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The discovery that nitric oxide (NO) functions as a signalling
molecule in the nervous system has radically changed the

concept of neural communication. Indeed, the adoption of
the term nitrergic for nerves whose transmitter function
depends on the release of NO or for transmission

mechanisms brought about by NO (Moncada et al., 1997)
emphasizes the speci®c characteristics of this mediator. The
physical properties of NO prevent its storage in lipid-lined

vesicles and metabolism by hydrolytic degradatory enzymes.
Therefore, unlike established neurotransmitters, NO is
synthesized on demand and is neither stored in synaptic
vesicles nor released by exocytosis, but simply di�uses from

nerve terminals. The distance of this NO di�usion (40 ±
300 mm in diameter) implies that structures in the vicinity of
the producing cell, both neuronal and non-neuronal, are

in¯uenced following its release. This suggests that, as well as
acting as a neurotransmitter, NO has a neuromodulatory role
(Garthwaite & Boulton, 1995). In addition, it di�uses into

rather than binds with protein receptors on adjacent cells,
and most of its known actions are the consequence of
interplay with intracellular targets that would usually be
regarded as secondary messengers. The activity of conven-

tional neurotransmitters is terminated either by re-uptake
mechanisms or enzymatic degradation while inactivation of
NO follows reaction with a substrate. There are multiple

points at which biological control can be exerted over the
production and activity of conventional neurotransmitters.
However, control of the synthesis of NO is the key to

regulating its activity.
Endothelial NOS (eNOS) and inducible NOS (iNOS) are

present in the nervous system and will be duly addressed

here. However, neuronal NOS (nNOS) is the principal
isoform present in said system and will be the main focus
of this review. All nNOS positive neurones exhibit a-
nicotinamide adenine dinucleotide phosphate (NADPH)-

diaphorase activity, which has become the histochemical
marker of nitrergic neurones. However, early results

demonstrating this may have been limited by inappropriate
®xation procedures and should be viewed with caution (Wolf,

1997). The original cloning of full-length nNOS produced
what is now designated as nNOSa, and which accounts for
the majority of nNOS activity in nervous tissue (Bredt et al.,

1991). In addition, four splice variants have recently been
identi®ed (nNOSb, nNOSg, nNOSm and nNOS-2) and these
appear to exhibit distinct cellular and tissue locations

(Gibson, 2001; Nakane et al., 1993; Silvagno et al., 1996;
Alderton et al., 2001). In particular, there is growing evidence
that nNOS biosynthesis in excitable tissues is not restricted to
neurones while substantial amounts of this enzyme have been

identi®ed in skeletal muscle, where it is involved in the
regulation of metabolism and muscle contractility (Stamler &
Meissner, 2001).

The magnitude of literature dealing with the role of NO in
the nervous system is so great that it would be impossible to
include in this review the entirety of the research carried out.

For logistical reasons, only groundbreaking references have
been quoted, but when necessary, recent reviews dealing with
speci®c areas within the ®eld have been included and are
intended to act as a guideline for further reading.

Regulation of nNOS

The most important regulator of nNOS activity seems to be
free cytosolic Ca2+, which stimulates nNOS through interac-

tion with calmodulin. Arrival of action potentials activates
voltage-dependent Ca2+ channels situated in the neurolemma,
and stimulates the release of Ca2+ from intracellular stores.

This elevates cytosolic Ca2+ concentrations above the 400 nM
required for calmodulin to bind to nNOS, thereby activating
the enzyme. When the concentration of Ca2+ falls, it
dissociates from the calmodulin, which in turn dissociates

from the nNOS, thus acting as a switch that turns the enzyme
on and o� (Knowles et al., 1989; Sheng et al., 1992).
Phosphorylation, although less well analysed, constitutes an

additional mechanism for regulating nNOS activity. The
catalytic activity of the enzyme is decreased following
phosphorylation by cyclic adenosin monophosphate (cyclic
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AMP)-dependent protein kinase (Bredt et al., 1992; BruÈ ne &
Lapetina, 1991), protein kinase C (Bredt et al., 1992; Nakane
et al., 1991) or Ca2+/calmodulin-dependent protein kinase II

(Bredt et al., 1992; Hayashi et al., 1999; Komeima et al., 2000;
Nakane et al., 1991; Schmidt et al., 1992b).
This process occurs in the majority of peripheral and in

some central nitrergic neurones (Figures 1 and 2). However,

in the CNS, NO synthesis seems predominantly regulated by
the in¯ux of Ca2+ through receptor-dependent channels, in
particular following postsynaptic stimulation of NMDA

receptors by the excitatory neurotransmitter, glutamate
(Bredt & Snyder, 1989; Garthwaite et al., 1989). The amino
acid terminal of nNOS possesses a PDZ domain which is not

present in the b and g splice variants (Alderton et al., 2001;
Brenman et al., 1996). The aforementioned domains are
modular structures of approximately 100 amino acids, which

occur in a number of proteins, anchoring them to cytoskeletal
elements such as synaptic densities and related membrane-
associated guanylate kinases (Tomita et al., 2001). In the case
of nNOS, its PDZ domain interacts with the postsynaptic

density protein PSD-95, whereas the N-Methyl-D-Aspartate
(NMDA) receptor contains a Ser/Thr-X-Val motif (tSXV)
that also binds with PSD95. By facilitating the proximity of

NMDA receptors to the enzyme, the sca�olding protein,
PSD95 directly exposes nNOS to the ¯ux of Ca2+ entering
the ion channel of activated NMDA receptors (Kornau et al.,

1995; Tomita et al., 2001). Transient Ca2+ ¯uxes following
the activation of other receptors would be too diluted to have
a similar e�ect by the time they reach the vicinity of nNOS. It

is possible that NO bioactivity feeds back to control the
activity of the channel as S-nitrosylation of critical cysteines
seems to down-regulate the NMDA receptor (Choi et al.,
2000). There are many other potential regulators of the

NMDA receptor/nNOS coupling and downstream signalling
pathways. The protein carboxy-terminal PDZ ligand of
nNOS (CAPON) is thought to be selectively associated with

nNOS and to exhibit a similar regional distribution. CAPON
competes with nNOS for PDZ domains, binding to the
enzyme and forcing it to disassociate itself from the plasma

membrane (Ja�rey et al., 1998). Therefore, CAPON
determines the amount of nNOS tethered to the plasma
membrane and, in this way, regulates NO formation in
neurones of the CNS. Furthermore, CAPON anchors nNOS

to other macromolecules, such as the small G-protein Dexras-
1 (Fang et al., 2000), although the importance of this
relationship remains to be determined. At this point, it must

be said that recent proteomic analysis has not identi®ed
CAPON in the vicinity of the NMDA receptor, which raises
some doubts about the above hypotheses (Husi et al., 2000).

Various other receptors and domains contain the tSXV
motif and are also potentially associated with central nNOS
and regulated by this multifunctional protein ± protein

interaction (Tomita et al., 2001). nNOS may also be inhibited
through an interaction with protein inhibitor of nNOS (PIN),
a highly conserved small protein that was originally thought
to destabilize nNOS dimers and thus act as an endogenous

inhibitor of nNOS (Ja�rey & Snyder, 1996). However, recent
reports suggest that PIN is an axonal transport protein for
nNOS, rather than its regulator (Hemmens et al., 1998;

Rodriguez-Crespo et al., 1998). nNOS may also be inhibited
through an interaction with caveolin-1 and caveolin-3 that, in
a way similar to the e�ect of caveolin-1 on eNOS, could

displace calmodulin from nNOS (GarcõÂ a-CerdenÄ a et al., 1997;

Venema et al., 1997). Furthermore, these members of the
caveolin family interact with other signalling molecules such
as c-src, Ha-ras and GSa, which suggests a potential role for

nNOS in some signalling complexes (Couet et al., 1997).
Finally, a role for heat shock protein NOS-hsp90/hetero-
complexes in the modulation of the haem's interaction with

nNOS has recently been suggested (Bender et al., 1999).
In skeletal muscle, nNOS activity is related to muscle ACh

receptors and membrane depolarization (Figure 3). Again,
nNOS is targeted to membrane structures due to the

association of its PDZ domain with a1-syntropin, a
dystrophin-associated protein that shares homology with
postsynaptic density proteins PDS95 y PDS93. Interactions

with PIN, highly expressed in skeletal muscle, and with
caveolin-3 are also possible (Brenman et al., 1995; Chao et
al., 1996; Stamler & Meissner 2001; Venema et al., 1997).

Figure 1 Activation of nNOS in the CNS. Release of glutamate
activates NMDA receptors (NMDAr), and the consequent ¯ux of
Ca2+ entering the ion channel activates nNOS, which is linked to the
receptor via the postsynaptic density protein PSD-95. It is possible
that NO bioactivity feeds back to control the presynaptic neuron and
the activity of the channel. The protein CAPON is thought to be
selectively associated with nNOS and regulates NO formation in
neurones.
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Although considered to be constitutive, levels of nNOS

activity and expression appear to be subject to dynamic
up- or down-regulation induced by a large variety of stimuli,
including nerve (Steel et al., 1994; Verge et al., 1992) and brain

injury (Kitchener et al., 1993; Regidor et al., 1993), aging
(Carrier et al., 1997; Mollace et al., 1995), pharmacological
treatment (Bagetta et al., 1993), lactation (Ceccatelli &

Eriksson, 1993), hypoxia (Guo et al., 1997), stress (Cazal et
al., 1993), gonadectomy (Ceccatelli et al., 1993), light exposure
(Schaad et al., 1994) and exercise (Tidball et al., 1998).
The existence of presynaptic automodulation in nitrergic

neurones has also been proposed. Although not yet fully
characterized, this action may result from the combination of
NO with the haem group of NOS, which inhibits the enzyme

(Klatt et al., 1992; Rogers & Ignarro, 1992). Finally, there is
evidence that cells maintain low levels of cyclic guanosin
monophosphate (cyclic GMP) while producing NO. This

occurs because increases in Ca2+ levels, similar to those
needed to stimulate nNOS, also activate a Ca2+/calmodulin-
dependent cyclic GMP phosphodiesterase that facilitates the

degradation of cyclic GMP (Mayer et al., 1992).

Signalling

The actions of NO are a consequence of its in¯uence on a
variety of protein functions which it exerts through its

reaction with cysteine thiol, S-nitrosylation, and transition
metal centres (Drapier & Bouton, 1996; Ja�rey et al., 2001;
Lane et al., 2001). The enzyme soluble guanylyl cyclase (sGC)

has long been considered to be the major physiological target

for neuronal NO, and there is ample evidence that increases
in cyclic GMP levels mediate a large number of the
physiological actions of NO. Thus, immunohistochemical

techniques have found that the distribution of sGC and cyclic
GMP is complementary to that of nNOS (Schmidt et al.,
1992a; Southam & Garthwaite, 1993; Young et al., 1993).

Functionally, either nitrergic nerve stimulation or adminis-
tration of NO-donors increases intracellular cyclic GMP
concentrations (Bredt & Snyder, 1989; Torphy et al., 1986).
In both cases, these responses are mimicked by analogues of

cyclic GMP (Gibson & Mirzazadeh, 1989), whereas inhibition
of the destruction of this intracellular mediator potentiates
the results of nitrergic stimulation (Barbier & Lefebvre, 1995;

Bayguinov & Sanders, 1993). The mechanisms linking the rise
in cyclic GMP content to the various e�ects of NO in the
CNS and peripheral smooth muscle are not fully understood,

although in both cases the ®nal step seems to be a reduction
of ([Ca2+]i). Alternative targets of cyclic GMP may involve
direct channel gating with the opening of inward Ca2+ and

Na2+ channels, activation of cyclic GMP-dependent kinases,
actions related to cyclic adenosin diphosphate (ADP) ribose,
and interactions with cyclic AMP resulting from regulation of
cyclic GMP-dependent phosphodiesterases (Hunter, 2000;

Ja�rey et al., 2001; Lincoln et al., 2001).
NO modulates oxygen consumption in the mitochondria.

In particular, nanomolar concentrations of NO inhibit

cytochrome oxidase, the terminal haem-containing enzyme
in the mitochondrial respiratory chain. Recent evidence
demonstrates that this e�ect is reversible and competitive

Figure 2 nNOS in mysenteric neurones is regulated by the ¯ux of Ca2+ through voltage-dependent calcium channels (VDCC). NO
relaxes the adjacent smooth muscle following activation of sGC.
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with oxygen, and suggests that NO is a crucial regulator in
the generation of energy and the mediation of cell death by

mitochondria (BeltraÂ n et al., 2000). The consequences of such
an activity are still to be evaluated but, obvious physiological
implications aside, they could clarify the mechanisms by

which NO is involved in cell or tissue damage. Furthermore,
and in conjunction with di�erences in glycolytic capacity, this
activity may explain why neurones and glia show variations
in sensitivity to NO-induced damage (Brown, 2000; Almeida

et al., 2001).
NO has been linked to the release (Me�ert et al., 1996) of

other neurotransmitters and the e�ects which they produce,

in particular acetylcholine (Gustafsson et al., 1990; Li &
Rand, 1989b), noradrenaline (Boeckxstaens et al., 1993; Li &
Rand, 1989a) dopamine (Hanbauer et al., 1992), glutamate

(Montague et al., 1994; Sorkin, 1993), g-aminobutyric acid
(GABA) (Beltran et al., 1990; Kuriyama & Ohkuma, 1995),

serotonin (Bogers et al., 1991; Reiser, 1990b), adenosin
triphosphate (ATP) (Boeckxstaens et al., 1991a), bombesin
(Beltran et al. 1999), carbon monoxide (Xue et al.,

2000), opioids (Barnette et al., 1990) and endothelin (Reiser,
1990a). The mechanisms responsible for these interactions are
still not fully understood, but direct S-nitrosylation of
receptors, activation of cyclic GMP-dependent protein

phosphorylation cascades, regulation of neuronal energy
dynamics and a modulating e�ect on transporters are
potentially involved (Choi et al., 2000; Kiss & Vizi, 2001;

Pieper et al., 2000). In addition, a presynaptic modulation of
NO release through the activation of a2-adrenoceptors,
nicotinic receptors, purinergic receptors etc. has also been

Figure 3 Activation of nNOS in the skeletal muscle follows the in¯ux of Ca2+ through voltage-dependent calcium channels
(VDCC) induced by activation of ACh receptors (AChr) and membrane depolarization. The release of Ca2+ from the sarcoplasmic
reticulum (SR) is also implicated. nNOS targets the membrane due to its association with a1-syntropin, a component of the
dystrophin complex (DC).

British Journal of Pharmacology vol 135 (5)

NO in the nervous systemJ.V. Esplugues1082



proposed (Boeckxstaens et al., 1993). Finally, it has been
suggested that NO modulates gene transcription and
translation in neurones and glia (Hess et al., 1993; Peunova

& Enikolopov, 1993; 1995). However, these e�ects would
seem to be indirect since there is little evidence of the
existence of DNA elements within the promotor regions of
eukaryotic cells that respond directly to NO (Morris, 1995).

Nitric oxide in the central nervous system

Introduction

NO was ®rst characterized in the CNS as the intercellular
messenger mediating the increase in cyclic GMP levels that
follows activation of glutamate receptors (Garthwaite et al.,

1988). The majority of the information available deals with
nNOS, of which the brain contains the highest activity found
in any tissue, and which, although present in some cerebral
vessels and in glial cells, is predominantly found in neurones

(Bredt et al., 1990; Salter et al., 1991). nNOS-containing
neurones are present in many areas of the CNS (Figure 4),
with the highest densities occurring in the accessory olfactory

bulb and granule cells of the cerebellum. Although nNOS
neurones represent only roughly 1% of cell bodies in the
cerebral cortex, virtually every neurone in the cortex is

exposed to nNOS nerve terminals. From a morphological
point of view nNOS neurones display a great heterogeneity in
their localization within the CNS, constituting a small

population of varying interneurones. Furthermore, the
number and chemical characteristics of nNOS neurones vary
considerably depending on the area of the brain while the
enzyme itself does not co-localize with any single neuro-

transmitter (Braissant et al., 1999; Iwase et al., 1998; Vincent,
1995; Wolf, 1997). nNOS can be located either pre- or post-
synaptically and is particularly implicated in neural signal-

ling, neurotoxicity, synaptic plasticity and modulation of
behavioural pathways such as learning or expression of pain.
eNOS is mainly involved in the regulation of vascular

function and, although also present in some populations of
neurones (Dinerman et al., 1994) and glia (Wiencken &
Casagrande, 1999), is predominantly located in the endothe-
lial cells of cerebral vessels. Finally, induction of iNOS in

glial cells is implicated in the unspeci®c immune response of
the brain and is usually associated with pathological
conditions (Murphy, 2000).

Effects of centrally released NO

Modulation of synaptic plasticity NO has been proposed as
the retrograde messenger which co-ordinates the enhance-
ment of both pre- and post-synaptic mechanisms involved in

two forms of synaptic plasticity; namely long-term potentia-
tion (LTP) and long-term depression (LTD). LTP is a
property of many central excitatory synapses characterized
by a prolonged enhancement of synaptic transmission, or an

activity-dependent increase in synaptic strength, lasting from
hours to weeks or even longer. The process by which LTP is
induced is not completely clear, but it involves glutamate

acting on amino-3-hydroxy-5-methylisooxazole-4-propionic
acid (AMPA) or NMDA-receptors. This activates a series
of events in which Ca2+/calmodulin-dependent protein

kinase II, NOS and protein tyrosine kinases are implicated.
LTP is thought to be a synaptic correlate of learning and
memory, and is most pronounced in higher brain centres

involved in cognitive functions, particularly in the cerebral
cortex and hippocampus. The basic evidence for said
involvement in LTP stems from in vitro studies in which
inhibition of NOS prevented the development of LTP

(Bohme et al., 1991; O'Dell et al., 1991; Schuman &
Madison, 1991). Gene targeting suggests that both nNOS
and neuronally located eNOS are implicated in LTP. Thus,

while LTP is only slightly reduced in nNOS or eNOS null
mice (O'Dell et al., 1994), animals de®cient in both NOS
isozymes exhibit a substantially decreased LTP (Son et al.,

1996). Guanylate cyclase seems to be the main e�ector of
NO in the induction of LTP (Bohme et al., 1991; Haley et
al., 1992), however, ADP-ribosylation (BruÈ ne & Lapetina,
1989) and activation of calmodulin-dependent kinases

(Soderling, 2000; Tomita et al., 2001) have also been
implicated.
LTD is characterized by a long lasting depression of

parallel ®bre synapses, which follows repeated excitation of
the climbing ®bres of Purkinje cells. The reduction in
synaptic strength appears to result from a diminished

sensitization of postsynaptic AMPA receptors which is
mediated by activation of protein kinases C and G and of
the NO-cyclic GMP signalling pathway (Daniel et al.,

1993; Shibuki & Okada, 1991). LTD can be observed in
higher regions of the brain, although it has been
particularly well studied in the cerebellum where it has
been proposed as a model for the learning of motor

movements. Finally, the role of NO in both forms of
synaptic plasticity involves interaction with PSD-95 and
related membrane-associated guanylate kinases, underlined

by the fact that both LTP and LTD are signi®cantly
modi®ed in mice with targeted disruption of PSD-95
(Migaud et al., 1998).

Figure 4 Representative microphotograph of basal nNOS immu-
noreactivity (monoclonal antibody) in the dorsal vagal complex
(DVC) of the brainstem. Scale bar=100 mm.
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Involvement in central and peripheral functions

NO has complex in¯uences on brain development, memory

formation and behaviour through regulation of synaptic
plasticity. Inhibition of NO synthesis produces amnesia
(Holscher & Rose, 1992), disrupts spatial learning and
olfactory memory (Bohme et al., 1993; Kendrick et al.,

1997), blunts behavioural performance during task acquisi-
tion and decreases locomotor activity in habituation tasks
(Yamada et al., 1995). NO has also been implicated in

neuronal targeting and brain development (Contestabile,
2000; Okere & Kaba, 2000; Wu et al., 1994a), visual
processing (Cudeiro & Rivadulla, 1999), discriminative

learning (Groll-Knapp et al., 1988), food and drinking
behaviour (Calapai et al., 1992; Morley & Flood, 1992),
thermoregulation (De Luca et al., 1995), opiate tolerance and

withdrawal (Mao, 1999; Zhu & Barr, 2001), circadian rhythm
(Watanabe et al., 1995), sleep (Kapas et al., 1994) and
respiratory pattern generation (Ling et al., 1992). Likewise,
behavioural responses mediated by oxytocinergic and ser-

otoninergic pathways are thought to involve NO generation
or stimulation of central nitrergic neurones (Melis et al.,
1994; 1995). The participation of NO in behavioural

mechanisms seems likely after being con®rmed in knockout
nNOS mice. These animals show no overt behavioural
disorders when housed individually, but if kept together

males exhibit exceptionally aggressive and hypersexual
behaviour. In contrast, nNOS de®ciency reduces aggression
in female mice (Mani et al., 1994; Nelson et al., 1995).

There is an ever-growing list of peripheral functions in
which a role for central NO has been proposed, although the
exact physiological relevance of these observations warrants
further investigation. Without intending to provide an

exhaustive list, there is evidence implicating central NO in
the regulation of blood pressure (Togashi et al., 1992), heart
rate (Sakuma et al., 1992), stimulated renal sympathetic nerve

activity (Sakuma et al., 1992), gastric acid secretion and
motility (Esplugues et al., 1996; GarcõÂ a-Zaragoza et al., 2000;
Quintana et al., 2001) and motor disruption associated with

alcohol abuse (Sandor et al., 1995). Likewise, NO in the CNS
appears to be involved in re¯exes leading to a diminished
sympathetic output to the periphery and the modulation of
various neuroendocrine responses, including the production

of oxytocin, luteinizing hormone-releasing hormone, osmo-
regulator peptide corticotropin-releasing hormone and adre-
nocorticotrophic hormone (Aguilla, 1994; Ceccatelli et al.,

1993; Costa et al., 1993; Rivier & Shen, 1994).

Perception of pain

NO has been implicated at various levels of the nociceptive
neural pathways, both peripherally (primary a�erent neu-

rones and dorsal root ganglia) and centrally (brainstem and
several sensory structures of the thalamus) (Mao, 1999).
Functionally, most nociceptive re¯exes involve the interaction
of NO and NMDA receptors, and it is established that

synthesis of NO enhances spinal facilitation of the a�erent
input conveyed to the cortex and subsequently manifested in
behavioural responses (Mayer et al., 1999). However, the role

of NO changes according to the pain stimuli. Inhibition of
NO has antinociceptive e�ects when pain stems from
chemically stimulated peripheral nerve terminals and in

models of thermal hyperalgesia or visceral pain (Kitto et
al., 1992; Malmberg & Yaksh, 1993; Moore et al., 1991;
1993), while intrathecal administration of L-arginine induces

allodynia by converting a non-noxious to a noxious
mechanical stimulus (Minami et al., 1995). In contrast,
blockade of NO synthesis exacerbates pain in models of
mechanical hyperalgesia (Zhuo et al., 1993). The use of

nNOS knockout mice has not clari®ed such contradictory
results; for example, these animals display a normal
sensitization to some types of damage unmodi®ed by NOS

inhibitors (Crosby et al., 1995). The implication of NO in the
antinociceptive e�ects of drugs is also controversial. For
instance, inhibitors of the NO/guanylate cyclase system

potentiate the antinociceptive actions of morphine while
attenuating the antinociceptive e�ects of b-endorphin (Xu &
Tseng, 1995; Zhu & Barr, 2001). Furthermore, there is

evidence which suggests that the splice variants of nNOS,
nNOS-2 modulates morphine analgesia but not morphine
tolerance (Kolesnikov et al., 1997).

Neuronal damage and protection

The neuronal damage that accompanies cerebral ischaemia

involves an excessive release of glutamate and a subsequent
activation of NMDA receptors that, if maintained for a
su�cient period of time, induces a massive in¯ux of Ca2+

into the postsynaptic neurone which, in turn, triggers the
activation of nNOS and overproduction of NO. In contrast,
NO produced by activation of eNOS (Marks et al., 1996;

Stagliano et al., 1997), and even NMDA receptors (Fergus &
Lee, 1997; Wilderman & Armstead, 1997), plays a protective
role in brain ischaemia by maintaining regional cerebral
blood ¯ow. The ®rst indications that NO could mediate

neurotoxic e�ects came with the discovery that inhibition of
NOS attenuates glutamate toxicity in primary neuronal
cultures from the rat cerebral cortex (Dawson et al., 1991)

and induces neuroprotection in animal models of stroke
(Nowicki et al., 1991). These studies were soon followed by
others which showed that inhibition of NO synthesis

attenuated NMDA neurotoxicity both in vivo (Nagafuji et
al., 1992; Tominaga et al., 1993) and in vitro (Kollegger et al.,
1993), and which demonstrated enhanced concentrations of
NO in various stroke models (Kader et al., 1993; Malinski et

al., 1993). These concepts were initially controversial due to
the appearance of contradictory in vitro and in vivo reports in
which NO-mediated neurotoxicity was not observed (BolanÄ os

& Almeida, 1999; Samdani et al., 1997). However, such
discrepancies stem from variations in experimental conditions
and doses of NOS inhibitors. Thus, inhibition of nNOS with

concentrations of NOS inhibitors that do not suppress eNOS
activity reduces infarct volume, whereas the use of selective
nNOS inhibitors is consistently neuroprotective in models of

focal ischaemia (Yoshida et al., 1994; Zhang et al., 1996).
Exacerbation of injury seems to occur through inhibition of
eNOS with high doses of non-selective NOS inhibitors, which
results in deleterious alterations of cerebral blood ¯ow and a

subsequent increase in infarction volume.
A better understanding of the role of nNOS and eNOS in

neuronal damage has been obtained using transgenic animals.

nNOS knockout mice develop substantially less brain damage
following ischaemia than those of the wild-type strain (Huang
et al., 1994), while neuronal cultures from such animals are
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more resistant to damage by glutamate and hypoxia
hypoglycaemia (Dawson et al., 1996). The reduction of
infarct volume in nNOS null transgenic mice does not occur

when non-speci®c NOS inhibitors are administered at
concentrations that inhibit NO-dependent relaxation of pial
vessels. On the other hand, eNOS knockout mice exhibit
more extensive damage following ischaemia, an e�ect

associated with a sharp reduction of blood ¯ow in the
a�ected area, and administration of NOS inhibitors to these
animals reduces injury (Huang et al., 1996).

The interactions and signalling mechanisms involved in
these NO-related e�ects are complex. Vascular protection is
linked to cyclic GMP-mediated mechanisms (Utepbergenov et

al., 1998). In addition, s-nitrosylation of glutathione by NO
has been implicated in the antioxidative neuronal defence
system, while NO is thought to scavenge reactive oxygen

species and partially o�set ischaemia induced oxidative
damage (Wink et al., 1993). Likewise NO could be directly
neuroprotective by interacting with a speci®c site of the
NMDA-receptor channel, resulting in a decreased binding of

glutamate or a diminished ¯ow of Ca2+ through the channel
after activation (Choi et al., 2000; Hoyt et al., 1992).
Generation of peroxynitrite seems to be the leading

cytotoxic mediator in glutamate-induced damage (Fukuyama
et al., 1998; Lafon-Cazal et al., 1993; Tanaka et al., 1997).
The production of peroxynitrite has been detected in

postischaemic brains (Fukuyama et al., 1998; Tanaka et al.,
1997). Mice with overexpression of superoxide dismutase
(SOD) and nNOS deletion exhibit decreased neurotoxicity

following vascular stroke (Yang et al., 1994), accompanied by
a strongly suppressed peroxynitrite (ONOO7) production
(Keller et al., 1998). Damage caused to DNA by NO and
peroxynitrite appears to be an important neurotoxic mechan-

ism. This is due to the subsequent activation of the nuclear
repair enzyme polyADP-ribose synthase which is capable of
triggering massive energy depletion resulting in cellular death

if the DNA damage is severe (Pieper et al., 1999; Wallis et al.,
1993; Zhang et al., 1994). Inhibition of nNOS reduces
polyADP-ribosylation while inhibition of polyADP-ribose

synthetase decreases infarction volume. Animals with a
genomic deletion of polyADP-ribose synthetase exhibit
greater resistance to cerebral ischaemia than nNOS knockout
mice or those treated with NOS inhibitors or NMDA

antagonists (Eliasson et al., 1997). In addition, inhibition of
mitochondrial respiratory chain enzymes exacerbates the
depletion of neuronal energy stores (BeltraÂ n et al., 2000;

BolanÄ os et al., 1994; 1995; Clementi et al., 1998; Moncada &
Erusalimsky, 2002). High local concentrations of NO may
also reduce cellular viability by nitrosylating several enzymes,

including phosphokinases C (Hammer et al., 1993) and
glyceraldehyde-3-phosphate dehydrogenase (Zhang & Snyder,
1992), or by interacting with the iron present in haem or non-

haem complexes associated with enzymes such as cytochrome
P450 or aconitases (Drapier & Bouton, 1996).
In¯ammatory conditions and transient ischaemic periods

induce the expression of iNOS in various populations of

cerebral cells. However, iNOS expression occurs later than
that of nNOS and eNOS, and the cellular site of this
expression is dependent on the nature of injury (Iadecola et

al., 1995a). iNOS immunoreactivity is present in the
neutrophils which in®ltrate the brain after permanent
ischaemia, is predominant in vascular cells in transient

ischaemia (Iadecola et al., 1995b), and is abundant in reactive
astrocytes in global ischaemia (Endoh et al., 1994). NO
produced by iNOS seems to exert a detrimental e�ect in the

ischaemic brain, contributing to the progression of tissue
damage and exacerbating glutamate neurotoxicity (Chao et
al., 1992). Thus, NO produced in vitro after hypoxia induces
apoptotic death in neurones (Boje & Akora, 1992), while

studies with iNOS knock out mice have con®rmed the
induction of iNOS in the delayed neuronal damage following
ischaemia (Iadecola, 1997).

Role in central disorders

There is growing evidence to support a role for NO in the
aetiology of neurologic conditions, including autoimmune
and chronic neurodegenerative diseases. Concentrations of

NO present in in¯amed tissue cause reversible conduction
block in normal, demyelinated and early remyelinated axons.
Thus, diseases such as multiple sclerosis and Guillain-Barre
syndrome, characterized by widespread loss of myelin, may

see their neuronal symptoms exacerbated via the release of
NO that accompanies the severe in¯ammation in the central
and peripheral nervous system occurring in these conditions.

NO may also be important in secondary neuronal cell death
following trauma. In the spinal cord, nNOS expression
precedes the death of motorneurones, which follows avulsion

of spinal nerve roots (Wu et al., 1994b), and pre-treatment
with nNOS inhibitors substantially increases the number of
surviving neurones (Wu & Li, 1993). NOS neurones are

resistant to NMDA and NO neurotoxicity although the
protective mechanism responsible is still not fully known
(Koh & Choi, 1988). Likewise, the excessive release of both
glutamate and NO, coupled with mitochondrial dysfunction

and oxidative stress, has been implicated in a number of
neurodegenerative diseases. This highlights a potential
therapeutic role for speci®c NOS inhibitors in their

pharmacological control (Hobbs et al., 1999). For instance,
nNOS is induced in various cortical regions following
epileptic seizures (Huh et al., 2000). NOS neurons are spared

in Alzheimer's disease and NOS inhibitors provide neuro-
protection against toxicity elicited by fragments of human B-
amyloid in primary cortical cultures (Hyman et al., 1992).
Inhibition of nNOS markedly reduces the loss of dopamine

neurones and clinical symptoms in a baboon model of
Parkinson's disease (Hantraye et al., 1996) and inhibition of
NOS is protective in models of Huntington's disease (Deckel,

2001; Schultz et al., 1995). Finally, signi®cant changes in
nNOS activity in the cerebrum and cerebellum follow the
administration of metals such as aluminium and mercury,

and suggest an involvement of this mediator in cerebral
diseases induced by metals (Cucarella et al., 1998).
The in¯uence of peripheral systemic in¯ammatory condi-

tions on the expression of central NOS isoforms is still
controversial, however, overproduction of NO by iNOS is
known to play a pathological role in acute in¯ammatory
disorders of the CNS. There are increased levels of NO

production in viral and bacterial infections such as
meningitis, and a role for NO has been clearly indicated in
the disruption of the blood-brain barrier during in¯ammatory

conditions (Brian et al., 1995; Visser et al., 1994; Zheng et al.,
1993). There is little data available as to how inhibitors of
iNOS modulate the course of these diseases, but considering
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the role played by NO in defences against infection, it is
logical to assume that they exacerbate the disease. Further-
more, substantial progress has been made towards identifying

NO as a potential toxic mediator in in¯ammatory encepha-
litic diseases (Parkinson et al., 1999). NO has been implicated
as a potential mediator of microglia-dependent primary
demyelination, a hallmark of multiple sclerosis, and iNOS

induction has been noted in the brains of patients with this
autoimmune disease (Bo et al., 1994). NO may also be
involved in the pathogenesis of sporadic amyotrophic lateral

sclerosis and that of AIDS dementia. In the latter condition,
neurotoxicity induced by certain HIV coat proteins is
partially mediated by activation of NOS (Dawson et al.,

1993), whereas HIV patients who develop severe dementia
exhibit a substantial increase in cortical iNOS (Adamson et
al., 1996).

Nitric oxide in the peripheral nervous system

Introduction

First debated in the late 1980s (Bowman et al., 1986;

Gillespie, 1987; Gillespie et al., 1989; Li & Rand, 1989a), it
is now well established that NO has a leading role as an
inhibitory neurotransmitter of peripheral non-adrenergic,

non-cholinergic (NANC) nerves. Peripheral nitrergic nerves
have a widespread distribution, and are particularly im-
portant in that they produce relaxation of smooth muscle in

the gastrointestinal, respiratory, vascular and urogenital
systems. It is generally assumed that free NO is the
transmitter substance released by nitrergic nerves (Lilley &
Gibson, 1997; Martin et al., 1994; Wood & Garthwaite,

1994). However, several controversial experimental observa-
tions (Barbier & Lefebvre, 1992; Gillespie & Sheng, 1990;
Hobbs et al., 1991; Rajanayagam et al., 1993) have pointed

to the possibility of obtaining a closely related redox product
from NO (Stamler et al., 1992), and also suggest that the
inhibitory nitrergic transmitter is a NO-releasing molecule

(Myers et al., 1990; Thomas & Ramwell, 1989; Vedernikov et
al., 1992).
Furthermore, there is evidence that NO is not the only

mediator involved in NANC neurotransmission, and that the

release of a combination of messengers is involved in
inhibitory NANC responses. Vasoactive peptide (VIP) seems
to be the most important of these but roles for ATP,

neuropeptide Y, enkephalin, peptide histidine isoleucine,
carbon monoxide, pituitary adenyl cyclase activating peptide,
gastrin-releasing peptide and dynorphin have also been

suggested (Furness et al., 1995). There is some evidence for
the existence of `solely nitrergic neurones' (Hohler et al.,
1995; Smet et al., 1994), but most functional and

morphological studies have demonstrated the existence of
neurones and nerve ®bres containing various neurotransmit-
ters (D'Amato et al., 1992). The relative contribution of such
mediators varies greatly depending on factors such as stimuli

and the tissue innervated. There is still discrepancy as to
whether neurones release mediators upon stimulation, most
likely to be the case because of their co-localization, or

whether they are activated to release, preferentially, a speci®c
neurotransmitter (Furness et al., 1995; Schemann et al., 1995;
Smet et al., 1994). Considerably more controversial is the

proposal of a sequential link between NO and VIP
(Boeckxstaens et al., 1991b; Ellis & Undem, 1992; Grider et
al., 1992; Murthy et al., 1995). According to this hypothesis,

VIP is the primary NANC neurotransmitter, but its release is
dependent on NO synthesis. Furthermore, relaxation by VIP
is produced partially via activation of adenylate cyclase and
partially via stimulation of NO production in the smooth

muscle. Said NO may relax the smooth muscle through
activation of sGC and di�use back to the nerve terminal to
further enhance VIP release (Dick & Lefebvre, 2000; Teng et

al., 1988).

Effects of peripherally released NO

Gastrointestinal system In the gastrointestinal tract the
majority of NOS positive ®bres are intrinsic, with smooth

muscle cells containing sCG next to axon varicosities
containing NOS (Bredt et al., 1990; Ekblad et al., 1994).
This neuronally produced NO is implicated in many
physiological and pathophysiological re¯exes in which

changes in gastrointestinal muscle relaxation are noted
(Barrachina et al., 2001; Calatayud et al., 2001). Dysfunction
of the inhibitory NANC nerves in the lower oesophageal

sphincter results in the motility disorder, achalasia (Mearin et
al., 1993), and is probably involved in oesophageal spasms
and related primary motor disorders in the oesophageal body

(Yamato et al., 1992). Gastric NANC-mediated relaxation
following vagal stimulation, food intake or distension of the
antrum or duodenum was among the ®rst NANC e�ects

described (Martinson, 1965). Indeed, pyloric hypertrophy and
gastric distension are the most prominent abnormalities in
nNOS knock out mice (Huang et al., 1993). The importance
of such inhibitory NANC neurones in human gastric function

is illustrated by the frequent complaint by vagotomized
patients of epigastric bloating and discomfort after meals,
which has been related to an abnormal gastric receptive

relaxation (Koster & Madsen, 1979; Troncon et al., 1995).
Infantile hypertrophic pyloric stenosis has been attributed to
a lack of NOS-containing nerves at the pylorus (Vanderwin-

den et al., 1992) while diabetic gastropathy has been linked to
a loss of nNOS that can be treated with insulin and the
phosphodiesterase-5 inhibitor sildena®l (Watkins et al., 2000).
A similar diminution in nNOS expression and activity in the

myenteric plexus is associated with the delay in colonic
transit appearing with advanced age (Takahashi et al., 2000).
In contrast, increases in the activity of NANC nerves have

been held responsible for the decreased gastrointestinal
motility appearing during pregnancy (Shah et al., 2001).
Similarly, the severe constipation characterizing Hirsch-

sprung's disease results from the absence of intramural
inhibitory NANC in the smooth muscle cells of the internal
anal sphincter (Vanderwinden et al., 1993). Furthermore, in

vivo topical application of nitroglycerin causes a reduction in
human anal pressure, pointing to the use of NO-donors in
conditions such as anal ®ssures, haemorrhoids and proctalgia
(Loder et al., 1994).

Pulmonary system The density of extrinsic NOS-containing
®bres increases progressively from the top of the trachea to

the primary bronchi, and then diminishes as the bronchial
diameter decreases (Fischer et al., 1993; Fischer & Ho�mann,
1996). Nitrergic nerves are believed to represent the main
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nervous bronchodilator pathway in humans, and dysfunction
of this system may be implicated in the increased tone and
hyper-responsiveness observed in asthma (Belvisi et al., 1995).

Furthermore, inhalation of NO has become an important
therapeutic tool in the treatment of diseases such as acute
respiratory distress syndrome, hypoxic respiratory failure,
high pulmonary artery pressure, lung transplantation, sickle

cell disease and speci®cally paediatric conditions such as
neonatal pulmonary hypertension (Weinberger et al., 1999;
2001; Weinacker & Vaszar, 2001). Indeed, new approaches to

the treatment of some of these diseases involve potentiation
of NO responses with inhibitors of phosphodiesterase-5
(Fernandes et al., 1994; Gibson, 2001; Weinberger et al.,

2001).

Vascular system nNOS is found in the perivascular nerves

of various blood vessels and appears to constitute an
alternative regional control mechanism for blood ¯ow,
independent of eNOS (Bredt et al., 1990; Huang et al.,
1999; Martinez Cuesta et al., 1996; Figure 5). This neuronally

produced NO seems to be particularly relevant in the
regulation of cerebral blood ¯ow (Estrada & Defelipe,
1998; Faraci & Heistad, 1998). High levels of nNOS are

present in vasodilator nerves in cerebral blood vessels (Bredt
et al., 1990; Thomsen et al., 1993), although, in most cases,
nNOS is co-localized with di�erent vasoactive neurotrans-

mitters (Bredt et al., 1990; Estrada & Defelipe, 1998). In the
brain, activity-dependent activation of nNOS is associated
with a local increase in blood blow, and this response is

prevented by inhibitors of NOS (Iadecola et al., 1993). The
initial vascular response to neuronal ischaemia and the
implication of nNOS in this condition have been discussed

here previously. In addition to this relationship, it has been
suggested that blockade of NANC vasodilatation by
haemolysate or haemoglobin may contribute to the vaso-
spasm observed in haemorrhages (Estrada & Defelipe, 1998).

Abnormal dilatation of cerebral vessels appears to mediate
vascular headaches. Furthermore, the ®nding that blockade
of NO synthesis aborts acute attacks of migraine points to

the use of the pharmacological manipulation of nNOS in the
development of anti-migraine compounds (Thomsen &
Olesen, 1998).

Urogenital system nNOS is most prominent in the para-
sympathetic postganglionic innervation of the urethra. Like-

wise, stimulation of bladder a�erent nerves leads to the
release of NO and chronic irritation of the bladder augments
nNOS expression in dorsal root ganglion cells. Finally,
bladder hyperactivity provoked by intravesical irritants can

be moderated by inhibition of NO synthesis, thus suggesting
a role for spinal cord NO in the micturition re¯ex pathway
(de Groat & Yoshimura, 2001).

Recent years have seen a major focus on the pharmaco-
logical modulation of the NO released by the endothelium
and nitrergic nerves and which is involved in penile erection.

nNOS neurones innervate the corpus cavernosum and blood
vessels of the penis and nerve stimulation leads to erection,
which involves sGC stimulation and is blocked by NOS

inhibitors (Burnett et al., 1992; Holmquist et al., 1992; Rajfer
et al., 1992). Nitrergic neurones are also implicated in the
e�ects of sexual hormones. For instance, nNOS levels in the
penis decrease substantially after castration but return to

normal levels following testosterone replacement (Penson et
al., 1996). Levels of nNOS diminish with age, and this
decrease correlates with impaired erectile responses (Carrier

et al., 1997). Similarly, impotence occurring with diabetes
mellitus, spinal cord injury and treatments for prostate cancer
is now related to damage of the nitrergic structures

controlling erection (Goldstein et al., 1998). Phosphodiester-
ase-5 is the isoenzyme predominantly responsible for cyclic
GMP hydrolysis in the corpus cavernosum, and recently,
di�erent isoforms of this isozyme have been described (Lin et

al., 2000). Selective inhibition with drugs such as zaprinast or
sildena®l restores erectile responses, which are linked to
prolongation of the NO/sGC/cyclic GMP signalling pathway

(Bivalacqua et al., 2000; Gibson, 2001; Saenz de Tejada et al.,
1989). However, this mechanism of action is dependent on a
level of integrity of the nitrergic nerves and a pre-activated

endogenous NO-cyclic GMP system. This explains the
clinical observation that sildena®l does not aid erection in
patients with complete loss of sacral nerve activity nor where

there is an absence of sexual arousal (Maytom et al., 1999).
Nitrergic structures also innervate smooth muscle struc-

tures in the female urogenital tract, and are particularly
abundant in the clitoral corpus cavernosum (Burnett et al.,

1997; Papka et al., 1995) where they appear to be responsible
for the NANC erectile response of the clitoris (Cellek &
Moncada, 1998). There have been few studies of female

sexual dysfunction, but existing results suggest that inhibitors
of phosphodiesterase-5 may be e�ective in speci®c cases,
particularly those associated with the use of anti-depressant,

Figure 5 Selective destruction of nitrergic nerves in a model of
portal hypertension results in supersensitivity of vascular tissue to the
e�ects of exogenously administered NO. The graph shows cumulative
concentration-response to SNAP in isolated mesenteric veins from
control and portal hypertensive rats. Relaxations induced by SNAP
are expressed as % of decrease induced by KCL (30 mM), and each
point is the mean+s.e.mean of at least ®ve experiments.
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anti-psychotic and anti-anxiety agents (Shen et al., 1999).
Encouraging results have also been obtained with sildena®l in
other cases of sexual dysfunction (Kaplan et al., 1999; Sipski

et al., 2000), but these need con®rmation. The use of
sildena®l to aid in vitro fertilization is also a possibility since
its application in the vagina increases both uterine blood ¯ow
and the thickness of the endometrium (Chwalisz & Gar®eld,

2000). Finally, NO appears to be responsible for a tonic
inhibition of spontaneous contractile activity in the uterus
while there is evidence of increased biosynthesis of NO

during pregnancy and a rapid drop in NOS activity preceding
delivery. This points to the involvement of nitrergic
mechanisms during pregnancy, which promote a relaxed

state in the uterus, whereas a decrease in responsiveness to
NO would appear to be involved in the initiation of labour
(Chwalisz & Gar®eld, 2000; Weiner & Thompson, 1997).

Skeletal muscle The high levels of nNOS expressed in
skeletal muscle, particularly the muscle-speci®c splice variant
nNOSm, tend to be located beneath the sarcolemma of fast

twitch ®bres, emphasizing the role of NO as a modulator of
contractile force (Kobzik et al., 1994; Nakane et al., 1993).
NO derived from sarcolemmal nNOS is also implicated in

various other physiological functions occurring near the
muscle membrane. Myocytes fuse to form muscle myotubes
during muscle development, and this process is prevented by

inhibition of NO (Lee et al., 1994). In myocyte/motor neuron
co-cultures, NO produced at the postsynaptic muscle
membrane functions as a retrograde messenger, regulating

myotube innervation (Wang et al., 1995). In mature muscle
®bres, NOS modulates glucose uptake across the sarcolemma.
Although glucose uptake in skeletal muscle is regulated by
both rigorous exercise and insulin, inhibition of NO synthesis

has a selective action on glucose uptake in the former
(Roberts et al., 1997). Interestingly, regular exercise increases
nNOS protein expression in the muscle and this has long-

lasting enhancing e�ects on glucose transport in the muscle
(Roberts et al., 1997). Finally, both eNOS and iNOS
isoforms are also present in the skeletal muscle, the former

mostly related with the control of skeletal blood ¯ow and the
latter with in¯ammatory conditions and responses elicited by
cytokines or lipopolysaccharides (LPS) (Stamler & Meissner,
2001).

Several muscular diseases have been linked to a dystrophin
de®ciency, and although the speci®c cause is uncon®rmed,
perturbed NO signalling would seem to be responsible

(Brenman et al., 1995). A mutation in the rod-like domain
of dystrophin causes Becker's dystrophy and results in a loss
of sarcolemmal nNOS, while other components of the

dystrophin complex are preserved (Chao et al., 1996).

Similarly, patients with Duchenne muscular dystrophy and
mdx mice that lack dystrophin both exhibit a reduction of
nNOS in the sarcolemma (Brenman et al., 1995; Chao et al.,

1996). This diminishing of dystrophin disrupts the normal
link between the extracellular matrix and myo®ber cytoske-
leton (Campbell, 1995), which results in sarcolemmal damage
and myo®ber necrosis. Sarcolemmal instability in Duchenne

dystrophy leads to a repeated cycle of myo®bre degeneration
and subsequent regeneration. Redistribution of nNOS from
sarcolemma to cytosol is thought to be involved in myo®bre

necrosis, whereas the involvement of NO in myo®bre
di�erentiation suggests that an altered sarcolemmal nNOS
signalling contributes to failed muscle regeneration in

Duchenne dystrophy.

Concluding remarks

The last few years have seen the publication of a plethora of
information concerning the multiple roles played by NO in

the nervous system. Although we now know that NO is
involved in many aspects of CNS function, we are still far
away from the pharmacological breakthrough which could

have a clinical impact in CNS related diseases other than
stroke. This is not the case in the peripheral nervous system
where the introduction of sildena®l has represented a major

breakthrough in a condition for which, until now, there
existed complicated and only partially e�ective drug treat-
ment or simply a psychological approach. However, one

should bear in mind the many advances in our knowledge in
this ®eld, and how our insight has improved regarding
diseases about which we knew relatively little 10 years ago.
The ®eld continues to grow and recent important ®ndings

include the role of NO in mitochondrial function, clari®ca-
tion of signalling pathways, targeting of diseases associated
with organ-speci®c changes in nitrergic activity, development

of more selective NOS inhibitors and the identi®cation of
di�erent isoforms of phosphodiesterase-5. These discoveries
raise the prospect of future therapeutic leads, thus achieving

the pharmacological goal of linking physiological knowledge
with drug development.
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