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1 Previous studies investigating the role of metabotropic glutamate (mGlu) receptors in nociceptive
processing have been hampered by the lack of systemically active, selective, ligands. This study
investigates the possible analgesic and/or anti-hyperalgesic properties of the most potent compound
to date that has systemic agonist activity at group II mGlu receptors, LY379268.

2 In testing the drug in rats as an analgesic to acute noxious stimuli, LY379268 (in doses up to
3 mg kg71 i.p.) did not a�ect withdrawal latencies to either mechanical or thermal stimulation.

3 However, when a 3 mg kg71 dose was given prior to an intraplantar injection of carrageenan, the
in¯ammatory hyperalgesia that developed was signi®cantly delayed compared to saline pre-treated
controls, without a�ecting the in¯ammation of the paw. A similar dose of the mGlu-inactive
enantiomer, LY379267, was not anti-hyperalgesic.

4 In a model of mouse tail withdrawal to warm water, LY379268 (12 mg kg71 i.p.), given before a
subcutaneous tail injection of capsaicin, reduced the subsequent neurogenic hyperalgesia.

5 Rota-rod testing showed that the drug did not produce a motor impairment in rats at
antihyperalgesic doses.

6 The results indicate that systemic activation of this group of mGlu receptors reduces both
in¯ammatory and neurogenic thermal hyperalgesia.
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Introduction

To date, eight G-protein coupled metabotropic glutamate
(mGlu) receptors have been cloned and characterized into
three groups (I ± III) on the basis of their sequence homology
and their biochemical and pharmacological properties. Group

II mGlu receptors consist of mGlu2 and mGlu3 that act via
negative coupling to adenylate cyclase to inhibit cyclic AMP
formation (for reviews see Pin & Duvoisin, 1995; Conn &

Pin, 1997; Schoepp et al., 1999).
Both mGlu2 and mGlu3 receptors have been localized in

the spinal cord, but mGlu3 receptors have been shown to be

more prevalent, particularly in the super®cial layers of the
dorsal horn (Ohishi et al., 1993a, b; Petralia et al., 1996;
Boxall et al., 1998; Yung, 1998; Jia et al., 1999). These group

II receptors are distributed widely over pre-synaptic terminals
(Petralia et al., 1996; Testa et al., 1998), unlike group I
receptors which are clustered at release sites (LujaÂ n et al.,
1997). Their pre-synaptic position at glutamatergic synapses

suggests an autoreceptive role, potentially inhibiting synaptic
transmission, as has been shown in isolated spinal cord by

Jane et al. (1996) and in locus coeruleus neurones by Dube &
Marshall (1997). In addition, group II mGlu receptors have
been shown to negatively modulate glutamate release in
striatal neurones (Battaglia et al., 1997). Activation of these

receptors is thought to suppress transmitter release by
inhibiting voltage-sensitive Ca2+ channels (Chavis et al.,
1995). This evidence implies that group II mGlu receptors

may reduce hyperexcitable states including those underlying
hyperalgesia and allodynia. mGlu3 receptors are also found
on glial cells (Ohishi et al., 1993b; Tanabe et al., 1993;

Petralia et al., 1996).
Intrathecal administration of (1S,3S)-1-aminocyclopentane-

1,3-dicarboxylic acid ((1S,3S)-ACPD), a predominantly

group II mGlu receptor agonist, provided initial evidence
that mGlu receptors are involved in nociceptive processing.
(1S,3S)-ACPD potentiated the behavioural response to
formalin (Fisher & Coderre, 1996), co-administration of

trans-ACPD (in e�ect 1S,3R-ACPD) with AMPA elicited
mechanical hyperalgesia (Meller et al., 1993) and iontophore-
tic administration of an mGlu receptor antagonist reduced

hyperalgesic responses (Neugebauer et al., 1994). In contrast,
mGlu receptor agonists inhibited dorsal horn neurones
following carrageenan induced peripheral in¯ammation
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(Stanfa & Dickenson, 1998). However, (1S,3S)-ACPD has
mixed pharmacology, for instance showing a�nity for group
I mGlu (Thomsen et al., 1994) and mGlu4 (Kozikowski et

al., 1998) receptors (for review see Schoepp et al., 1999).
Therefore, the availability of a systemically active, selective,
agonist at group II receptors would provide an opportunity
to test the e�ect of activating these receptors, and its

behavioural speci®city, on nociceptive processing in awake
animals.
One highly potent and selective agonist of group II mGlu

receptors, LY379268, ( ± )-2-oxa-4-aminobicyclo[3.1.0]hexane-
4,6-dicarboxylic acid, is also bioavailable (Bond et al., 1997;
Monn et al., 1997; 1999; Schoepp et al., 1997). In

characterization studies of LY379268 (Monn et al., 1999),
its a�nity for group II receptors was shown by displacement
of speci®c binding of the mGlu2/3 antagonist, [3H]-

LY341495, with Ki values of 14.1+1.4 nM (mGlu2) and
5.8+0.64 nM (mGlu3). There was no agonist or antagonist
activity of the compound at recombinant cells expressing the
human mGlu 1a, 4a, 5a or 7a receptors. However, agonist

activity was seen at higher concentrations on mGlu6 and
mGlu8 receptors. There was no e�ect of LY379268 on
radioligand binding to the glutamate recognition site of

ionotropic receptors for NMDA, AMPA or kainate (Monn
et al., 1999). Recently LY379268, and the structurally
related (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid

(LY354740), have been shown to be neuroprotective in in
vitro and in vivo models (Bond et al., 1998; 2000; Kingston et
al., 1999). LY354740 has been shown to prevent release of

glutamate in the striatum in freely moving rats (Battaglia et
al., 1997) and to attenuate morphine withdrawal-associated
activation of locus coeruleus neurones, thought to be caused
by an increased release of glutamate (Vandergri� &

Rasmussen, 1999).
This study was performed to test whether LY379268 is

antinociceptive or antihyperalgesic in awake animals. Some

of these data have been presented in abstract form (Sharpe et
al., 1998; 1999).

Methods

Animals

Re¯ex tests of nociception were performed on 78 male
Sprague-Dawley rats (250 ± 330 g) and 47 male C57B46 mice

(25 ± 30 g). The animals were maintained in a controlled
environment with food and water ad libitum. All experiments
were carried out in accordance with the U.K. Animal

(Scienti®c Procedures) Act, 1986. Rats were acclimatized to
handling and the test environment for 3 ± 4 days prior to
experimentation. All experiments were performed during the

light phase of a 12 : 12 h light : dark cycle.

Induction of thermal and neurogenic inflammation

For experiments involving hind paw in¯ammation, carragee-
nan (2 mg in 0.2 ml distilled H2O) was injected into the
plantar surface of one hind paw of rats under transient

halothane anaesthesia. Paw volumes were measured
(Plethysmometer, Ugo Basile) before the carrageenan injec-
tion and immediately after each test. At the completion of

in¯ammation experiments, animals were killed humanely by
an overdose of pentobarbitone (300 mg kg71 i.p.). In a
separate set of experiments, a subcutaneous injection of

capsaicin (5 ml; 0.25%) was made into the terminal 3 cm of
the tail of mice so as to produce a transient thermal
hyperalgesia to warm water.

Nociceptive threshold and motor coordination tests

Thermal paw withdrawal latency Rats were placed in

10.5610.5622 cm Perspex containers positioned on a non-
heat retaining glass surface and were allowed to habituate for
a period of at least 15 min. Paw withdrawal latencies (PWL)

were measured to a movable radiant heat source positioned
under the plantar surface of the hind paw. An automatic
timer recorded PWL to the nearest 0.1 s, with the maximum

cut-o� time for stimulation set to 20.5 s. For each time point,
PWL was measured three times at 30 s intervals (alternately
for each paw) and the mean values calculated. PWL to
thermal stimulation was used both in naõÈ ve animals and in

those that had received an intraplantar injection of
carrageenan; thermal rather than mechanical testing was
selected for animals with an in¯amed paw because the thermal

tests do not involve handling a potentially painful limb.

Mechanical paw withdrawal threshold Rats were tested for

hind paw withdrawal threshold (PWT) to mechanical
pressure using a Randall-Selitto device (Analgesy-Meter,
Ugo Basile). Rats were held manually and one paw was

placed in the Randall-Selitto device. A progressive increase in
mechanical pressure (at 15 g s71) was applied alternately to
each hind paw, at 30 s intervals, until it evoked a withdrawal
or escape response, such as vocalisation or struggling, with a

cut-o� of 250 g. The mean of 3 PWT readings for each paw
was measured consecutively.

Tail thermal withdrawal latency Mice were used to assess tail
withdrawal latency (TWL) by dipping the ®nal 5 cm of tail in
either warm or hot water (46.5 ± 47.58C or 49.5 ± 50.58C). The
average was calculated for 3 TWLs at 15 s intervals taken to
a cut-o� time of 20 s.

Motor co-ordination A rotating rod (Ugo Basile) of 7 cm

diameter was used at a constant velocity of 4 r.p.m. Rats
used in these experiments had all been trained previously on
the apparatus; and on the day of testing all remained on the

rotating rod for a `baseline' of 5 min. Post-drug testing was
taken as the mean duration spent on the rod in three
consecutive attempts (without interval), with a cut-o� time of

3 min. Other assessments of motor activity and co-ordination
were subjective only.

Drugs

LY379268 and its mGlu receptor-inactive enantiomer,
LY379267 (Eli Lilly & Co.), were dissolved in equimolar

NaOH and adjusted to a pH of 7 ± 9 with equimolar HCl.
Limits on drug availability precluded more extensive testing
of dose-dependence, and caused us to use mouse rather than

rat models for some tests. Carrageenan (Sigma) was dissolved
in distilled H2O (10 mg ml71) the day prior to an experiment.
Capsaicin (Sigma) was dissolved in 100% ethanol
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(500 mg ml71) and made into a stock solution (0.1 mg ml71)
with Tween80 and saline (50 : 50) by slow heating.

Experimental design

The experimenter was `blind' to the treatment under test. In
all tests, `control' readings were taken immediately before i.p.

injection of either vehicle (saline) or test agent (LY379268 or
LY379267) in a volume of 2 ml kg71, and before the
induction of hyperalgesia.

Protocol 1 The analgesic e�ects of LY379268 or LY379267
were tested on responses to thermal and mechanical stimuli

(PWL and PWT) in rats without hind paw in¯ammation.

Protocol 2 The analgesic e�ects of LY379268 were tested in

mice on TWL to hot water at 508C. To match protocol 6
below, tests were repeated four times at 3 min intervals 1 h
after drug administration.

Protocol 3 The ability of LY379268 to reverse in¯ammatory
hyperalgesia was tested by i.p. injection 3 h after carrageenan
injection. Thermal PWL was tested hourly for a further 3 h.

Protocol 4 The ability of LY379268 to prevent the induction
of in¯ammatory hyperalgesia was assessed by administering

drug concurrently with carrageenan, after having made
baseline readings of PWL. Measurements of thermal PWL
were made hourly for the following 4 h.

Protocol 5 As Protocol 4 but drug was administered 1 h
before carrageenan was injected into one hind paw. PWLs
were then tested hourly for a further 4 h.

Protocol 6 LY379268 or vehicle was given 1 h prior to an
injection of capsaicin into the tail of mice. The degree of

neurogenic thermal hyperalgesia was tested by TWL to warm
water at 478C. This lower water temperature than for
Protocol 2 gave baseline latencies close to cut o� so as to

maximize the ability to detect hyperalgesia. TWL tests were
repeated before and 3, 6 and 9 min after capsaicin.

Data analysis

Data are shown as means+s.e.m. Two-way analysis of
variance (ANOVA) was followed by Mann-Whitney U-

statistic or Wilcoxon signed rank tests. The Friedman test
was used on data from contralateral non-in¯amed paws. All
analyses were made using Prism 2.01 (GraphPad Software).

Results

Effects of the group II mGlu receptor agonist LY379268
on acute algesic responses

In rats without peripheral in¯ammation (Protocol 1), neither
LY379268 nor its (S)-enantiomer, LY379267, had any e�ect
on the latency of paw withdrawal from either thermal or

mechanical stimuli. Figure 1A shows that there was no e�ect
of vehicle (n=7) or 3 mg kg71 of either LY379268 (n=12) or
LY379267 (n=6) on PWL to radiant heat tested over the 2 h

after drug injection. The same dose of LY379268 had no
e�ect on PWT to mechanical stimulation (Figure 1B) or on

rota-rod ability (not illustrated). LY379268 at 6 mg kg71

(n=9) caused an exaggerated startle response in rats that
precluded further testing. In mice (Protocol 2), LY379268 did
not detectably alter resting behaviour at higher doses

(24 mg kg71; n=7), and showed no analgesic e�ect on
TWL from water (50+0.58C) (control TWL 8.3+1.0 s;
TWL 1 h after 12 mg kg71 LY379268 10.6+1.9 s; P=0.72;

2-way ANOVA; data not shown).

Time-dependent effects of LY379268 on inflammatory
hyperalgesia in rats

Intraplantar injection of the pro-in¯ammatory agent, carra-

geenan, into one hind paw of rats caused thermal
hyperalgesia that developed over 3 h (Figure 2A,B), shown
as a PWL reduction in vehicle-treated animals. When
LY379268 was given 3 h after carrageenan (Protocol 3,

Figure 2A), at a time at which in¯ammation was well
developed, there was no e�ect on the established thermal
hyperalgesia (P=0.43; 2-way ANOVA; n=7). The same was

the case when LY379268 was given at the same time as the
carrageenan injection (Protocol 4, P=0.22; 2-way ANOVA;
n=8), although the onset of hyperalgesia appeared somewhat

Figure 1 Lack of e�ect of a systemically-administered mGlu group
II agonist, LY379268, on either hind paw withdrawal latency (PWL)
to thermal (A), or paw withdrawal threshold (PWT) to mechanical
(B), noxious stimuli in naõÈ ve rats. All values are given as mean+
s.e.m. Data are shown for baseline (pre-drug) and at di�erent times
after i.p. injection of either vehicle (saline; open bars; n=7),
3 mg kg71 LY379268 (solid bars; n=12) or 3 mg kg71 of the mGlu
group II receptor inactive enantiomer LY379267 (hatched bars;
n=6).
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slowed (Figure 2B). In both protocols, the slight increase in
contralateral PWL observed in vehicle-treated rats was not
signi®cant (Protocol 3: P=0.19, n=4±5; Protocol 4: P=0.49,

n=6; Friedman test). In contrast, pre-dosing of rats with
LY379268 (3 mg kg71, n=9), 1 h prior to the injection of
carrageenan, delayed the development of hyperalgesia,

compared with vehicle-treated rats (Protocol 5, Figure 2C,
n=8). Two hours after carrageenan there was no reduction at
all of PWL in drug-treated rats, compared to a 47%

reduction of PWL in vehicle pre-dosed rats; this prevention
of hyperalgesia was signi®cant (P=0.001, 2-way ANOVA;
P=0.015, Mann-Whitney test at 2 h; n=9). At a lower dose

of LY379268 (1 mg kg71) there was no signi®cant reduction
of thermal hyperalgesia (P=0.30, 2-way ANOVA; n=6;
Figure 4A).

The e�ects of the mGlu-inactive enantiomer of LY379268,

LY379267, were also assessed using Protocol 5, with separate
vehicle (saline) controls. Pre-treatment with LY379267 1 h
prior to the induction of in¯ammation had an unexpected

pro-algesic e�ect (P50.001; 2-way ANOVA, vehicle (not
shown) vs LY379267; n=8; Figure 2C). This e�ect was most
signi®cant 2 h after carrageenan injection when the reduction

in threshold was by 77% compared to 68% in vehicle-treated
rats (P=0.002, Mann-Whitney).

Effects of LY379268 on paw inflammation in rats

One hour after carrageenan injection there was signi®cant
in¯ammation, with paw volumes, measured by a plethysmo-

meter, greater than 150% of the pre-carrageenan baseline
volume. Paw volumes remained above 150% control for the
whole experimental period, in all treatment groups. Pre-

treatment with vehicle or LY379268 did not signi®cantly
a�ect the degree of paw in¯ammation (P=0.8; 2-way
ANOVA vehicle vs 3 mg kg71 LY379268). Two hours after

carrageenan injection, when signi®cant di�erences in thermal
hyperalgesia were observed, paw volumes for the vehicle
group and LY379268 (3 mg kg71) treated group were not

signi®cantly di�erent (in¯amed paw: vehicle 182+4%,
LY379268 167+9% control; contralateral paw: vehicle
98+3%, LY379268 102+3% control; P=0.2; Mann-Whit-
ney; vehicle vs 3 mg kg71 LY379268 in¯amed paws).

Effects of LY379268 on neurogenic hyperalgesia in mice

LY379268 or vehicle was injected i.p. 1 h before a
subcutaneous injection of saline or capsaicin into the tail
(Protocol 6). Tail injection of saline did not elicit hyper-

algesia. Tail injection of capsaicin caused signi®cant thermal
hyperalgesia after 3 min (P=0.002; Wilcoxon; vehicle-treated
baseline vs 3 min post-capsaicin; n=9; Figure 3) which lasted
for up to 9 min (P=0.03). LY379268 dose dependently

reduced the hyperalgesia (P50.01; Mann ±Whitney; vehicle
vs 12 mg kg71 LY379268; n=7). LY379268 did not result in
complete anti-hyperalgesia in this model; the maximum

reduction was by 50% at 12 mg kg71 (Figure 4B), with no
further reduction after 24 mg kg71. Subjective observation
did not reveal any obvious impairment of motor function at

these doses.

Discussion

Agonists at group II mGlu receptors can reduce spinal
excitatory neurotransmission (Jane et al., 1996) and are

therefore potentially anti-nociceptive. During periods of
hyperexcitability and sustained nociception, group II mGlu
receptor agonists can indeed have anti-nociceptive e�ects by

local administration (Young et al., 1994; 1995; Neugebauer et
al., 2000). However, investigation of the potential of such
compounds as analgesics has been hampered by the lack of

Figure 2 E�ects of LY379268, administered at di�erent time points,
on in¯ammatory hyperalgesia. Thermal paw withdrawal latency
(PWL) was tested in rats in which LY379268 (3 mg kg71; circles;
n=7±9) or vehicle (saline; squares; n=5±8) was injected i.p. either
3 h after (A), concurrently with (B), or 1 h before (C), intraplantar
carrageenan injection (carr). All values are given as mean+s.e.m.
PWL of the paw injected with carrageenan is shown by closed
symbols, and the contralateral PWL is shown in A and B by open
symbols. Baseline PWL is indicated by a dotted line. In (C)
LY379268 is contrasted with its enantiomer LY379267 (3 mg kg71;
diamonds; n=8). *=P50.05, vehicle vs LY379268, Mann ±Whitney
test.
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selective agonists that cross the blood-brain barrier and that
can therefore be given systemically. Consistent with previous
studies on neuroprotection (Bond et al., 1999; Cai et al.,

1999; Kingston et al., 1999), in the present study LY379268,
a group II mGlu agonist, was active by systemic administra-
tion in vivo. Pharmacokinetic studies in gerbils have

demonstrated that the compound shows a peak brain
concentration within 30 min post intraperitoneal administra-
tion, and that a dose of 10 mg kg71 maintains receptor active

concentrations over 24 h (Bond et al., 2000). This pro®le is
representative of the pharmacokinetics of the compound in
rats (unpublished data). In mice, i.p. doses of 10 ±
100 mg kg71 maintain anticonvulsive activity over at least

4 h, without evidence of sedation or ataxia (Monn et al.,
1999).

Effect of LY379268 on acute nociceptive responses

The lack of LY379268 activity on nociceptive withdrawal

re¯exes in the non-in¯ammatory state suggests that the group
II mGlu agonist was not an analgesic; nor did it have any
e�ects on motor co-ordination (see also Simmons et al.,

1998). Other studies have also shown a lack of e�ect of less
selective group II mGlu agonists, applied locally, on basal
levels of nociceptive and non-nociceptive spinal processing
(Stanfa & Dickenson, 1998; Neugebauer et al., 2000). These

®ndings may relate to the observation that these receptors are
not concentrated at transmitter release sites (LujaÂ n et al.,
1997) suggesting that under (patho)physiological conditions

they are activated preferentially by intense presynaptic
activity that causes transmitter overspill from release sites.
The addition of exogenous agonist at doses not causing overt

behavioural e�ects might not attain adequate concentrations
alone to have this e�ect, but might be additive with
endogenously released transmitter; this would result in

preferential e�ectiveness under conditions of intense pre-
synaptic activity, such as during enhanced pain states.

Effect of LY379268 on pathophysiological hyperalgesia

LY379268 delayed the development of thermal hyperalgesia
when given before the onset of peripheral in¯ammation or

capsaicin-induced sensitisation (see also Simmons et al.,
1998). It did not, however, attenuate the ®nal degree of
hyperalgesia. This suggests a role for mGlu2 and/or mGlu3

receptors in the development rather than the maintenance of
in¯ammatory hyperalgesia, although established neurogenic
neuronal sensitisation can be reversed by localized adminis-

Figure 3 E�ects of LY379268 on neurogenic hyperalgesia assessed
as mouse tail withdrawal latencies (TWLs) from water at 478C.
LY379268 (6 mg kg71, closed triangles, n=8; or 12 mg kg71, closed
diamonds, n=7) or vehicle (closed squares, n=10) was injected i.p.
1 h before subcutaneous injection of capsaicin into the tail. The open
diamonds show data from mice dosed with LY379268 (at
12 mg kg71, n=4) followed by a saline injection in the tail. All
values are mean+s.e.m.

Figure 4 E�ects of LY379268, or its inactive enantiomer LY379267,
on the development of thermal hyperalgesia induced 1 h after drug.
(A): Thermal paw withdrawal latency (PWL) measured in rats 2 h
after intraplantar carrageenan injection, shown as a change from pre-
carrageenan baseline value; n=6±9 per group. **=P50.01, vehicle
vs LY379268 3 mg kg71 i.p. (B): Tail withdrawal latencies (TWL) in
mice 3 min after capsaicin injection into the tail, also expressed as a
change from baseline; n=7±10 per group. **=P50.01, vehicle vs
LY379268 12 mg kg71 i.p. All values are mean+s.e.m.
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tration of LY379268 (Neugebauer et al., 2000). It is notable
that mGlu3 mRNA expression is increased in the dorsal
spinal cord during the development phase, but not during the

later stages, of peripheral in¯ammation (Boxall et al., 1998).
Systemic LY379268 did not a�ect the degree of in¯ammation
of the paw induced by carrageenan. This suggests that the
cascade of events that lead to in¯ammation at the site of

injury is not being modulated, and that the drug target is on
neuronal processing.
Whether the lack of e�cacy when given 3 h after

carrageenan injection would also be seen following a longer
term in¯ammatory hyperalgesia remains to be tested. The
lack of signi®cant anti-hyperalgesia with administration at

the same time as carrageenan dosing implies that the mGlu
receptor mediated e�ect is on the earliest stages of the
sensitization process. Pre-emptive agonist activity at these

receptors would presumably reduce the escalation of
excitatory transmission induced by peripheral in¯ammation
(Sluka & Westlund, 1992) or neurogenic sensitisation
(Dougherty & Willis, 1992). Pre-treatment with another

mGlu II agonist, (2R,4R)-APDC, has also been shown to
reduce (RS)-DHPG (group I mGlu agonist)-induced sponta-
neous nociceptive behaviours, suggested as being due to

inhibition of glutamate release from capsaicin-sensitive
primary a�erent terminals (Fisher et al., 1998). Although
reversal of hyperalgesia was observed following topical

administration of (1S,3S)-ACPD to the spinal cord 3 h after
in¯ammation (Stanfa & Dickenson, 1998), this may be due to
the high concentration administered topically (5.8 mM) and

the consequent possibility of lack of selectivity at the target
receptors.
In this study it is not possible to de®ne where in the

nociceptive pathway the drug was acting. mGlu agonists, by

activating presynaptic autoreceptors of glutamate, would be
expected to reduce glutamate release, and thereby a�ect the
generation of both spinal and supraspinal plastic changes that

are thought to be largely mediated by NMDA receptor
activation (Headley & Grillner, 1990). Presynaptic mGluR
can also activate heteroreceptors to reduce GABA release

(Ohishi et al., 1994; Stefani et al., 1994). Indeed, group II
agonists are known also to modulate sensory responses of

thalamic and periaqueductal grey neurones, presumably by
such mechanisms (Salt & Turner, 1998; Maione et al., 2000).
It is also possible that there is a peripheral neuronal site of

action (see Bhave et al., 2001).
In addition, mGlu3 receptors are located on glial cells

(Ohishi et al., 1993b; Tanabe et al., 1993; Petralia et al.,
1996). It has been demonstrated that there is a glial role in

hyperalgesia (Meller et al., 1994; Sweitzer et al., 1999).
Activation of mGlu3 receptors expressed on glia that envelop
glutamatergic synapses may aid the termination of neuro-

transmission by promoting glutamate removal from the
synaptic area (Ohishi et al., 1994).

In rats, the dose of LY379268 that was anti-hyperalgesic

had no e�ect on rota-rod performance (see also Simmons et
al., 1998). However, examination of LY379268 at higher
doses was limited due to the induction of exaggerated startle

responses. Given that other compounds in this structural
series do not show the same e�ects (unpublished observa-
tions), this e�ect may re¯ect activity either at other glutamate
receptors (perhaps mGlu8, at which LY379268 has activity in

vitro; Monn et al., 1999) or at non-glutamate receptors.
LY379267, the enantiomer of LY379268, has no agonist or
antagonist activity at any mGlu receptor subtype (unpub-

lished data) and in the present study had no anti-hyperalgesic
e�ects, although it did cause an unexplained increase in
carrageenan hyperalgesia without a�ecting baseline values;

this is presumably due to an unidenti®ed non-mGlu receptor
interaction.

In conclusion, this study shows that the systemic activation

of group II mGlu receptors can reduce the induction phase of
hyperalgesia at doses that do not have motor or other
obvious side e�ects. This lends impetus to the further
dissection of the relative roles of mGlu2 and mGlu3 receptor

subtypes in the central sensitization process associated with
persistent pain.

We would like to thank Simon Lishman for valued technical
assistance. E.F. Sharpe was supported by the M.R.C.
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