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Atherosclerosis is a focal in¯ammatory disease of the arterial wall. It starts with the formation of
fatty streaks on the arterial wall that evolve to form a raised plaque made of smooth muscle cells
(SMCs), and in®ltrating leukocytes surrounding a necrotic core. The pathogenesis of the
atherosclerotic lesion is incompletely understood, but it is clear that a dysfunction of the
endothelium, recruitment and activation of in¯ammatory cells and SMC proliferation have a pivotal
role. Over recent years receptors for extracellular nucleotides, the P2 receptors, have been recognized
as fundamental modulators of leukocytes, platelets, SMCs and endothelial cells. P2 receptors
mediate chemotaxis, cytokine secretion, NO generation, platelet aggregation and cell proliferation in
response to accumulation of nucleotides into the extracellular milieu. Clinical trials have shown the
bene®t of antagonists of the ADP platelet receptor(s) in the prevention of vascular accidents in
patients with atherosclerosis. Therefore, we anticipate that a deeper understanding of the
involvement of P2 receptors in atheroma formation will open new avenues for drug design and
therapeutic intervention.
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Introduction

Atherosclerosis is a leading cause of morbidity and
morbility in the western world. Although it was previously
thought to be mainly a degenerative disease, it is now well
ascertained that its pathogenesis is in¯ammatory. While

retention of atherogenic lipoproteins and foam cell
accumulation into the arterial intima are the main
morphological stigma of atherosclerosis (Stary, 1989; Libby

et al., 1996), more subtle changes in the microenvironment
of the arterial wall caused by in®ltration of in¯ammatory
cells and local release of cytokines and other in¯ammatory

mediators are increasingly recognized as additional key
factors in the initiation and progression of the athero-
sclerotic lesion (Dong et al., 1998; Gu et al., 1998b; Phipps,

2000). The `in¯ammatory hypothesis' is not only one of the
most stimulating recent advances in the understanding of
atherogenesis, but also a conceptual breakthrough suscep-
tible of far reaching therapeutical developments, given the

high prevalence of in¯ammation as a risk factor in the

population and the potential availability of preventive
measures.
In the context of the `in¯ammatory hypothesis' the

endothelium has a central role (Figure 1). Under physiolo-

gical conditions the endothelial lining is crucial for
haemostasis, platelet activation, coagulation, ®brinolysis,
modulation of vascular tone and smooth muscle cell

proliferation (Enderle et al., 2000; Bryan et al., 2001) In
response to various challenges, endothelial cells may change
their functions and shift from an anti-coagulant to a pro-

coagulant status, or initiate synthesis and release of
vasoactive factors, cytokines or growth factors. These
modi®cations as a whole are recognized as key features of

the so called `endothelial dysfunction' (or `endothelial
instability') that is thought to participate in plaque formation
and to precipitate the most severe consequences of this lesion
(Forgione et al., 2000; Caillaud et al., 2001), even in the

absence of an overt rupture of the plaque.
Many factors may lead to endothelial dysfunction and to

atherosclerosis, including an increased serum LDL concen-

tration, presence of altered LDL, free radicals, hypertension,
cigarette smoking, diabetes, high serum homocysteine levels,
chronic infections (e.g. by Helicobacter pylorii, Streptococcus
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Pneumoniae, Herpes virus), endotoxaemia, and an unfavour-
able genetic background (Briner & Luscher, 1994; Heitzer et
al., 1996; Nygard et al., 1997; Goldboult & Neufeld, 1988;

Kullo et al., 2000; Shah, 2001). However, local conditions at
the level of the arterial wall predisposing to this outcome are
poorly known.
During the last few years the plasma membrane receptors

for extracellular nucleotides have been recognized as
important modulators of responses of blood cells (i.e.
platelets, monocytes, granulocytes, lymphocytes) as wells as

of cells of the vessel wall (i.e. endothelial cells, smooth
muscle cells (SMCs) and ®broblasts) (Ralevic & Burnstock,
1998; Burnstock, 1999; Burnstock & Williams, 2000;

Dubyak, 2000; Di Virgilio et al., 2001; Lewis & Evans,
2001). These receptors, named P2 receptors (P2R), are
known to have an undisputed and crucial role in the

modulation of vascular tone, and to be in perspective of
similar importance as regulators of the in¯ammatory
response (Di Virgilio, 1995; Brambilla et al., 1999; Souslova
et al., 2000; Solle et al., 2001; John et al., 2001). Additionally,

P2 receptors have a strong cardioregulatory activity that
further emphasizes their potential in cardiovascular diseases
(see Vassort, 2001, for a recent comprehensive review). Since

the natural ligands for the P2R, ATP and ADP (and possibly
UTP/UDP), are released into the blood under many
circumstances (platelet aggregation, shear-stress or damage

of the endothelial lining due to infections or surgical
manoeuvres), it would not be surprising that the P2R were
stimulated during plaque formation and participated actively

in this process.

The atherogenic process

Changes in permeability of the endothelial barrier are crucial
from the very beginning of atheroma formation. Recruitment
of monocytes within the intima of large size artery occurs

early during atherosclerosis, re¯ecting a peculiar pattern of
expression of endothelial adhesion molecules such as
endothelium leukocyte adhesion molecules (ELAM) and

vascular cell adhesion molecule-1 (VCAM-1) (Cybulsky &
Gimbrone, 1991). VCAM-1 bind the speci®c integrin receptor
very late activating antigen 4 (VLA-4) expressed by

monocytes and lymphocytes, but not granulocytes, thus
probably explaining the selective recruitment of monocytes
in early atherogenesis (Cybulsky et al., 1991; Bochner et al.,
1991). Hypercholesterolemic diet appears to cause upregula-

tion of VCAM-1 well before fatty streak formation takes
place (Li et al., 1993). At the same time, soluble products
such as macrophage chemotactic protein-1 (MCP-1) and

macrophage colony stimulating factor (M-CSF) produced by
endothelial cell, SMCs and the in¯ammatory cells themselves
under the stimulation of locally released cytokines, accumu-

Figure 1 Steps in atheroma formation and progression.
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late in the arterial wall and support recruitment as well as

activation-maturation of monocytes (Figure 2).
Migration of in¯ammatory cells into the intima is

paralleled by in®ltration of low density lipoproteins (LDL),

to promote deposition of fatty streaks, a typical arterial
lesion made of lipid-®lled foam cells, T lymphocytes and a
small amount of extracellular lipids. Fatty streak formation is

now considered a pure in¯ammatory lesion. Mechanical
forces acting on the arterial wall have a key role in
facilitating plasma lipoprotein in¯ux and in causing the
adaptative intimal thickening typical of atherosclerosis

(Gimbrone et al., 2000). If the o�ending agents are not
removed, the in¯ammatory response can continue inde®-
nitely, stimulating proliferation and migration of SMCs, and

leading to formation of an intermediate lesion and to
remodelling of the arterial wall. Fatty streaks undergo a
progressive increase with intra and extracellular lipid

deposition and enhanced extracellular matrix accumulation.
The number of SMCs increases, either by in situ intimal
proliferation or as a consequence of migration from the

media (Gorski & Walsh, 1995).
Changes in the endothelial surface may contribute to

plaque growth in several ways. In ®rst place, a reduced ability

to produce anti-thrombotic factors (e.g. prostacylins and NO)

may promote platelet aggregation and mural thrombosis
(Falk & FernaÂ ndez-Ortiz, 1995; Diodati et al., 1998;
Hasenstab et al., 2000). Secondly, the production of

heparin-like glycoaminoglycans, thrombomodulin and plas-
minogen may also be decreased. Platelet deposition and
activation on the endothelium generates products that further

promote SMCs migration and plaque growth (e.g. platelet-
derived growth factor, PDGF). SMCs are crucial in the
atherogenic process, therefore understanding the physiology
of factors that modulate their function, motility and growth

is of the utmost importance.
Under normal physiological conditions, SMCs are con®ned

to the medial layer of the artery wall, but early in the genesis

of the atherosclerotic plaque they undergo mitogenic
stimulation and phenotype change, losing contractile ele-
ments and acquiring the ability to replicate and migrate into

the intima (Gorski & Walsh, 1995). Within the intima SMCs
proliferate, start deposition a ®brotic connective tissue matrix
and undergo an `in¯ammatory di�erentiation' that enables

them to secrete pro-in¯ammatory agents (e.g. cytokines and
metalloproteases). Secretion by SMCs of IL-8, MCP-1, TNFa,
IL-1, TGFb has been documented (Watson et al., 1998).

Figure 2 Events in atherosclerotic plaque formation. Injury or activation of endothelial cells allows penetration of molecules (e.g.
LDL) from the arterial lumen into the subintimal space. Within this space such molecules may undergo modi®cations (e.g.
oxidation) that unable them to further activate intimal cells, and also accelerate phagocytosis by macrophages (MF). Endothelial
cell activation also facilitates migration of monocytes from the blood. Monocyte migration is sustained by release of chemotactic
factors (e.g. MCP-1) by SMCs. Monocytes di�erentiate into macrophages and phagocytose oxLDLs and other extracellular lipids.
During phagocytosis, macrophages become activated and release cytokines and growth factors. Lipid laden macrophages further
di�erentiate into foam cells that eventually die, releasing their content into the necrotic core of the plaque. The plaque undergoes a
continuous remodelling due on the one hand to deposition of extracellular matrix protein and on the other to secretion of MMPs
that digest the extracellular matrix. Extracellular matrix proteins are secreted by SMCs. MMPs are secreted by SMCs and
macrophages. SMCs under the stimulation with LDL, cytokines and growth factors actively proliferate thus forming the ®brous cap
(not shown in the Figure). Some of the products released into the plaque may accelerate damage of the endothelial lining by causing
apoptosis of endothelial cells.
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Recently, it has been emphasized that a tight paracrine
interaction between endothelial cells and SMCs might
condition the progression of the plaque (Rainger & Nash,

2001). Endothelial cells, under the e�ect of soluble factors
released by the SMCs, acquire an highly reactive in¯amma-
tory phenotype that on the one hand increases leukocyte
adhesion and diapedesis, and on the other sensitizes them to

cytokines released into systemic circulation. This could be an
important factor in the increased susceptibility to athero-
sclerotic occlusive disease associated with chronic infections

(Kiechl et al., 2001).
Production of extracellular matrix is another additional

feature of the atherosclerotic lesion. The ®brous cap that is

thus formed owes its genesis to several factors that operate a
continuous remodelling of the plaque: deposition and
degradation of extracellular matrix, SMCs proliferation, lipid

deposition, macrophage and lymphocyte in®ltration. Stable
plaques often have a relatively thick ®brous cap protecting
the lipid core from contact with blood. In the vulnerable,
unstable, lesion we may observe a substantial lipid core and a

relatively thin cap. Within these latter lesions, pro-in¯amma-
tory agents produced by T cells (e.g. IFNg) seem to have a
key role, on the one hand by decreasing SMC secretion of

extracellular matrix proteins, and on the other by increasing
production by macrophage (but also by SMCs) of metallo
proteinases (MMPs) (Galis et al., 1995; Libby et al., 1996).

P2 receptors in the vasculature

P2R are ubiquitously expressed throughout the human body,
the vessel wall included. The P2YR are seven membrane
spanning receptors coupled via G protein (Gi/o or Gq/11) to
IP3 generation, Ca2+ release from intracellular stores or

adenylate cyclase stimulation/inhibition (Cooper & Rodbell,
1979; von Kugelgen & Wetter, 2000; Communi et al., 2001).

P2XR are membrane ion channels made by the assembly of
subunits of the same (homo oligomers) or di�erent (hetero
oligomers) subtype (Table 1) (North & Surprenant, 2000;

Khakh et al., 2001). Among P2X receptors, P2X7 is endowed
with the ability to generate a non-selective plasma membrane
pore upon sustained stimulation by extracellular ATP and
directly interacts with several cytoplasmic proteins (Di

Virgilio, 1995; Kim et al., 2001). The principal P2R subtypes
present in endothelial cells are P2Y1 and P2Y2, but mRNAs
for P2Y4 and P2Y6 have also been identi®ed (Jin et al., 1998).

Although it is assumed that P2XR are expressed by
endothelial cells to a very low level, it is likely that this
belief will have to be re-evaluated as further studies are

carried out. Functional evidence suggests that endothelial
cells express the P2X7R (von Albertini et al., 1998; Goepfert
et al., 2000), while molecular studies reveal expression of

P2X4 (Yamamoto et al., 2000; Korenaga et al., 2001). There
are so far no reports documenting expression by endothelial
cells of other members of the P2 family (i.e. P2Y11, P2Y12,
P2X1, P2X2, P2X3, P2X5 and P2X6).

Vascular smooth muscle cells express P2X1, P2X2, P2X4,
P2X7, P2Y2, P2Y4, and P2Y6 (Kunapuli & Daniel, 1998;
Cario-Toumaniantz et al., 1998). It is uncertain whether they

also express the P2Y1R (Kunapuli & Daniel, 1998; Erlinge,
1998), and there are no reports on P2Y11 expression. While
great emphasis is given to P2R present on the endothelium

and the smooth muscle cell layer, expression of P2R by
®broblasts, another key cellular component of the vessel wall,
should not be overlooked, especially in pathologic conditions.

Human and rat ®broblasts are known to express P2Y1, P2Y2,
P2Y4, P2Y6, P2X3, P2X4 and P2X7, likely in an activation-
dependent fashion (Webb et al., 1996; Zheng et al., 1998;
Solini et al., 1999; Solini & Morelli unpublished data). It is

obvious that the ®nal outcome of vascular stimulation by
nucleotides depends on the integration of all the responses

Table 1

Mammalian P2Y and P2X receptors
Preferred naturally

Subtype Amino acid number occurring agonist Signal transduction

P2Y1 362 ADP IP3, cAMP
P2Y2 373 UTP, ATP IP3,
P2Y4 352 UTP IP3

P2Y6 379 UDP IP3

P2Y11 371 ATP IP3, cAMP
P2Y12 342 ADP cAMP
P2Y13 334 ADP IP3, cAMP

P2X1 399 ATP Ion currents
P2X2* 472 ATP Ion currents
P2X3 397 ATP Ion currents
P2X4* 388 ATP Ion currents
P2X5 455 ATP Ion currents
P2X6 379 ATP Ion currents
P2X7 595 ATP Ion currents

protein ± protein interaction
P2X2/P2X3 ATP Ion currents
P2X1/P2X5 ATP Ion currents
P2X4/P2X6 ATP Ion currents

*Splice variants of P2X2 and P2X4 have also been identi®ed. Funtional and molecular evidence exists for the presence of heteromeric
P2X receptors (see Surprenant & North, 2000). At P2Y1 and P2Y12, ATP may act as an antagonist. P2Y1 and P2Y12 mediate inhibition
of adenylate cyclase; P2Y11 mediates stimulation of adenylate cyclase; P2Y13 mediates inhibition of adenylate cyclase at low and
stimulation at high concentrations.
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elicited by individual P2Y and P2X receptors expressed on all
the cell elements of the vessel wall.

P2 receptors in blood cells

Blood cells express P2 receptors of both the P2Y and P2X
subfamilies. In the P2YR subfamily, P2Y1, P2Y2, P2Y6 and

P2Y11 were reported to be expressed by monocytes, B
lymphocytes or polymorphonuclear granulocytes (Di Virgilio
et al., 2001). Monocytes and macrophages also express P2X1,

P2X4 and P2X7, while in granulocytes only expression of the
P2X7 subtype has been reported (Suh et al., 2001). T
lymphocytes express a P2X7-like receptor, while it is still

controversial whether normal B lymphocytes express func-
tional P2XR (Baricordi et al., 1996; Gu et al., 2000),
although a recent confocal microscopy study has revealed

expression of the PX1, P2X2, P2X4 and P2X7 proteins
(Sluyter et al., 2001). Dendritic cells generated in vitro from
monocyte precursors express P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11, P2X1, P2X4, P2X5 and P2X7 (Liu et al., 1999;

Berchtold et al., 1999; Ferrari et al., 2000b). Platelets express
P2Y1, P2Y12 and P2X1 (Sun et al., 1998; Leon et al., 1997;
Hollopeter et al., 2001). Erythrocytes are known to express a

P2X7-like receptor and, at least in turkey, a P2Y1-like
receptor (Parker & Snow, 1972; Boyer et al., 1989).
Following migration and/or stimulation with in¯ammatory

mediators, pattern of expression in leukocytes may change
substantially, leading to downmodulation of some subtypes
(e.g. P2Y1) and upmodulation of others (e.g. P2X7) (Dubyak

et al., 1996; Humphreys & Dubyak, 1996). The only known
physiological activator of P2XR is ATP; on the contrary, the
six P2YR subtypes are di�erentially sensitive to various
nucleotides: at P2Y1, P2Y12 and P2Y13 the preferred agonist

is ADP, at P2Y2 ATP and UTP are equipotent, at P2Y4 UTP
is preferred, at P2Y6 UDP, while P2Y11 is the only P2YR
selective for ATP (von kugelgen & Wetter, 2000; Communi et

al., 2001). A relevant consequence of such a nucleotide
selectivity is that even on the very same cell, P2Y receptors
are di�erentially activated depending on the extracellular

nucleotide milieu to which the cell is exposed. For example,
where extensive conversion of extracellular ATP to ADP
takes place, as it occurs at sites of platelet aggregation, P2Y1,
P2Y12 and P2Y13 should be the main receptors activated,

while on the contrary at sites exposed to shear-stress forces,
where ATP is the principal nucleotide released, P2Y11 is
likely to be the main receptor stimulated. It should also be

pointed out that ATP may act as an antagonist at P2Y1 and
P2Y12 (von kugelgen & Wetter, 2000). There is evidence that
UTP is released via non-lytic pathways from a variety of cells

(platelets, leukocytes, epithelia) (Lazarowski & Harden,
1999), and it has to be expected that cell membrane damage
causes e�ux into the pericellular milieu of both ATP and the

other intracellular nucleotides, UTP and UDP included, thus
it is possible that at sites of cell damage P2Y4 and P2Y6 are
stimulated. An additional family of agonist molecules are the
diadenosine polyphosphates, that are often co-released with

ATP and ADP and stimulate P2 receptors, either directly of
after breakdown to ATP (Rodriguez del Castillo et al., 1988;
Miras-Portugal et al., 1999).

Another factor that modulates P2-mediated responses is
the local nucleotide concentration: P2YR have usually high
a�nity for the ligand, and are therefore responsive to

nanomolar concentrations (Ralevic & Burnstock, 1998), while
on the contrary P2X1± 6R have EC50 in the low micromolar
range, and P2X7 in the hundred micromolar range (Khakh et

al., 2001). This may suggest that P2 receptors that mediate
release of pro-in¯ammatory factors or trigger a cytotoxic
e�ect, such as P2X7, are not usually activated in conditions
under which other members of the P2 family are fully active.

This confers a great plasticity to a nucleotide-based
extracellular signalling system.
An alternative, and as yet almost unexplored, pathway for

increasing the extracellular ATP concentration is a transpho-
sphorylation reaction whereby ATP is synthesized at the
expenses of AMP or ADP. This mechanism has been

reported to be active on the surface of cultured human
umbilical vein endothelial cells, and might therefore con-
tribute substantially to accumulation of extracellular ATP

(and possibly other nucleotides) (Yegutkin et al., 2001).

Systems involved in the degradation of extracellular ATP

As it would be expected for a highly regulated signalling
network, extracellular ATP is a substrate for powerful
hydrolytic enzymes that shorten drastically its lifespan. A

recent classi®cation by Zimmermann identi®es four families
of enzymes involved in the hydrolysis of extracellular
nucleotides: ecto-nucleoside triphosphate diphosphohydrolase

(E-NTPDase), ecto-nucleotide pyrophosphatase/phosphodies-
terase (E-NPP), alkaline phosphatase and ecto-5'-nucleotidase
(Zimmermann & Braun, 1999; Zimmermann, 2000).

E-NTPDase is a large family that can be subdivided into
two subgroups according to the membrane topology:
members of the ®rst group are predicted to have two
hydrophobic transmembrane domains, while members of

the second group have only one transmembrane domain, with
a large COOH residue facing the extracellular environment.
E-NTPDases hydrolyze ATP, ADP, several other purine and

pyrimidine nucleotides, and are also known as di�erentiation
markers of lymphocytes (CD39). The E-NPP family includes
three members (NPP1, NPP2 and NPP3) that are also known

as plasma cell di�erentiation antigens, motility stimulating
proteins (autotaxin) or neural di�erentiation and tumor
surface markers (Zimmermann, 2000). These enzymes cleave
3', 5'-cyclic AMP to AMP, ATP to AMP and PPi, ADP to

AMP and Pi or NAD+ to AMP and nicotinamide
mononucleotide. In addition, they also hydrolyze pyrimidin
nucleotides as well as the phosphodiester bonds of nucleic

acids and the pyrophosphate bond of nucleotide sugars. E-
NPP have a single transmembrane domain with an
extracellular COOH terminus. Alkaline phosphatases are a

family of non-speci®c ecto-phosphomonoesterases with a
broad substrate speci®city. Besides degrading nucleoside 5'-
tri, -di, and -monophosphates, they also degrade PPi and a

large number of phosphorylated substrates. Alkaline phos-
phatases are glycosylphosphatidylinositol (GPI)-anchored
membrane protein. Ecto-5'-nucleotidase is also a GPI-
anchored molecule known as a lymphocyte maturation

marker (CD73). This enzyme catalyzes the conversion of
nucleoside 5'-monophosphates to the respective nucleosides
an Pi, and is the main enzyme responsible for the generation

of adenosine.
Extracellular nucleotide-hydrolyzing enzymes do not show

a selective tissue distribution and are often found colocalized
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on the same cells. Soluble forms are also present. Functional
role of enzymes involved in metabolism of extracellular ATP
is not entirely understood, with the exception of a few

examples where their activity appears crucial such as platelet
aggregation (Enjyoji et al., 1999), in¯ammation (Kaczmarek
et al., 1996; Robson et al., 1997), ischaemia (Braun et al.,
1998), calci®cation (Okawa et al., 1998), cell motility (Murata

et al., 1994) or adhesion (Airas et al., 1997). CD39 is a potent
inhibitor of platelet aggregation since this enzyme converts
pro-aggregatory ADP to anti-aggregatory adenosine (Kacz-

marek et al., 1996; Marcus et al., 1997). Recombinant CD39
inhibits ADP and collagen-induced platelet aggregation,
suggesting that soluble forms of this enzyme might be useful

as anti-thrombotic drugs. Similarly, intravenous administra-
tion of apyrase might have anti-aggregant e�ects of potential
therapeutic value.

P2 receptor-dependent release of inflammatory mediators
from blood cells

Stimulation of P2 receptors is coupled to release of a wealth of
in¯ammatory mediators (see Di Virgilio et al., 2001, for a
recent review). Of obvious relevance for atherosclerotic plaque

formation and progression, is release of the pro-in¯ammatory
cytokines IL-1b, IL-1a, IL-6, IL-8, and TNFa (Perregaux &
Gabel, 1994; 1998; Ferrari et al., 1997a; Solini et al., 1999;

Ferrari et al., 2000b; Warny et al., 2001). Furthermore,
nucleotide receptors may also mediate up-regulation of NO
synthase and NO generation (Tonetti et al., 1994; Denlinger et

al., 1996; Hu et al., 1998). In neutrophilic and eosinophilic
polymorphonuclear granulocytes, P2 receptor stimulation
triggers superoxide anion generation and exocytosis of both
speci®c and azurophilic granules (Cockcroft & Stutch®eld,

1989; Balazovich & Boxer, 1990; Ferrari et al., 2000a; Suh et
al., 2001). Nucleotide stimulation also increases membrane
expression of CD11b/CD18 and cell adhesion to albumin-

coated latex beads (Freyer et al., 1988). Presence of the
integrin-binding domain RGD in the ®rst extracellular loop of
P2Y2 (Erb et al., 2001) strengthens involvement of P2 receptors

in cell adhesion. Platelets are a key target for nucleotides in the
blood (Hourani & Hall, 1994). Three P2 receptors expressed
on platelets (P2X1, P2Y1 and P2Y12) have a major role in the
regulation of platelet aggregation and thrombus formation

(Kunapuli, 2000; Savi & Herbert, 2000; Hollopeter et al.,
2001). ADP, the main agonist nucleotide for platelets, causes
shape changes, aggregation, thromboxane A2 formation and

granule secretion.
On endothelial cells extracellular nucleotides have multiple

e�ects, such as modulation of proliferation and angiogenesis

(van Daele et al., 1992; Rathbone et al., 1992), PGI2 and NO
generation (Boeynaems & Galand, 1983; Mathie et al., 1991;
Yagi et al., 1994), release of von Willebrand factor (Vischer

& Wollheim, 1998) and tissue-type plasminogen activator
(Hrafknelsdottir et al., 2001). Besides their action on
endothelium, nucleotides also have a well documented action
on two key components of the vessel wall: SMCs and

®broblasts (Wang et al., 1991; Erlinge, 1998; Harper et al.,
1998; Solini et al., 1999; 2000 White et al., 2000). In smooth
muscle cells, nucleotides act as mitogens or co-mitogens in

synergism with polypeptide growth factors or neuropeptides.
Of particular relevance is synergism with PDGF, a factor
with a well de®ned role in atherogenesis. Furthermore, the

potent pro-in¯ammatory cytokine IL-1b up-regulates the
P2Y2 receptor subtype and increases the mitogenic response
to UTP (Hou et al., 2000). This is of obvious relevance in

view of the in¯ammatory etiology of the atherosclerotic
plaque. Little attention has been paid to ®broblasts both as a
possible target of extracellular nucleotides in the vessel wall,
and as a possible source of in¯ammatory mediators.

Fibroblasts are known to produce several cytokines and
pro-in¯ammatory factors, besides being very active in the
deposition of extracellular matrix. We have recently shown

that human primary ®broblast cultures release substantial
amount of IL-6 upon stimulation with extracellular ATP,
likely via activation of P2X7, and this activity is potentiated

in conditions mimicking hyperglycaemia (Solini et al., 1999;
2000). However, since human ®broblasts express several other
P2 receptors, besides P2X7 (P2Y1, P2Y2, P2Y4, P2Y6, P2X3

and P2X4), a wider range of responses to nucleotide
stimulation is anticipated. It would be of interest to
investigate if and to what extent P2 receptor stimulation
could also cause secretion of extracellular matrix constituents

such as laminin, collagen or elastin. An additional aspect of
interest would be the ability of P2 receptor agonist to
stimulate ®broblast proliferation and/or di�erentiation into

smooth muscle cells.

A hypothesis for a role for P2 receptors in atherosclerosis

Activation of endothelial cells and their interaction with
blood cells is one of the key factors in the pathogenesis of

atherosclerosis. Ample evidence supports the interpretation
that local in¯ammatory changes that involve the endothe-
lium, circulating cells as well as elements of the arterial wall
have a crucial role in plaque progression and instability. It is

increasingly appreciated that the luminal side of the
endothelium is exposed to variable ATP levels, that are only
grossly re¯ected by the ATP concentration, up to 20 mM,

measured in bulk plasma (Born & Kratzer, 1984). The
endothelial cells themselves are capable of ATP release under
the e�ect of shear stress forces (Bodin et al., 1991), swelling

(Oike et al., 2000), or stimulation of plasma membrane
receptors (Yang et al., 1994) (Figure 3). In addition, since
ATP is stored within platelet dense granules, massive
amounts of ATP are released during platelet aggregation on

the endothelial surface (Meyers et al., 1982; Lages & Weiss,
1999). The level of extracellular ATP measured at sites of
massive platelet aggregation (20 ± 50 mM) is clearly an under-

estimation of the concentration that could be reached if
degranulation occurred in a protected compartment between
the platelet and endothelial cell plasma membranes. Besides

endothelial cells and platelets, leukocytes are an additional
important source of extracellular ATP. Although it is still a
debated issue (see for example Beigi & Dubyak, 2000),

substantial evidence is accumulating to support the ability of
in¯ammatory mediators (e.g. bacterial endotoxin, LPS) to
cause ATP release from leukocytes and endothelial cells
(Ferrari et al., 1997b; Sperlagh et al., 1998; Sikora et al.,

1999; Imai et al., 2000; Warny et al., 2001). This suggests that
purinergic stimulation can also occur in the vessel wall in
response to transient or long lasting bacteraemia, or to the

deposition of septic emboli. A purinergic loop could also be
triggered by mechanical insults, especially if associated to the
concomitant administration of high cholesterol diet, as
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suggested by experiments showing a dramatic redistribution
of P2XR in rabbit aorta subjected to balloon injury

(Pulvirenti et al., 2000). Finally, human primary ®broblast
cultures in vitro spontaneously release ATP (A. Solini et al.,
submitted), therefore it can be assumed that ATP is also

secreted by ®broblasts within the arterial wall.
It is evident that presence of ATP in the pericellular space

must be considered the rule rather than the exception,

although a rigorous quantitative determination of the actual
concentration of this nucleotide has never been performed. In
vitro measurements of ATP released from di�erent cell types
indicate a bulk solution concentration in the nanomolarlow

micromolar range, however the local concentration of ATP in
the vicinity of the plasma membrane might be substantially
higher. Beigi et al. (1999) measured the local ATP

concentration with a luciferase tethered to the platelet plasma
membrane, obtaining a peak release, after stimulation with
thrombin, in the 15 ± 20 mM range. This concentration is

su�cient to trigger on all P2Y and P2X receptor subtypes,
with the exception of P2X7. However, it has been reported
that P2X7R undergoes a progressive increase in current

(current growth) in response to repeated stimulation with
submaximal agonist (ATP or benzoyl ATP) doses, presum-
ably due to either increase in pore size or in agonist potency

(or both) (Surprenant et al., 1996; Rassendren et al., 1997;
Chessell et al., 1997; Hibell et al., 2000). This observation

suggests that in vivo even low but repeated pulses of ATP
might be able to activate P2X7R. The requirement for a high
ATP dose or repeated ATP pulses would be in keeping with

the hypothesis that the P2X7R should be quiescent under
normal physiological conditions and only be activated when
extensive tissue damage or activation of the in¯ammatory

system occur (Di Virgilio, 1995; Di Virgilio et al., 2001).
Indirect evidence that ATP release in circulation occurs at a
level at least su�cient to activate P2YR is provided by the
surprising phenotype of the cd39/ATP diphosphohydrolase

knockout (cd397/7) mouse. In these animals the ability to
degrade extracellular ATP and ADP is severely impaired,
thus it was expected that they should exhibit a thrombotic

diathesis due to pronounced platelet stimulation by ADP. On
the contrary, the cd397/7 mouse shows a prolonged bleeding
time and failure to undergo platelet aggregation. These

defects are due to P2Y1R desensitization dependent on the
increased accumulation of extracellular ATP, and are largely
corrected by the administration of apyrase (Enjyoji et al.,

1999). In addition, factors predisposing to atherosclerosis
might contribute to prolong the half life of extracellular ATP
in the vasculature, since it has been reported that activity of

Figure 3 Hypothetical role of extracellular ATP and nucleotide receptors in atherosclerotic plaque formation. Endothelial damage
or activation causes ATP release both into the blood and the arterial wall. On the endothelial surface ATP is hydrolized to ADP
thus triggering platelet aggregation via P2Y1R and P2Y12R. Activated platelets release further ATP that feed-backs on the
endothelium increasing its state of activation. In the subintimal space ATP synergyzes with other agents (e.g. oxLDL or IFNg
released by T helper lymphocytes) to promote macrophage activation. ATP acting at P2YR also contributes with MCP-1 to the
formation of a chemoatctic gradient for monocytes and macrophages. Macrophages are recruited from circulation as well as from
the arterial wall. Under stimulation with ATP, SMCs proliferate and release MMPs and extracellular matrix proteins. ATP, acting
at P2X7R and presumably also at P2YR triggers IL-1b and TNFa release from activated macrophages. At the same time, a high
level of extracellular nucleotide released by activated or damaged cells causes a sustained activation of the P2X7R, thus accelerating
cell death, either by necrosis or apoptosis.
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endothelial ATP diphophohydrolase is lost when endothelial
cells are exposed to in¯ammatory mediators that cause
generation of oxygen radicals (Robson et al., 1997).

Under normal physiological conditions, local ATP release
from the endothelium in response to shear stress forces or
locally released neuromediators has an important role in the
regulation of blood ¯ow. It is well documented that ATP is a

potent NO and PGI2 releasing agent, and thus a vasodila-
tatory stimulus (Burnstock, 1999; Burnstock & Williams,
2000). However, prolonged stimulation of endothelial cells by

haemodinamic stress, or platelet aggregation on the endothe-
lial surface, may cause a large and sustained ATP release that
may initiate an `in¯ammatory' activation of the endothelium.

Nucleotides have been reported to cause upregulation of
CD11b/CD18 on granulocytes and enhance adherence of
leukocytes to latex beads and endothelial cells (Freyer et al.,

1988; Oryu et al., 1996). Enhancement of the adhesive
properties of the endothelium favours platelet aggregation
and the release of platelet-derived pro-atherosclerotic factors.
Release of ATP within the vessel wall may also participate in

the generation of an in¯ammatory microenvironment. Besides
endothelial cells, sources of ATP may be vascular smooth
muscle cells or ®broblasts. Furthermore, as discussed above,

in¯ammatory cells migrating into the nascent atherosclerotic
plaque are another potentially important source of extra-
cellular ATP. Accumulation of this nucleotide at this stage

might contribute to plaque formation via several potential
mechanisms: (a) by generating a chemotactic gradient for
migration of monocytes into the nascent plaque; (b) by

synergyzing with other growth factors to stimulate and
sustain SMC growth; (c) by activating, alone or in concert
with other stimuli released into the vessel wall, e�ector
functions of in¯ammatory cells migrated into the plaque.

Nucleotides participates to the formation of a chemotactic
gradient both directly (mononuclear phagocytes are known to
be attracted towards sites of ATP or UTP release) (Oshimi et

al., 1999), and indirectly, by stimulating the release of
chemokines such as IL-8 (Warny et al., 2001). A local
environment characterized by a high extracellular nucleotide

concentration favours proliferation of SMCs and macro-
phages, and may thus contribute to the expansion of the
cellular component of the plaque. ATP-dependent release of
cytokines such as IL-1b and TNFa from macrophages may

have a major role in the induction of early alterations and in
the progression of atheromatosis. In addition, ATP also
triggers release of NO and oxygen radicals from macro-

phages, agents that may have a cytotoxic e�ect on the arterial
wall.
Extracellular ATP itself might have a relevant cytotoxic role

within the plaque. It is well known that a crucial step in
atheroma progression is lysis of lipid-laden macrophages (foam
cells) with the ensuing release of their content into the necrotic

core. Many di�erent precipitating factors are involved in this
process, one of which could be the sustained stimulation of the
P2X7R, a molecule expressed to a high level in macrophages
and well known for its potent cytotoxic activity (Murgia et al.,

1992; Di Virgilio et al., 1998). Stimulation with in¯ammatory
cytokines (e.g. IFNg) enhances expression of some P2R
subtypes (e.g. P2X7), and thus is expected to increase cell

susceptibility to the cytotoxic e�ect of ATP (Falzoni et al.,
1995). In the cell in®ltrate of the atherosclerotic plaque the
presence of TH lymphocytes is well documented. These cells are

a main source of IFNg during in¯ammation and therefore they
may a�ect P2 receptor expression by the macrophages. This
may trigger an ampli®cation loop that exacerbates tissue

damage. Particular disease conditions may further enhance
the contribution of extracellular ATP to the necrotic degenera-
tion of the plaque. Recent experiments have shown that
®broblasts cultured in in vitro conditions that mimick

hyperglycaemia are exquisitely sensitive to the cytotoxic e�ect
of ATP (Solini et al., 2000). Furthermore, ATP causes a large
release of IL-6 from this cells primed with LPS and phorbol

esters. IL-6 is another cytokine that is believed to have a central
role in the progression of the plaque and in the acceleration of
the arterial lesions observed during diabetes (Morohoshi et al.,

1996). Therefore, it is possible that a shift in nucleotide
sensitivity is a contributing factor in the pathogenesis of
atherosclerotic lesions in diabetes and in other metabolic

diseases.
The P2R and extracellular nucleotides might also have a

distinct role in the transition from a latent to an overt
atherosclerotic disease. It is in fact known that while

atherosclerotic lesions are fairly wide spread throughout the
population, only a few subjects develop a full blown ischaemic
disease. This is thought to be due to the destabilization of the

plaque, a phenomenon not necessarily involving rupture.
Destabilization causes an alteration in the properties of the
endothelial lining that favours thrombosis. Extracellular

nucleotides might contribute to this phenomenon in a dual
capacity: on the one hand by inducing an increased release of
IL-1b and TNFa from in¯ammatory cells (it is not known

whether the endothelium itself might be a source of IL-1b), and
on the other by generating a local proaggregant environment at
the endothelial surface, or even by causing endothelial cell
apoptosis (von Albertini et al., 1998; Goepfert et al., 2000;

Mallat & Tedgui, 2000). In the complex in¯ammatory status of
the atherosclerotic plaque, MMPs are enjoying increasing
interest for their role in the digestion of extracellular matrix and

in the weakening of the ®brous cap. These proteases are
secreted into the plaque by macrophages, SMCs and
lymphocytes, but factors promoting their release and activation

are poorly known. Extracellular ATP, acting at the P2X7R,
causes a large activation of a MMP expressed on the surface of
B lymphocytes (Gu et al., 1998a), therefore it is not unlikely
that this nucleotide might also participate in the stimulation of

protease activity within the plaque.

Conclusions

Nucleotide receptors are emerging as increasingly important
molecules in regulation of the physiology of platelets,

leukocytes and cells of the vessel wall. Large clinical trials
performed with antagonists of the platelet ADP receptor
(ticlodipine and clopidogrel) in patients with atherosclerotic

diseases have shown a signi®cant bene®t compared to aspirin
(Balsano et al., 1990; Jarvis & Simpson, 2000; Savi &
Herbert, 2000). New selective and potent antagonists at the
various P2 subtypes are actively investigated and have

entered experimentation as well as clinical trials, especially
as antithrombotic drugs (e.g. ARL 67156, AR-C69931MX
and R-99224) (Burnstock & Williams, 2000; Sneddon et al.,

2000; Storey, 2001; Sugidachi et al., 2001). The identi®cation
of the P2 subtypes expressed by leukocytes, SMCs,
endothelial cells and ®broblasts may allow selective inhibition
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of certain unwanted responses (e.g. cytokine release or
proliferation) without a�ecting others (e.g. release of
vasodilatory agents). Furthermore, it is now clear that

ectoATP/ADPases and ecto nucleotidases are another
promising target for the modulation of platelet aggregation
and thrombus formation (Marcus et al., 2000). Thus, from
the integration of current awareness on the in¯ammatory

aetiology and pathogenesis of the atheromatous plaque and
the increasing knowledge of the complex network of the
extracellular nucleotides we can expect the design of

innovative approaches to the prevention and treatment of
atherosclerosis.
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