov & Biaggioni,
1997) and, as far as the guinea-pig is concerned, there is no

report about a clear characterization of adenosinic receptor
subtypes on mast cells.
The hydrophilicity of the xanthinic compound 8-pSPT

powerfully limits its blood brain penetration: the dose used in
our experiments (40 mg kg71 i.v.) is reported not to give
signi®cant concentrations in rat brain (Evoniuk et al., 1987).
The 8-pSPT-resistant response, in our experiments, could

therefore be the result of an action by APNEA in the CNS
(central nervous system) through receptors di�erent from A3.
Another possibility is the existence of a xanthine-resistant

response not attributable to A3 receptor stimulation, as
already suggested by evidence from in vitro experiments in
isolated rat aorta (Prentice & Hourani, 1996).

Conclusion

In summary, present data though outlining the existence of
remarkable di�erences in cardiovascular responses to adeno-
sinic agonists between di�erent animals, con®rm a vasorelax-
ant property of A2a receptor agonists, via NO release, which

may be considered for a new pharmacological approach to
the treatment of the hypertensive conditions unlinked to a
defect in NO production. Finally, the ®nding of a negative

chronotropic e�ect via atypical A1 receptors and of an 8-
pSPT-resistant response need further examination to explain
the exact nature of the receptors involved.
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