www.nature.com/bjp

# *trans*-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and $(\pm)$ -*trans*-2-aminomethylcyclopropanecarboxylic acid $((\pm)$ -TAMP) can differentiate rat $\rho$ 3 from human $\rho$ 1 and $\rho$ 2 recombinant GABA<sub>C</sub> receptors

# <sup>1</sup>Jimmy Vien, <sup>1</sup>Rujee K. Duke, <sup>1</sup>Kenneth N. Mewett, <sup>1</sup>Graham A.R. Johnston, <sup>3</sup>Ryuzo Shingai & \*.<sup>2</sup>Mary Chebib

<sup>1</sup>Department of Pharmacology, University of Sydney, NSW 2006, Australia; <sup>2</sup>Faculty of Pharmacy, University of Sydney, NSW 2006, Australia and <sup>3</sup>Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka, Japan

1 This study investigated the effects of a number of GABA analogues on rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes using 2-electrode voltage clamp methods.

**2** The potency order of agonists was muscimol (EC<sub>50</sub>=1.9±0.1  $\mu$ M) (+)-*trans*-3-aminocyclopentanecarboxylic acids ((+)-TACP; EC<sub>50</sub>=2.7±0.9  $\mu$ M) trans-4-aminocrotonic acid (TACA; EC<sub>50</sub>=3.8±0.3  $\mu$ M) GABA (EC<sub>50</sub>=4.0±0.3  $\mu$ M) > thiomuscimol (EC<sub>50</sub>=24.8±2.6  $\mu$ M) > (±)*cis*-2-aminomethylcyclopropane-carboxylic acid ((±)-CAMP; EC<sub>50</sub>=52.6±8.7  $\mu$ M) > *cis*-4-aminocrotonic acid (CACA; EC<sub>50</sub>=139.4±5.2  $\mu$ M).

**3** The potency order of antagonists was  $(\pm)$ -*trans*-2-aminomethylcyclopropanecarboxylic acid  $((\pm)$ -TAMP;  $K_{\rm B}$ =4.8±1.8  $\mu$ M) (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA;  $K_{\rm B}$ =4.8±0.8  $\mu$ M) > (piperidin-4-yl)methylphosphinic acid (P4MPA;  $K_{\rm B}$ =10.2±2.3  $\mu$ M) 4,5,6,7-tetrahydroisoxazolo[5,4-*c*]pyridin-3-ol (THIP;  $K_{\rm B}$ =10.2±0.3  $\mu$ M) imidazole-4-acetic acid (I4AA;  $K_{\rm B}$ =12.6±2.7  $\mu$ M) > 3-aminopropylphosphonic acid (3-APA;  $K_{\rm B}$ =35.8±13.5  $\mu$ M).

**4** *trans*-4-Amino-2-methylbut-2-enoic acid (2-MeTACA; 300  $\mu$ M) had no effect as an agonist or an antagonist indicating that the C2 methyl substituent is sterically interacting with the ligand-binding site of rat  $\rho$ 3 GABA<sub>C</sub> receptors.

**5** 2-MeTACA affects  $\rho 1$  and  $\rho 2$  but not  $\rho 3$  GABA<sub>C</sub> receptors. In contrast, ( $\pm$ )-TAMP is a partial agonist at  $\rho 1$  and  $\rho 2$  GABA<sub>C</sub> receptors, while at rat  $\rho 3$  GABA<sub>C</sub> receptors it is an antagonist. Thus, 2-MeTACA and ( $\pm$ )-TAMP could be important pharmacological tools because they may functionally differentiate between  $\rho 1$ ,  $\rho 2$  and  $\rho 3$  GABA<sub>C</sub> receptors *in vitro*. British Journal of Pharmacology (2002) **135**, 883–890

Keywords:  $\gamma$ -Aminobutyric acid (GABA); GABA<sub>C</sub> receptors;  $\rho$ 3 subunits; structure-activity relationship profiles; twoelectrode voltage clamp; *Xenopus* oocytes

Abbreviations: (+)-TACP, (+)-*trans*-3-aminocyclopentanecarboxylic acid; (±)-CAMP, (±)-*cis*-2-aminomethylcyclopropanecarboxylic acid; (±)-TAMP, (±)-*trans*-2-aminomethylcyclopropanecarboxylic acid; 2-MeTACA, *trans*-4-amino-2-methylbut-2-enoic acid; 3-APA, 3-aminopropylphosphonic acid; CACA, *cis*-4-aminocrotonic acid; GABA, γaminobutyric acid; I4AA, imidazole-4-acetic acid; P4MPA, (piperidin-4-yl)methylphosphinic acid; SAR, structure-activity relationship; TACA, *trans*-4-aminocrotonic acid; THIP, 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol; TPMPA, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid

# Introduction

The inhibitory neurotransmitter  $\gamma$ -aminobutyric acid (GABA) activates three major classes of receptors termed GABA<sub>A</sub>, GABA<sub>B</sub> and GABA<sub>C</sub> receptors. GABA<sub>A</sub> and GABA<sub>C</sub> receptors are members of the ligand-gated ion channels superfamily that includes nicotinic acetylcholine, strychninesensitive glycine, serotonin type 3 and some invertebrate anionic glutamate receptors. Both GABA<sub>A</sub> and GABA<sub>C</sub> receptors are Cl<sup>-</sup> channels producing fast synaptic inhibition when activated by GABA (Figure 1; see review by Chebib & Johnston, 2000). In contrast, GABA<sub>B</sub> receptors are members of the G-protein coupled receptor superfamily. These receptors are heterodimeric G-protein coupled receptors, which produce slow, longer lasting inhibition, and function to inhibit neurotransmitter release (see reviews by Bowery & Enna, 2000; Blein *et al.*, 2000; Ong & Kerr, 2000). All three classes of GABA receptors are pharmacologically, physiologically and biochemically distinct (see reviews by Bormann, 2000; Chebib & Johnston, 2000; Bowery & Enna, 2000; Blein *et al.*, 2000).

 $GABA_C$  receptors have been identified by their distinct pharmacology. These receptors are not blocked by the alkaloid bicuculline nor modulated by benzodiazepines and barbiturates, which typically affect  $GABA_A$  receptors. Furthermore,  $GABA_C$  receptors are not activated by (–)-baclofen or inhibited by (–)-phaclofen, which typically affect  $GABA_B$ receptors. Instead,  $GABA_C$  receptors are selectively activated

npş

<sup>\*</sup>Author for correspondence at: Faculty of Pharmacy, A15, The University of Sydney, NSW 2006, Australia E-mail: maryc@pharm.usyd.edu.au



Figure 1 Structures of GABA analogues that have agonist, partial agonist and antagonist effects at  $\rho$ 3 GABA<sub>C</sub> receptors.

by (+)-*cis*-2-aminomethylcyclopropane-carboxylic acid ((+)-CAMP) (Figure 1; Duke *et al.*, 2000) and blocked by (1,2,5,6tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) (Figure 1; Murata *et al.*, 1996; Ragozzino *et al.*, 1996).

GABA<sub>C</sub> receptors are believed to comprise of only one subunit type, the rho ( $\rho$ ) subunit. To date, several  $\rho$ -subunits have been cloned including two from human ( $\rho$ 1 and  $\rho$ 2) (Cutting *et al.*, 1991; 1992) and three from rat ( $\rho$ 1-3) (Wang *et al.*, 1994; Zhang *et al.*, 1995; Ogurusu *et al.*, 1995; Ogurusu *&* Shingai, 1996). These subunits exhibit high sequence homology between species and with each other. The human  $\rho$  subunits have approximately 95% sequence homology with rat  $\rho$ subunits while the sequence homology between  $\rho$ 1 and  $\rho$ 2 subunits is approximately 75%. Most of the diversity between the  $\rho$ 1 and  $\rho$ 2 subunits is in the N-terminal domain where there is a 20% sequence divergence (Cutting *et al.*, 1992). In contrast, rat  $\rho$ 3 subunits exhibits lower homology to rat  $\rho$ 1 (65%) and  $\rho$ 2 (61%) subunits (Ogurusu & Shingai, 1996).

The human  $\rho_3$  subunit gene has been found on chromosome 3q11-q13.3 but, as yet, has not been cloned (Bailey *et al.*, 1999). However, expression pattern of rat  $\rho_3$ mRNA was studied along with  $\rho_1$  and  $\rho_2$  mRNA using immunohistochemistry (Boue-Grabot *et al.*, 1998), *in situ* hybridization and RT–PCR (Wegelius *et al.*, 1998; Boue-Grabot *et al.*, 1998). These studies showed the expression pattern of the  $\rho_3$  was somewhat different from that of  $\rho_1$  and  $\rho_2$ , being strongest in the hippocampus and significantly lower in the retina, dorsal root ganglia and cortex. Interestingly, no  $\rho$ 3 expression was observed in the superior colliculus (Wegelius *et al.*, 1998; Boue-Grabot *et al.*, 1998).

The human  $\rho 1$  and  $\rho 2$ , and rat  $\rho 3$  subunits form functional receptors when expressed either as homomeric receptors or as combinations to form pseudoheteromeric receptors when expressed in Xenopus laevis oocytes (Cutting et al., 1991; 1992; Kusama et al., 1993a, b; Zhang et al., 1995; Shingai et al., 1996; Chebib et al., 1997; 1998; Duke et al., 2000) or mammalian cell expression systems (Enz & Bormann, 1995; Enz & Cutting, 1998). These recombinant receptors have similar physiological and pharmacological properties to GABA<sub>C</sub> receptors found on native cells such as rat rod bipolar cells (Feigenspan et al., 1993), indicating that these combinations may exist in vivo. Some evidence exists for heteromeric assembly of  $\rho$ -subunits with the  $\gamma$ 2-subunit of the GABA<sub>A</sub> receptor, particularly with perch  $\rho$ -subunits (Qian & Ripps, 1999). However, human  $\rho 1$  and  $\rho 2$ -subunits do not assemble with the classical  $\alpha$ ,  $\beta$  and  $\gamma$ -subunits of the GABA<sub>A</sub> receptor (Hackam *et al.*, 1998), indicating that these  $\rho$ -subunits do not form part of the GABAA receptor subunit family.

Structure-activity relationship (SAR) studies on GABA<sub>C</sub> receptors have been carried out using bovine retinal  $poly(A)^+$ RNA expressed in *Xenopus* oocytes (Woodward et al., 1993) and human homooligomeric  $\rho 1$  and  $\rho 2$  cRNAs expressed in Xenopus oocytes (Kusama et al., 1993a, b; Ragozzino et al., 1996; Chebib et al., 1997; 1998; Duke et al., 2000). These studies have led to the discovery of a variety of compounds, including TPMPA (Murata et al., 1996; Ragozzino et al., 1996), (+)-CAMP (Duke et al., 2000) and trans-4-amino-2methylbut-2-enoic acid (2-MeTACA) (Figure 1; Chebib et al., 1997; 1998), which are useful pharmacological tools to study  $\rho 1$  and  $\rho 2$  GABA<sub>C</sub> receptors. TPMPA was the first selective GABA<sub>C</sub> receptor antagonist that differentiated GABA<sub>C</sub> receptors from GABA<sub>A</sub> and GABA<sub>B</sub> receptors. (+)-CAMP was shown to be the most selective agonist at human  $\rho 1$  and  $\rho 2$  GABA<sub>C</sub> receptors and 2-MeTACA was shown to functionally distinguish between homomeric  $\rho 1$  and  $\rho 2$ GABA<sub>C</sub> receptors expressed in Xenopus oocytes.

 $\rho$ 3 GABA<sub>C</sub> receptors, like  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors, have been shown to be insensitive to bicuculline and the GABA<sub>A</sub> receptor modulators, 3- $\alpha$ -hydroxy-5 $\alpha$ -pregnan-20one, pentobarbitone and diazepam (Shingai *et al.*, 1996). Few agonists, partial agonists and antagonists were tested on  $\rho$ 3 GABA<sub>C</sub> receptors. From the study using *trans*-4aminocrotonic acid (TACA; Figure 1), GABA, muscimol (Figure 1), *cis*-4-aminocrotonic acid (CACA; Figure 1) and picrotoxinin, Shingai *et al.* (1996) concluded that  $\rho$ 3 GABA<sub>C</sub> receptors have a similar pharmacological profile as  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors. In this study, we report the effects of a number of GABA analogues on  $\rho$ 3 GABA<sub>C</sub> receptors in order to (1) further develop the SAR profiles of  $\rho$ 3 GABA<sub>C</sub> receptors and (2) identify compounds that distinguish  $\rho$ 3 from  $\rho$ 1 or  $\rho$ 2 GABA<sub>C</sub> receptors.

## Methods

### Materials

GABA, imidazole-4-acetic acid (I4AA; Figure 1), 3-aminopropylphosphonic acid (3-APA; Figure 1) and muscimol were purchased from Sigma Chemical Co. (St Louis, MO, U.S.A.). 4,5,6,7-Tetrahydroisoxazolo[5,4-*c*]pyridin-3-ol (THIP; Figure 1) was purchased from Tocris Cookson (Ballwin, MO, U.S.A.). TACA, CACA, 2-MeTACA,  $(\pm)$ -*trans*-2-aminomethyl-cyclopropanecarboxylic acid ( $(\pm)$ -TAMP; Figure 1),  $(\pm)$ -CAMP (Johnston *et al.*, 1975; Allan & Twitchin, 1978; Allan *et al.*, 1985; Duke *et al.*, 2000), TPMPA (Chebib *et al.*, 1997) and (piperidin-4-yl)methylphosphinic acid (P4MPA; Johnston *et al.*, 1998) were prepared according to methods described in the literature. (+)-TACP was previously prepared by Associate Professor Robin D. Allan according to methods described in the literature (Allan & Twitchin, 1980). Thiomuscimol was a gift from Professor Povl Krogsgaard-Larsen.

### Electrophysiological recording

*Xenopus laevis* were anaesthetized with 0.17% ethyl 3aminobenzoate and a lobe of the ovaries was removed. The lobe was rinsed with oocyte releasing buffer 2 (OR2; mM): NaCl 82.5, KCl 2, MgCl<sub>2</sub>.6H<sub>2</sub>O 1, HEPES 1, pH 7.5, and treated with Collagenase A (2 mg ml<sup>-1</sup> in OR2, Boehringer Mannheim) for 2 h. Released oocytes were then rinsed in frog Ringer solution (mM): NaCl 96, KCl 2, MgCl<sub>2</sub>.6H<sub>2</sub>O 1, CaCl<sub>2</sub> 1.8, HEPES 5, pH 7.5, supplemented with 2.5 mM pyruvate, 0.5 mM theophylline and 50 g  $\mu$ l<sup>-1</sup> gentamycin, and stage V–VI oocytes were collected.

Rat  $\rho$ 3 cRNA was prepared as reported by Shingai *et al.* (1996). In brief, rat  $\rho$ 3 cDNA subcloned in pBluescript KS(-) vector was linearized using the restriction enzyme ECOR-I. Capped RNA was synthesized from linearized plasmid containing  $\rho$ 3 cDNAs using the 'mMESSAGE mMACHINE' kit from Ambion Inc. (Austin, TX, U.S.A.).  $\rho$ 3 cRNA (10 ng 50 nl<sup>-1</sup>) was injected into defolliculated Stage V-VI Xenopus oocytes and stored at 18°C. Two to 10 days later, receptor activity was measured by two-electrode voltage clamp recording using a Geneclamp 500 amplifier (Axon Instruments Inc., Foster City, CA, U.S.A.), a MacLab 2e recorder (AD Instruments, Sydney, NSW, Australia) and Chart program version 3.5. Oocytes injected with  $\rho$ 3 cRNA were voltage clamped at -60 mV and continuously superfused with frog Ringer solution. For receptor activation measurements, the indicated concentrations of drug were added to the buffer solution. Antagonist effects were measured at a constant dose in the presence of increasing concentrations of GABA. These solutions were prepared in frog Ringer solution. The receptor recovery time between doses was 15 min.

### Analysis of kinetic data

Current (I) as a function of agonist concentration ([A]) was fitted by least squares to  $I = I_{max}$  [A]<sup>nH</sup> /(EC<sub>50</sub><sup>nH</sup>+[A]<sup>nH</sup>), where  $I_{max}$  is the maximum current, EC<sub>50</sub> is the effective concentration that activates 50% of the maximum current produced by a given drug and n<sub>H</sub> is the Hill coefficient. EC<sub>50</sub> values are expressed as mean±s.e.mean (n=3-6 oocytes) and are determined by fitting data from individual oocytes using PRISM 2.0a (1997). The intrinsic activity of partial agonists, I<sub>m</sub>, was calculated as a percentage of the maximum whole cell current produced by a maximum dose of GABA. Estimated K<sub>B</sub> values are the binding constants for the antagonists and were determined using the following equation  $K_{\rm B} = [{\rm Ant}]/\{({\rm A})/({\rm A}^*)-1\}$  where A is the EC<sub>50</sub> of GABA in the presence of a known antagonist concentration, A\* is the EC<sub>50</sub> of GABA in the absence of the antagonist and [Ant] is the concentration of the antagonist.

## Results

Expression of rat  $\rho$ 3 cRNA in *Xenopus* oocytes generated GABA gated channels similar to those described by Ogurusu *et al.* (1999). The amplitude of the whole cell currents recorded ranged between 50–2000 nA when the cell was clamped at -60 mV. Increasing concentrations of GABA produced a dose dependent effect on oocytes expressing  $\rho$ 3 GABA<sub>C</sub> receptors. The maximal current was achieved by 300  $\mu$ M GABA (Figure 2).

Figure 3A–D shows sample traces of the activation current produced by muscimol (10  $\mu$ M), TACA (10  $\mu$ M), CACA (300  $\mu$ M) and (±)-CAMP (300  $\mu$ M), respectively, against the maximal current produced by GABA (300  $\mu$ M), while Figure 4A,B shows traces of the inhibition of the current produced by GABA (30  $\mu$ M) by (±)-TAMP (30  $\mu$ M) and TPMPA (30  $\mu$ M).

Agonist and partial agonist dose response curves for  $\rho$ 3 GABA<sub>C</sub> receptors expressed in oocytes are shown in Figure 5A,B, respectively. The EC<sub>50</sub> values, intrinsic activity (I<sub>m</sub>, % of the maximal response of the agonist compared to the maximal response of GABA) and Hill coefficients (n<sub>H</sub>) of agonists (GABA, muscimol and TACA) and partial agonists ((+)-TACP, thiomuscimol, CACA and (±)-CAMP) are summarized in Table 1. The EC<sub>50</sub>, I<sub>m</sub> and n<sub>H</sub> of GABA, TACA, muscimol and CACA were similar to the values reported by Shingai *et al.* (1996) for  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes.

The potency order of agonists was muscimol  $(\text{EC}_{50} = 1.9 \pm 0.1 \ \mu\text{M}) \approx (+) \text{-TACP} \approx (\text{EC}_{50} = 2.7 \pm 0.9 \ \mu\text{M})$ TACA  $(EC_{50} = 3.8 \pm 0.3 \ \mu M)$  $\approx$ GABA  $(EC_{50} = 4.0 \pm 0.3 \ \mu M) > \text{thiomuscimol} (EC_{50} = 24.8 \pm 2.6 \ \mu M)$  $(EC_{50} = 52.6 \pm 8.7 \ \mu M)$  $(\pm)$ -CAMP CACA >>  $(EC_{50} = 139.4 \pm 5.2 \mu M)$ . Significance between potencies of agonists was determined using a one-way analysis of variance (P=0.0001; F=29.70; d.f. (5,12)). Furthermore each compound was subjected to Bonferroni's Multiple comparison test. Muscimol ( $I_m = 88\%$ ) and TACA ( $I_m = 93\%$ ) had the highest intrinsic activities, while (+)-TACP ( $I_m = 27\%$ ) had the lowest. The Hill coefficients of most agonists tested ranged between



Figure 2 Increasing concentrations of GABA produced a dose dependent effect on oocytes expressing  $\rho$ 3 GABA<sub>C</sub> receptors. The maximal current was achieved by 300  $\mu$ M GABA.



**Figure 3** A maximal current is achieved by the addition of GABA (300  $\mu$ M; duration indicated by solid bar) on *Xenopus* oocytes expressing rat  $\rho$ 3 GABA<sub>C</sub> receptors. This is compared to the activation currents produced by (A) muscimol (10  $\mu$ M; duration indicated by open bar), (B) TACA (10  $\mu$ M; duration indicated by open bar), (C) CACA (300  $\mu$ M; duration indicated by open bar) and (D) ( $\pm$ )-CAMP (300  $\mu$ M; duration indicated by open bar).

1.5–1.8, with the exception of  $(\pm)$ -CAMP, which had a Hill coefficient of 2.4. The Hill coefficients at  $\rho$ 3 GABA<sub>C</sub> receptors are lower than those found with recombinant  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors but further analysis of these is needed at the single channel level to further evaluate the number of agonists required to activate the receptor.

Table 1 summarizes the estimated  $K_{\rm B}$  values of antagonists at  $\rho$ 3 GABA<sub>C</sub> receptors. The potency order of antagonists was ( $\pm$ )-TAMP ( $K_{\rm B}$ =4.8 $\pm$ 1.8  $\mu$ M)  $\approx$  TPMPA ( $K_{\rm B}$ =4.8 $\pm$ 0.8  $\mu$ M) > P4MPA ( $K_{\rm B}$ =10.2 $\pm$ 2.3  $\mu$ M)  $\approx$  THIP ( $K_{\rm B}$ =10.2 $\pm$ 0.3  $\mu$ M)  $\approx$  I4AA ( $K_{\rm B}$ =12.6 $\pm$ 2.7  $\mu$ M) > 3-APA ( $K_{\rm B}$ =35.8 $\pm$ 13.5  $\mu$ M). Significance between potencies of antagonists was determined using a one-way analysis of variance (P=0.0006; F=10.96; d.f. (5,11)). Each compound was also subjected to Bonferroni's Multiple comparison test.

TPMPA (30  $\mu$ M; Figure 6A), THIP (100  $\mu$ M; Figure 6B) and 3-APA (30  $\mu$ M; Figure 6C) produced a parallel rightward

J. Vien et al



**Figure 4** (A)  $(\pm)$ -TAMP (30  $\mu$ M; duration indicated by open bar) produces no response alone but inhibits the current produced by a submaximal concentration of GABA (30  $\mu$ M; duration indicated by solid bar) by 43%. (B) TPMPA (100  $\mu$ M; duration indicated by open bar) produces no response alone but inhibits the current produced by a submaximal concentration of GABA (30  $\mu$ M; duration indicated by open bar) produces no response alone but inhibits the current produced by a submaximal concentration of GABA (30  $\mu$ M; duration indicated by solid bar) by 65%.



**Figure 5** Dose response curves for (A) the agonists GABA, TACA and muscimol and (B) the partial agonists, CACA,  $(\pm)$ -CAMP, thiomuscimol and (+)-TACP compared to GABA at rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes. Data are the mean ± s.e.mean. (n=3-6 oocytes) of the percentage of  $I/I_{max}$  (%  $I/I_{max}$ ) where  $I/I_{max}$ is the percentage ratio of current generated by the compound divided by the current produced by a maximal dose of GABA (300  $\mu$ M).

| Table 1   | The effects of GABA analogues on rat $\rho$ 3 GABA <sub>C</sub> |
|-----------|-----------------------------------------------------------------|
| receptors | expressed in Xenopus oocytes                                    |

|               |                          | 1                 |               |                |
|---------------|--------------------------|-------------------|---------------|----------------|
| Compound      | $EC_{50} \; (\mu M)^{a}$ | $K_B (\mu M)^{D}$ | $m_H^c$       | $I_m (\%)^{a}$ |
|               |                          |                   |               |                |
| GABA          | $4.0 \pm 0.3$            |                   | $1.7 \pm 0.1$ | 100            |
| Muscimol      | $1.9 \pm 0.1$            |                   | $1.5 \pm 0.1$ | 88             |
| (+)-TACP      | $2.7 \pm 0.9$            |                   | $1.5 \pm 0.2$ | 27             |
| TÁCA          | $3.8 \pm 0.3$            |                   | $1.5 \pm 0.2$ | 93             |
| Thiomuscimol  | $24.8 \pm 2.6$           |                   | $1.8 \pm 0.6$ | 32             |
| $(\pm)$ -CAMP | $52.6 \pm 8.7$           |                   | $2.4 \pm 0.3$ | 57             |
| ČÁCA          | $139.4 \pm 5.2$          |                   | $1.5 \pm 0.1$ | 57             |
| $(\pm)$ -TAMP |                          | $4.8 \pm 1.8$     |               |                |
| TPMPA         |                          | $4.8 \pm 0.8$     |               |                |
| P4MPA         |                          | $10.2 \pm 2.3$    |               |                |
| THIP          |                          | $10.2 \pm 0.3$    |               |                |
| 14AA          |                          | $12.6 \pm 2.7$    |               |                |
| 3-APA         |                          | $35.8 \pm 13.5$   |               |                |

<sup>a</sup>EC<sub>50</sub> is the effective dose that activates 50% of the I<sub>max</sub>, where I<sub>max</sub> is the maximum current produced by the agonists. Data are mean±s.e.mean (n=3-6 oocytes). <sup>b</sup>K<sub>B</sub> is the estimated binding constant of the antagonist. Data are mean±s.e.mean (n=3-6 oocytes). <sup>c</sup>n<sub>H</sub> is the Hill coefficient. Data are mean±s.e.mean (n=3-6 oocytes). <sup>d</sup>I<sub>m</sub> is the intrinsic activity calculated as a percentage of the maximum whole cell current produced by a maximum dose of GABA, which has been assigned as 100%. Data are mean±s.e.mean (n=3-6 oocytes).

shift of the GABA dose response curve with minimum reduction in the maximal response of GABA indicating that TPMPA, THIP and 3-APA are competitive antagonists over the concentration tested. In contrast, ( $\pm$ )-TAMP (30  $\mu$ M; Figure 7A), I4AA (30  $\mu$ M; Figure 7B) and P4MPA (30  $\mu$ M; Figure 7C) produced a non-parallel rightward shift of the GABA dose response curve with minimum reduction in the maximal response of GABA indicating that ( $\pm$ )-TAMP, I4AA and P4MPA may be non-competitive antagonists at  $\rho$ 3 GABA<sub>C</sub> receptors.

Interestingly, 2-MeTACA was inactive at  $\rho$ 3 GABA<sub>C</sub> receptors. 2-MeTACA (300  $\mu$ M) produced no response on its own nor did it significantly shift the dose response curve of GABA to the right (P>0.05; Figure 8A,B).

### Discussion

To date, only a few GABA analogues have been studied on rat  $\rho$ 3 GABA<sub>C</sub> receptors. In this study, a variety of GABA analogues were examined for their effects rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes using 2-electrode voltage clamp methods. Our study showed that the pharmacological profiles of  $\rho$ 1,  $\rho$ 2 and  $\rho$ 3 GABA<sub>C</sub> receptors were different. The pharmacological profiles of GABA, TACA, ( $\pm$ )-CAMP, 2-MeTACA and ( $\pm$ )-TAMP at  $\rho$ 3 GABA<sub>C</sub> receptors differed significantly to those at  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors whereas muscimol, ( $\pm$ )-TACP, CACA, TPMPA and P4MPA showed similar pharmacological profiles.

The different pharmacological profiles at  $GABA_C$  receptor subtypes may be due to a number of reasons. Firstly, differences in the amino acid residues in the agonist/ antagonist-binding site of these receptors will contribute to the different pharmacological profiles of these receptors. Amino acids involved in the binding of GABA have been



**Figure 6** Dose response curves of (A) GABA alone and GABA in the presence of TPMPA (30  $\mu$ M), (B) GABA alone and GABA in the presence of THIP (30  $\mu$ M) and (C) GABA alone and GABA in the presence of 3-APA (30  $\mu$ M) at rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes. Data are the mean  $\pm$  s.e.mean (n=3-6 oocytes) of the percentage of I/I<sub>max</sub> (% I/I<sub>max</sub>) where I/I<sub>max</sub> is the percentage ratio of current generated by the compound divided by the current produced by a maximal dose of GABA (300  $\mu$ M).

identified in  $\rho 1$  GABA<sub>C</sub> receptors (Amin & Weiss, 1994). To date, none have been identified which confer to differences in the pharmacology of GABA<sub>C</sub> receptor subtypes.

Secondly, different activation equilibria between the GABA<sub>C</sub> receptor subtypes may contribute to the pharmacological profiles of these receptors. Such differences may be attributed to different amino acid residues between the  $\rho 1$ ,  $\rho 2$ and  $\rho 3$  subunits. Thirdly, pK<sub>A</sub> effects between the different acidic bioisosteres will also contribute to the activity of the



**Figure 7** Dose response curves of (A) GABA alone and GABA in the presence of  $(\pm)$ -TAMP (30  $\mu$ M), (B) GABA alone and GABA in the presence of I4AA (30  $\mu$ M) and (C) GABA alone and GABA in the presence of P4MPA (30  $\mu$ M) at rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes. Data are the mean $\pm$ s.e.mean (n=3-6 oocytes) of the percentage of I/I<sub>max</sub> (% I/I<sub>max</sub>) where I/I<sub>max</sub> is the percentage ratio of current generated by the compound divided by the current produced by a maximal dose of GABA (300  $\mu$ M).

compounds as exemplified by GABA, TPMPA, muscimol, thiomuscimol and 3-APA.

Finally, steric interaction between the ligand and the ligand binding site appears to be one of the major factors



**Figure 8** (A) 2-MeTACA (100  $\mu$ M; duration indicated by open bar) produces no response alone nor does it inhibit the current produced by a submaximal concentration of GABA (30  $\mu$ M; duration indicated by solid bar). (B) Dose response curve of GABA alone and GABA in the presence of 2-MeTACA (300  $\mu$ M) at rat  $\rho$ 3 GABA<sub>C</sub> receptors expressed in *Xenopus* oocytes. Data are the mean ±s.e.mean (n=3-6 oocytes) of the percentage of I/I<sub>max</sub> (% I/I<sub>max</sub>) where I/I<sub>max</sub> is the percentage ratio of current generated by the compound divided by the current produced by a maximal dose of GABA (300  $\mu$ M).

which contribute to the pharmacology of compounds at GABA<sub>C</sub> receptors. 2-MeTACA is an analogue of TACA with a methyl substituent in the C2 position. At  $\rho$ l receptors, 2-MeTACA was shown to be a moderately potent antagonist while at  $\rho$ 2 GABA<sub>C</sub> receptors it was a partial agonist with moderate intrinsic activity (Chebib *et al.*, 1997; 1998). At  $\rho$ 3 GABA<sub>C</sub> receptors, 2-MeTACA was shown to have no effect as an agonist or an antagonist even when tested at 300  $\mu$ M. Alkyl substituents at the C2 position of TACA produced ligands whose interactions with the receptor can be tolerated at  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors. This is an important finding because 2-MeTACA may functionally differentiate  $\rho$ 3 from  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors.

Steric effects may also be contributing to the pharmacological profile of  $(\pm)$ -TAMP and  $(\pm)$ -CAMP. At rat  $\rho$ 3 GABA<sub>C</sub> receptors,  $(\pm)$ -TAMP is a potent antagonist, while it is a partial agonist at both human  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors (Duke *et al.*, 2000). Thus,  $(\pm)$ -TAMP can functionally differentiate rat  $\rho$ 3 from  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors.

At  $\rho$ 3 GABA<sub>C</sub> receptors, ( $\pm$ )-CAMP is a partial agonist but, at  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors, it is a full agonist (Duke *et al.*, 2000). ( $\pm$ )-CAMP and ( $\pm$ )-TAMP are conformationally restricted analogues of GABA held rigidly by a methylene bridge between positions C2 and C3. The methylene bridge may interact sterically with the receptor protein producing an intrinsic activity less than 100% in the case of  $(\pm)$ -CAMP and antagonism in the case of  $(\pm)$ -TAMP.

Furthermore,  $(\pm)$ -CAMP and  $(\pm)$ -TAMP were tested as racemates, that is a 50:50 mixture of (+)- and (-)-CAMP and a 50:50 mixture of (+)- and (-)-TAMP. Therefore, the partial agonism of  $(\pm)$ -CAMP may also be due to opposing effects of the enantiomers of  $(\pm)$ -CAMP, one acting as a full agonist and the other acting as an antagonist. Similarly, the antagonist effects of  $(\pm)$ -TAMP may be due to opposing effects of the enantiomers of  $(\pm)$ -TAMP, one acting as an agonist/partial agonist and the other acting as an antagonist. Such pharmacological differences between the enantiomers of  $(\pm)$ -CAMP were reported by Duke et al. (2000) at human recombinant  $\rho 1$  and  $\rho 2$  GABA<sub>C</sub> receptors, where (+)-CAMP is a full agonist, while its enantiomer, (-)-CAMP, is a weak antagonist. Such effects were not observed with the enantiomers of  $(\pm)$ -TAMP. Both (+)- and (-)-TAMP were partial agonists with similar intrinsic activities at both  $\rho 1$  and  $\rho^2$  GABA<sub>C</sub> receptors. However, further experiments are required to establish whether the pharmacological effects of ( $\pm$ )-CAMP and ( $\pm$ )-TAMP at the  $\rho$ 3 GABA<sub>C</sub> receptor are

### References

- ALLAN, R.D., JOHNSTON, G.A.R., & KAZLAUSKAS, R. (1985). Synthesis of analogues of GABA. XIII. An alternate route to (Z)-4-aminocrotonic acid. Aust. J. Chem., 38, 1647-1650.
- ALLAN, R.D. & TWITCHIN, B. (1978). Synthesis of some substituted 4-amino-but-2-enoic acids as analogues of the neurotransmitter GABA. Aust. J. Chem., 31, 2283-2289.
- ALLAN, R.D. & TWITCHIN, B. (1980). Synthesis of analogues of GABA. IV Three unsaturated derivatives of 3-aminocyclopentane-1-carboxylic acid. Aust. J. Chem., 33, 599-604.
- AMIN, J. & WEISS, D. S. (1994). Homomeric rho 1 GABA channels: activation properties and domains. *Recept. Channels*, **2**, 227–236.
- BAILEY, M.E., ALBRECHT, B.E., JOHNSON, K.J. & DARLISON, M.G. (1999). Genetic linkage and radiation hybrid mapping of the three human GABA(C) receptor rho subunit genes: GABRρ1, GABRρ2 and GABRρ3. *Biochim. Biophys. Acta*, **1447**, 307-312.
- BLEIN, S., HAWROT, E. & BARLOW, P. (2000) The metabotropic GABA receptor: Molecular insights and their functional consequences. *Cell. Mol. Life Sci.*, 57, 635–650.
- BORMANN, J. (2000). The 'ABC' of GABA receptors. *TiNS*, **21**, 16–19.
- BOWERY, N.G. & ENNA, S.J. (2000).  $\gamma$ -Aminobutyric acid<sub>B</sub> receptors: first of the functional metabotropic heterodimers. *J. Pharmacol. Exp. Ther.*, **292**, 2–7.
- BOUE-GRABOT, E., ROUBARAKI, M., BASCLES, L., TRAMU, G., BLOCH, B. & GARRET, M. (1998). Expression of GABA receptor rho subunits in rat brain. J. Neurochem., 70, 899–907.
- CHEBIB, M. & JOHNSTON, G.A.R. (2000). GABA activated ion channels: medicinal chemistry and molecular biology, Perspective. J. Med. Chem., 43, 1427-1447.
- CHEBIB, M., MEWETT, K.N. & JOHNSTON, G.A.R. (1998). GABA<sub>C</sub> receptor antagonists differentiate between human  $\rho 1$  and  $\rho 2$  receptors expressed in Xenopus oocytes. *Eur. J. Pharmacol.*, **357**, 227–234.
- CHEBIB, M., VANDENBERG, R.J. & JOHNSTON, G.A.R. (1997). Analogues of γ-aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) substituted in the 2-position as GABA<sub>C</sub> receptor antagonists. Br. J. Pharmacol., **122**, 1551–1560.

due to the opposing effects of enantiomers or unfavourable steric interactions.

The pharmacological evaluation of the various GABA analogues at GABA<sub>C</sub> receptors has contributed towards the SAR profiles for  $\rho$ 3 GABA<sub>C</sub> receptors. The finding that 2-MeTACA has no effect as an agonist or antagonist and that (±)-TAMP is a potent antagonist at rat  $\rho$ 3 GABA<sub>C</sub> receptors highlights the pharmacological differences between GABA<sub>C</sub> receptor subtypes. These compounds could be important pharmacological tools because they may functionally differentiate between  $\rho$ 1,  $\rho$ 2 and  $\rho$ 3 GABA<sub>C</sub> receptors *in vitro*. Although many of these compounds cannot cross the blood brain barrier, the results of this study may lead to the design and development of selective  $\rho$ 3 GABA<sub>C</sub> receptor ligands, which would aid in studying the role these receptors play in the central nervous system.

The authors wish to thank Mr Kong Li and Dr Hue Tran for their excellent technical assistance and National Health and Medical Research Council of Australia and Circadian Technologies Pty Ltd for financial support.

- CUTTING, G. R., CURRISTIN, S., ZOGHIBIM H., O'HARA, B., SELDIN, M.F. & UHL, G. R. (1992). Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit  $\rho 2$  cDNA and colocalisation of the genes encoding  $\rho 1$  (GABR $\rho 2$ ) and  $\rho 1$  (GABR $\rho 1$ ) to human chromosome 6ql4-q21 and mouse chromosome 4. *Genomics*, **12**, 801–806.
- CUTTING, G. R., LU, L., O'HARA, B. F., KASCH, L.M., MONTOSER-AFIZADEH, C., DONOVAN, D.M., SHIMADA, S., ANTONARAKIS, S. E., GUGGINO, W. B., UHL, G. R. & KAZAJIAN JR, H. H. (1991). Cloning of the  $\gamma$ -aminobutyric acid (GABA)  $\rho$ 1 cDNA: a GABA receptor subunit highly expressed in the retina. *Proc. Natl. Acad. Sci. U.S.A.*, **88**, 2673–2677.
- DUKE, R.K., CHEBIB, M., ALLAN, R.D., MEWETT, K.N. & JOHN-STON, G.A.R. (2000). (+)- and (-)- CAMP (*cis*-2-aminomethylcyclopropanecarboxylic acid), show opposite pharmacology at recombinant  $\rho$ 1 and  $\rho$ 2 GABA<sub>C</sub> receptors. J. Neurochem., **75**, 2602–2610.
- ENZ, R. & BORMANN, J. (1995). A single point mutation decreases picrotoxinin sensitivity of the human GABA receptor  $\rho 1$  subunit. *NeuroReport*, **6**, 1569–1572.
- ENZ, R. & CUTTING, G.R. (1998). Molecular composition of GABA<sub>C</sub> receptors. Vis. Res., 38, 1431-1441.
- FEIGENSPAN, A., WASSLE, H. & BORMANN, J. (1993). Pharmacology of GABA receptor chloride channels in rat retinal bipolar cells. *Nature*, **361**, 159–161.
- HACKAM, A.S., WANG, T.L., GUGGINO, W.B. & CUTTING, G.R. (1998). Sequences in the amino termini of GABA  $\rho$  and GABA<sub>A</sub> subunits specify their selective interaction in vitro. *J. Neurochem.*, **70**, 40–46.
- JOHNSTON, G.A.R, BURDEN, P.M., MEWETT, K.N. & CHEBIB, M. (1998). Neurologically-active compounds, The University of Sydney and Polychip Pharmaceuticals. International Patent Publication No. WO 98/58939.
- JOHNSTON, G.A.R, CURTIS, D.R., BEART, P.M., GAME, C. J. A., MCCULLOCH, R.M. & TWITCHIN, B. (1975). cis- and trans-4-Aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem., 24, 157–160.

- KUSAMA, T., SPIVAK, C.E., WHITING, P., DAWSON, V.L., SCHAEF-FER, J.C. & UHL, G.R. (1993a). Pharmacology of GABA rho 1 and GABA alpha/beta receptors expressed in *Xenopus* oocytes and COS cells. *Br. J. Pharmacol.*, **109**, 200–206.
- KUSAMA, T., WANG, T.L., GUGGINO, W.B., CUTTING, G.R. & UHL, GR. (1993b). GABA rho 2 receptor pharmacological profile: GABA recognition site similarities to rho 1. *Eur. J. Pharmacol.*, **245**, 83–84.
- MURATA, Y., WOODWARD, R.M., MILEDI, R. & OVERMAN, L.E. (1996). The first selective antagonist for a GABA<sub>C</sub> receptor. *Bioorg. Med. Chem. Lett.*, **6**, 964–968.
- OGURUSU, T. & SHINGAI, R. (1996). Cloning of a putative  $\gamma$ -aminobutyric acid (GABA) receptor subunit  $\rho$ 3 cDNA. *Biochim. Biophys. Acta*, **1305**, 15–18.
- OGURUSU, T., TAIRA, H. & SHINGAI, R. (1995). Identification of GABA<sub>A</sub> receptor subunits in rat retina: cloning of the rat retina GABA<sub>A</sub> receptor ρ2 subunit cDNA. J. Neurochem., **65**, 964–968.
- OGURUSU, T., YANAGI, K., WATANABE, M., FUKAYA, M. & SHINGAI, R. (1999). Localization of GABA receptor  $\rho^2$  and  $\rho^3$  subunits in rat brain and functional expression of homooligomeric  $\rho^3$  receptors and heterooligomeric  $\rho^2\rho^3$  receptors. *Recept. Channels*, **6**, 463–475.
- ONG, J. & KERR, D.I.B. (2000). Recent advances in GABA<sub>B</sub> receptors: from pharmacology to molecular biology. *Acta*. *Pharmacol. Sin.*, **21**, 111–123.
- QIAN, H. & RIPPS, H. (1999). Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits. *Proc. Royal Soc. London – Series B: Biol. Sci.*, 266, 2419–2425.

- RAGOZZINO, D., WOODWARD, R.M., MURARA, Y., EUSEBI, F., OVERMAN, L.E., & MILEDI, R. (1996). Design and *in vitro* pharmacology of a selective  $\gamma$ -aminobutyric acid<sub>C</sub> receptor antagonist. *Mol. Pharmacol.*, **50**, 1024–1030.
- SHINGAI, R., YANAGI, K., FUKUSHIMA, T., SAKATA, K. & OGURUSU, T. (1996). Functional expression of GABA rho 3 receptors in *Xenopus* oocytes. *Neurosci. Res.*, **26**, 287–390.
- WANG, T.L., GUGGINO, W.B. & CUTTING, G.R. (1994). A novel  $\gamma$ aminobutyric acid receptor subunit ( $\rho$ 2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in *Xenopus* oocytes. J. Neurosci., **14**, 6524–6531.
- WEGELIUS, K., PASTERNACK, M., HILTUNEN, J.O., RIVERA, C., KAILA, K., SAARMA, M. & REEBEN, M. (1998). Distribution of GABA receptor rho subunit transcripts in the rat brain. *Eur. J. Neurosci.*, **10**, 350–357.
- WOODWARD, R.M., POLENZANI, L. & MILEDI, R. (1993). Characterization of bicuculline/baclofen-insensitive ( $\rho$ -like) gammaaminobutyric acid receptors expressed in *Xenopus* oocytes. 2. Pharmacology of gamma-aminobutyric acid<sub>A</sub> and gammaaminobutyric acid<sub>B</sub> receptor agonists and antagonists. *Mol. Pharmacol.*, 43, 3609–3625.
- ZHANG, D., PAN, Z.H., ZHANG, X., BRIDEAU, A. & LIPTON, S.A. (1995). Cloning of a GABA type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. *Proc. Natl. Acad. Sci. U.S.A.*, **92**, 11756–11760.

(Received June 29, 2001 Revised October 2, 2001 Accepted October 9, 2001)