Nitric oxide inhibits capacitative Ca^{2+} entry by suppression of mitochondrial Ca^{2+} handling

¹Baskaran Thyagarajan, ²Roland Malli, ¹Kurt Schmidt, ²Wolfgang F. Graier & *^{,1}Klaus Groschner

¹Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, A-8010 Graz, Austria and ²Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens-University Graz, A-8010 Graz, Austria

> 1 Nitric oxide (NO) is a key modulator of cellular Ca^{2+} signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca^{2+} entry (CCE) into HEK293 cells by impairment of mitochondrial Ca^{2+} handling.

> 2 Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2 diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 μ M, respectively.

> 3 NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 μ M), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 μ M) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 μ M) failed to antagonize the inhibitory action of NO on CCE.

> 4 DEANO $(1 - 10 \mu M)$ suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca²⁺ levels, respectively, indicated that DEANO (10 μ M) depolarized mitochondria and suppressed mitochondrial $\hat{C}a^{2+}$ sequestration. The inhibitory effect of DEANO on Ca^{2+} uptake into mitochondria was confirmed by recording mitochondrial Ca^{2+} during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria.

> 5 DEANO (10 μ M) failed to inhibit Ba²⁺ entry into TG-stimulated cells when extracellular Ca²⁺ was buffered below 1 μ M, while clear inhibition of Ba²⁺ entry into store depleted cells was observed when extracellular Ca²⁺ levels were above 10 μ M. Moreover, buffering of intracellular Ca²⁺ by use of N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester (BAPTA/AM) eliminated inhibition of CCE by NO, indicating that the observed inhibitory effects are based on an intracellular, Ca^{2+} dependent-regulatory process.

> 6 Our data demonstrate that NO effectively inhibits CCE cells by cGMP-independent suppression of mitochondrial function. We suggest disruption of local Ca^{2+} handling by mitochondria as a key mechanism of NO induced suppression of CCE.

British Journal of Pharmacology (2002) 137, 821-830. doi:10.1038/sj.bjp.0704949

- Keywords: Capacitative Ca²⁺ entry; cellular Ca²⁺ regulation; nitric oxide; mitochondrial uncoupling; intracellular Ca²⁺ handling
- Abbreviations: BAPTA/AM, N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester; 8-Br-cGMP, 8-bromoguanosine $3'$,5'-cyclic monophosphate; $[Ca^{2+}]_e$, extracellular Ca^{2+} concentration; $[Ca^{2+}]_i$, intracellular Ca^{2+} concentration; $[Ca^{2+}]_m$, mitochondrial Ca^{2+} concentration; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CCE, capacitative Ca^{2+} entry; CCE_C, capacitative Ca^{2+} entry channels; DEANO, 2-(N,N-diethylamino)-diazenolate-2-oxide sodium salt; EGTA, ethylene glycol-bis(baminoethyl ether)-N,N,N',N'-tetraacetic acid; ER, endoplasmic reticulum; FCCP, carbonyl cyanide p- (trifluoromethoxy) phenylhydrazone; fura-2/AM, 5-Oxazolecarboxylic acid, 2-[6-[bis[2-[(acetyloxy)methoxy]-2oxoethyl]amino]-5-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl]amino]-5-methylphenoxy]ethoxy]-2-benzofuranyl]-, (acetyloxy)methyl ester; IP₃, inositol 1,4,5-trisphosphate; JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanide iodine; M, mitochondria; NO, nitric oxide; ODQ, 1H-[1,2,4] oxadiazole[4,3-1] quinoxalin-1-one; ProliNO, 1-[2-(carboxylato)-pyrrolidin-1-yl]diazem-1-ium-1,2-diolate; rhod-2/AM, Xanthylium, 9-[4- [bis[2-[(acetyloxy)methoxy]-2-oxoethyl]amino]-3-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl]-amino]phenoxy] ethoxy]phenyl]-3.6-bis(dimethylamino)- bromide; SERCA, sarco (endo)plasmic reticulum Ca^{2+} ATP-ase; SIN-1, 3-morpholino-sydnonimine; TG, thapsigargin

Introduction

Depletion of Ca^{2+} stores by either inositol 1,4,5-trisphosphate (IP_3) -dependent or IP_3 -independent pathways results

in activation of a Ca^{2+} influx pathway that is termed storeoperated Ca^{2+} entry or 'capacitative' Ca^{2+} entry (CCE; [Putney, 1986; 1990](#page-8-0)). The molecular nature of this phenomenon is still elusive. As to the signalling pathways that link CCE channels to intracellular stores, a diffusible Ca^{2+} influx factor ([Randriamampita & Tsien, 1993\)](#page-8-0) as well

^{*}Author for correspondence at: Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010, Graz, Austria; E-mail: Klaus.Groschner@kfunigraz.ac.at

as a direct physical coupling between CCE channels and components of the endoplasmic reticulum (ER) membrane (conformational coupling; [Putney, 1999](#page-8-0)) or the fusion of CCE channel-containing membrane vesicles with the plasma membrane [\(Fasolato](#page-8-0) [et al](#page-8-0)[., 1993\)](#page-8-0) have been proposed. In addition, changes in the sub-plasmalemmal $Ca²⁺$ concentration may play a critical role in the process of activation ([Krause](#page-8-0) *[et al](#page-8-0).*, 1999; [Putney](#page-8-0) *et al.*, 2001). Recently, evidence has been accumulated for the regulation of CCE by an intracellular Ca^{2+} store other than the ER, i.e. mitochondria. Mitochondria have been proposed to control Ca^{2+} channel gating in T lymphocytes ([Hoth](#page-8-0) *[et al](#page-8-0).*, 2000) and in Jurkat T cells [\(Makowska](#page-8-0) [et al](#page-8-0)[., 2000](#page-8-0)). In Jurkat cells, capacitative Ca^{2+} entry channels were reported to remain inactive during depletion of Ca^{2+} stores when the mitochondrial protonomotive force is collapsed by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or myxothiazol ([Makowska](#page-8-0) [et al](#page-8-0)[., 2000\)](#page-8-0). The effects of mitochondrial uncoupling on CCE of jurkat cells were not related to changes in cellular ATP/ADP ratio. Mitochondria are likely to sequester Ca^{2+} from sub-plasmalemmal compartments, thereby blunting the elevation of sub-plasmalemmal Ca^{2+} during Ca^{2+} entry and consequently Ca^{2+} -mediated negative feedback inhibition of CCE channels [\(Lawrie](#page-8-0) [et al](#page-8-0)[.,](#page-8-0) [1996; Rizzuto](#page-8-0) [et al](#page-9-0)[., 1993](#page-9-0); [1994;](#page-8-0) [Rutter](#page-9-0) et al., 1993). Impairment of mitochondrial Ca^{2+} handling such as blockade of mitochondrial Ca^{2+} uptake leads to severe alterations in intracellular Ca^{2+} homeostasis [\(Werth &](#page-9-0) [Thayer, 1994](#page-9-0); [Herrington](#page-8-0) [et al](#page-8-0)[., 1996](#page-8-0)) and was shown to suppress sustained Ca^{2+} influx into T-lymphocytes ([Hoth](#page-8-0) *[et](#page-8-0)* [al](#page-8-0)[., 1997\)](#page-8-0).

Nitric oxide (NO) is a mediator which governs Ca^{2+} homeostasis in a highly complex and cell specific manner ([Clementi & Meldolesi, 1997](#page-8-0); [Clementi, 1998\)](#page-8-0). NO was reported to potentiate CCE in pancreatic acinar cells and colonic epithelial cells [\(Bischof](#page-8-0) [et al](#page-8-0)[., 1995](#page-8-0)) but inhibits CCE in platelets ([Trepakova](#page-9-0) [et al](#page-9-0)[., 1999](#page-9-0)) and smooth muscle cells ([Wayman](#page-9-0) [et al](#page-9-0)[., 1996;](#page-9-0) [Cohen](#page-8-0) [et al](#page-8-0)[., 1999](#page-8-0)). NO has been proposed to control Ca^{2+} transport via cGMPdependent [\(Gukovskaya & Pandol, 1994\)](#page-8-0) as well as cGMPindependent pathways ([Watson](#page-9-0) [et al](#page-9-0)[., 1999\)](#page-9-0). Promotion of SERCA-dependent refilling of intracellular Ca^{2+} stores has been postulated as the mechanism by which NO causes inhibition of Ca^{2+} entry signals [\(Trepakova](#page-9-0) *[et al](#page-9-0).*, 1999). Since mitochondrial function has been recognized as an important modulator of cellular Ca^{2+} signalling, it appeared of interest to test for a possible role of mitochondria as a cellular switchboard linking NO and $Ca²⁺$ signals. With the present study, we demonstrate that NO is able to inhibit capacitative Ca^{2+} entry into HEK 293 cells by a mechanism that is independent of cGMP or peroxynitrite formation, but involves uncoupling of mitochondrial Ca^{2+} handling.

Methods

Cell culture

HEK293 (human embryonic kidney) cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemen-

Measurement of intracellular Ca^{2+}

Intracellular Ca^{2+} was measured with 5-Oxazolecarboxylic acid, 2-[6-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl] amino]-5-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl]amino]-5 methylphenoxy]ethoxy]-2-benzofuranyl]-, (acetyloxy)methyl ester (fura-2/AM). Fura-2/AM was initially dissolved in $DMSO$ at 2 mM and used at a final concentration of 2μ M. Confluent cells were harvested by enzymatic digestion (0.25% trypsin) and suspended in 5 ml DMEM without serum, and loaded with fura-2/AM for 60 min at 37° C and 5% CO₂. Thereafter, cells were washed once with Ca^{2+} -containing Tris buffer (mM: NaCl 100, KCl 5, Tris 50, CaCl₂ 2.5, MgCl₂ 1, pH 7.4), incubated for 20 min and washed in Tris buffer without Ca^{2+} . Fluorescence measurements were carried out with a dual wavelength spectrofluorimeter (Hitachi F2000). Cells were maintained at 37° C, and emission was collected at 510 nm at excitation of 340 nm and 380 nm. For store depletion 100 nm thapsigargin (TG) was added, and extracellular Ca^{2+} was elevated subsequently by adding 1 mM Ca^{2+} to induce Ca^{2+} entry. $[Ca^{2+}]_i$ was determined from the fluorescence ratio F_{340}/F_{380} according to [Grynkiewicz](#page-8-0) [et al](#page-8-0)[. \(1985\)](#page-8-0). The fluorescence after sequential addition of 0.1% Triton X-100 and 50 mM ethylene glycol-bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to the cells provided the maximum fluorescence ratio (R_{max}) and the minimum fluorescence ratio (R_{min}) respectively. [Ca²⁺]_i was calculated using the equation

$$
[Ca^{2+}]_i = (R - R_{min})/(R_{max} - R) \times \beta \times K_D
$$

where β is the ratio of the emission fluorescence at 380 nm excitation in the presence of Triton X-100 and Triton X-100 plus EGTA, respectively.

Measurement of cGMP accumulation

HEK293 cells were subcultured on 24-well plates. Cells were incubated with NO containing solutions or NO donors for 14 min (corresponding to the incubation time in experiments measuring Ca^{2+} entry) and the incubation was stopped by removal of medium and addition of 0.01 M HCl. Guanosine 3',5'-cyclic monophosphate (cGMP) was measured in the samples by radioimmunoassay as described in [Schmidt](#page-9-0) [et al](#page-9-0)[.](#page-9-0) [\(1989\).](#page-9-0)

Measurement of Ba^{2+} entry

Ba2+ entry into TG-stimulated HEK293 cells was measured as described above by recording of the fluorescence ratio (F_{340}/F_{380}) from Fura-2-loaded cells. The experiments were conducted either in nominally Ca^{2+} -free or in extracellular $Ca²⁺$ -chelated condition as specified. Ba²⁺ entry was initiated by adding $3 \text{ mm } Ba^{2+}$, and control experiments were performed with vehicle only. Ba^{2+} entry was quantified as the initial slope of fluorescence ratio calculated from the changes in fluorescence observed within 1 min after Ba^{2+} addition. TG stimulated Ba^{2+} entry about 2.5 fold over basal values which were not subtracted in the analysis.

Measurement of cellular oxygen consumption

HEK293 cells from one petri dish were harvested and suspended in 1.8 ml of 50 mM Tris buffer, pH 7.4, containing (mM): NaCl 100, KCl 5, $MgCl₂$ 1, and CaCl₂ 3. Oxygen consumption was measured with a Clark-type electrode $(ISO₂, World Precision Instruments, Mauer, Germany)$ in a temperature controlled glass vial sealed with a rubber septum. After equilibration (\sim 1 min), 5 μ l of a stock solution of the NO donor or solvent was injected through the septum, and O_2 consumption was monitored over $10 -$ 15 min under constant stirring. Two-point calibration of the sensor was performed in air-saturated H_2O at 37° C (6.9 p.p.m.; 0.216 mM O_2) and argon atmosphere (zero O_2).

Measurement of mitochondrial membrane potential with $JC-1$

Cells were loaded at room temperature with 5,5',6,6' tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanide iodine (JC-1, $5 \mu M$) for 10 min in the dark. Prior to the experiments, cells were washed twice and mounted in a customized superfusion chamber. To monitor mitochondrial membrane potential, cells were illuminated for 200 ms alternatively at 485 nm (485DF15; Omega Optical, Brattleboro, VT, U.S.A.) and 575 nm (575DF25; Omega Optical, Brattleboro, VT, U.S.A.). Emission was detected at 528 and 633 nm (528-633DBEN, XF53; Omega Optical, Brattleboro, VT, U.S.A.).

Measurement of mitochondrial Ca^{2+} with rhod-2/AM

For measurements of mitochondrial Ca^{2+} , cells were seeded on poly-L-lysine-coated cover slips $(6 \times 6 \text{ mm})$ and loaded with Xanthylium, 9-[4-[bis[2-[(acetyloxy)methoxy]-2 oxoethyl]amino]-3-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxoethyl] amino]phenoxy]ethoxy]phenyl]-3.6-bis(dimethylamino)- bromide (rhod-2/AM) in DMEM without fetal calf serum, at a concentration of $2 \mu M$ for 45 min at 37°C. Cells were illuminated using a monochromator (Polychrome II, Till Photonics, Gräfelfing, Germany) at 540 nm and fluorescence emission was collected at 605 nm. Fluorescence was monitored on a Nikon Diaphot 300 microscope equipped with a CCD camera system (Sensicam, PCO, Kelheim, Germany) and analysed using the Axon Imaging Workbench 2.1 software (Axon Instruments, Foster City, $U.S.A.$).

Measurement of mitochondrial Ca^{2+} using heterologous expression of ratiometric-pericam that is specifically targeted to mitochondria

Mitochondrial free Ca²⁺ concentration was monitored in single, adherent HEK293 cells expressing ratiometric-pericam-mt which was kindly provided by Dr Atsushi Miyawaki, RIKEN, Saitama, Japan. Cells were grown up to 50% of confluence and were transiently transfected with cDNA encoding the ratiometric-pericam-mt [\(Nagai](#page-8-0) [et al](#page-8-0)[., 2001\)](#page-8-0), using SuperFectTM (Oiagen, BioTrade, Vienna, Austria) in the standard transfection protocol described for this transfection reagent. Between $24 - 36$ h after transfection, cells were mounted in a customized perfusion chamber that allowed

superfusion with buffer (flow rate $1-2$ ml/min). Experiments were performed at room temperature $(20-23^{\circ}C)$. For measuring the mitochondrial free Ca^{2+} concentration $({[Ca^{2+}}]_m)$, an imaging microscope was used (Frieden *et al.*, 2002; [Graier](#page-8-0) [et al](#page-8-0)[., 1998; Paltauf-Doburzynska](#page-8-0) [et al](#page-8-0)[., 2000\)](#page-8-0). Briefly, a Nikon inverted microscope (Eclipse 300TE, Nikon, Vienna) was equipped with CFI Plan Fluor \times 40 oil immersion objective (NA 1.3, Nikon, Vienna, Austria), an epifluorescence system (150 W XBO; Optiquip, Highland Mills, NY, U.S.A.) and a computer-controlled filter wheel (Ludl, Electronic Products, Hawthorne, NY, U.S.A.). To monitor $[Ca^{2+}]_{m}$, cells were illuminated at room temperature for 500 ms alternatively at 410 nm (410DF20; Omega Optical, Brattleboro, VT, U.S.A.) and 480 nm (480AF30; Omega Optical, Brattleboro, VT, U.S.A.). Emission was monitored at 535 nm (535AF26 with dichroic 455DRVP; Omega Optical, Brattleboro, VT, U.S.A.) using a liquidcooled CCD camera $(-30^{\circ}$ C; Quantix KAF 1400G2, Roper Scientific, Acton, MA, U.S.A.). All devices were controlled by Metafluor 4.0 (Visitron Systems, Puchheim, Germany). Mitochondrial Ca^{2+} concentration is presented as the fluorescence ratio $(F480/410)$ at 535 nm emission.

Chemicals

Chemicals were purchased from the following suppliers: Tissue culture medium was from Gibco BRL (Vienna, Austria); fura-2/AM, rhod-2/AM, JC-1 and BAPTA/AM were from Molecular Probes (Leiden, Netherlands); DEANO was from Alexis (Switzerland) and all other chemicals were purchased from Sigma Chemical Co. (Vienna, Austria). NO solutions were prepared as described in [Kukovetz &](#page-8-0) [Holzmann \(1989\).](#page-8-0)

Statistical analysis

Time courses of fluorescence changes are illustrated as mean values obtained from the indicated number of experiments. For clarity, error bars were omitted in time course illustrations. Averaged data given for specific time points are expressed as mean values \pm s.e.mean. Differences were considered statistically significant at $P < 0.05$ using Student's t-test for unpaired values.

Results

Inhibition of capacitative Ca^{2+} entry into HEK293 cells by NO and NO donors

Exposure of HEK293 cells to NO or NO donors (DEANO, ProliNO) inhibited the capacitative Ca^{2+} entry (CCE) induced by thapsigargin (TG) in a classical Ca^{2+} re-addition protocol. Typical effects of $1 \mu M$ and $10 \mu M$ DEANO are shown in [Figure 1A,B,](#page-3-0) respectively. Intracellular Ca^{2+} levels of $713+28$ nM $(n=12)$ were measured 3 min after Ca^{2+} readdition in the absence of DEANO and $492+36$ nM $(n=8)$ and $323+18$ nM $(n=8)$ in the presence of 1 μ M and 10 μ M DEANO, respectively. DEANO did not affect the intracellular Ca^{2+} signal evoked by TG-induced store depletion in the absence of extracellular Ca^{2+} , but by itself, elevated cytoplasmic Ca^{2+} at higher concentrations (10 μ M, [Figure](#page-8-0)

[1B](#page-8-0)). At 10 μ M, the NO donor produced a change in the time course of the Ca^{2+} entry signal in that elevation of intracellular Ca^{2+} became essentially slow. [Figure 1C](#page-8-0) shows the inhibitory effect obtained when an NO solution was administered (nominally 100 μ M). In the presence of NO, intracellular Ca²⁺ levels were $281 + 22$ nM (n=8) at 3 min after Ca^{2+} re-addition. The inhibitory effect of NO was not mimicked by 8-Br-cGMP (1 mM, [Figure 1D\)](#page-8-0), the peroxynitrite donor SIN-1 (100 μ M; [Figure 1E](#page-8-0)) or by authentic peroxynitrite (100 μ M; [Figure 1F\)](#page-8-0). Moreover, decomposed DEANO (10 μ M) and ProliNO (10 μ M) did not inhibit TGinduced CCE in HEK 293 cells (not shown, $n=3$). These results suggested inhibition of CCE by NO via a cGMP and peroxynitrite-independent mechanism. To further test this concept we studied the relation between inhibition of CCE and cellular cGMP levels for the different NO donors and performed experiments with the guanylyl cyclase inhibitor ODQ.

ProliNO is a NONOate that decomposes more rapidly than DEANO. Thus, the actual peak NO concentration obtained with proliNO is expected to be close to the nominal concentration of the NO donor and higher than that obtained with DEANO. The threshold concentration for ProliNO-induced inhibition of CCE, as quantified by changes in cytosolic Ca²⁺ at 3 min after Ca²⁺ re-addition to TG-

Figure 1 Time courses of $[Ca^{2+}]_i$ determined from fura-2 fluorescence. Cells were stimulated with thapsigargin (TG) in Ca^{2+} -free solution, and extracellular Ca^{2+} (1 mM) was added to induce Ca^{2+} entry as indicated. Thin lines denote control experiments performed in the absence of drugs, thick lines represent experiments performed in the presence of the indicated compounds (A) DEANO, $1 \mu M$; (B) DEANO, $10 \mu\text{m}$; (C) NO in solution, $100 \mu\text{m}$; (D) 8-Br-cGMP, 1 mm; (E) SIN-1, 100 μ m; (F) peroxynitrite, PN, 100 μ m). Data points are mean values derived from $6 - 15$ experiments.

stimulated cells, was slightly lower than that of DEANO (0.3 μ M versus 1 μ M). At 0.3 μ M, ProliNO inhibited CCE significantly but failed to elicit any detectable change in cellular cGMP levels (Figure 2). A similar situation was found with NO in solution at its threshold to produce significant inhibition of CCE (1 μ M). By contrast, 100 μ M SIN-1 produced a significant elevation of cellular cGMP without any change in CCE. Higher concentrations of ProliNO $(1 \mu M)$ and NO (nominally 10 μ M) induced concomitant changes in CCE and cGMP levels. Preincubation of cells with 30 μ M ODQ was sufficient to prevent elevation of cGMP but failed to suppress inhibition of CCE by $1 \mu M$ ProliNO and 10 μ M NO, respectively ([Figure 2](#page-8-0)).

NO reduces oxygen consumption of HEK293 cells

A substantial effect of NO on energy metabolism was evident from experiments measuring oxygen consumption of HEK293 cells. DEANO $(1-10 \mu M)$ reduced oxygen consumption in a concentration-dependent manner, while SIN-1 (100 μ M) did not exert any effect ([Figure 3](#page-4-0)). These results indicate that NO impairs mitochondrial respiration in HEK293 cells by a mechanism independent of peroxynitrite and/or cGMP generation.

NO depolarizes mitochondria and impairs mitochondrial Ca^{2+} handling

To test whether NO affects mitochondrial function in HEK293 cells, we first studied the effects of DEANO on mitochondrial membrane potential using JC-1 as a reporter dye. As illustrated in [Figure 4](#page-4-0), mitochondrial membrane potential recorded as JC-1 fluorescence was significantly reduced by 10 μ M DEANO versus control. The effect of $10 \mu M$ DEANO was less pronounced than that of the protonophore carbonyl cyanide p-(trifluoromethoxy) phenyl-

Figure 2 Comparison of inhibition of CCE (black columns) and elevation of cGMP levels (grey columns) by NO and NO donors (ProliNO, DEANO and SIN-1). Values obtained with 1 μ M ProliNO and 10 μ M NO in the presence of the guanylyl cyclase inhibitor ODO are shown in the right panel. Significant elevation of cGMP was not detectable (ND) with $0.3 \mu M$ ProliNO, 1 μM NO and in the presence of ODQ. Inhibition of CCE was not detectable (ND) with $100 \mu M$ SIN-1. Inhibition of Ca^{2+} entry was determined from $[Ca]_i$ levels measured 3 min after Ca^{2+} re-addition. Mean values + s.e.mean derived from $4-8$ experiments are given, all effects are statistically significant.

Figure 3 Effects of DEANO $(1-10 \mu M)$ and SIN-1 $(100 \mu M)$ on oxygen consumption of HEK293 cells. Mean values+s.e.mean derived from $4-6$ experiments are given. *Denotes statistically significant difference at $P < 0.05$ versus control.

Figure 4 Time courses of mitochondrial membrane potential measured as JC-1 fluorescence during exposure of cells to 10 μ M DEANO, $1 \mu M$ FCCP or vehicle (control). Mean values of JC-1 fluorescence \pm s.e.mean at 3 min after administration of drugs or vehicle are given. *Denotes statistically significant difference at $P<0.05$ versus control.

hydrazone (FCCP, $1 \mu M$), a classical uncoupler of mitochondrial function.

To monitor the mitochondrial Ca^{2+} concentration, cells were loaded with the Ca^{2+} sensitive dye rhod-2 which accumulates in mitochondria. Rhod-2 fluorescence was localized in discrete spots within the cells. As shown in Figure 5A, $3 \mu M$ DEANO caused a rapid decline in rhod-2 fluorescence, an effect that was mimicked by 300 nM of the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP), indicating that the NO donor and the protonophore affect mitochondrial Ca^{2+} handling to a similar extent at these concentrations. Figure 6A,B compares the effects of $3 \mu M$ DEANO and 300 nm CCCP on TG-induced $Ca²⁺$ signals. Both agents elicited a slight elevation of basal Ca^{2+} when administrated in Ca^{2+} -free solution and exerted comparable inhibitory effects on TG-induced CCE. To further test for NO-induced suppression of mitochondrial $Ca²⁺$ handling we employed an additional approach based on expression of ratiometric – pericam that is targeted specifically to mitochondria (ratiometric-pericam-mt). HEK293 cells expressing $rationetric-periodm - mt$ were challenged with

Figure 5 Time courses of mitochondrial rhod-2 fluorescence in single HEK293 cells during administration of DEANO (A, 3 μ M) and the mitochondrial uncoupler CCCP (B, 300 nM). Data points represent the mean derived from 32 and 40 cells, respectively. Lower panel shows typical images corresponding to time points indicated in A.

Figure 6 Time courses of $[Ca^{2+}]_i$ determined from fura-2 fluorescence. Cells were stimulated with thapsigargin (TG) in Ca^{2+} -free solution, and extracellular Ca^{2+} (1 mM) was added to induce Ca^{2+} entry as indicated. Thin lines denote control experiments performed in the absence of drugs, thick lines represent experiments performed in the presence of DEANO (A) 3μ M; and CCCP (B) 300 nM. Data points are mean values derived from eight experiments.

carbachol to elicit profound Ca^{2+} loading of mitochondria, which was detectable by a rise in the Ca^{2+} -sensitive fluorescence ratio as shown in [Figure 7.](#page-5-0) This carbacholinduced Ca^{2+} loading of mitochondria was significantly reduced in the presence of 10 μ M DEANO [\(Figure 7](#page-8-0)).

Inhibition of capacitative Ca^{2+} entry channels by NO requires the presence of extracellular Ca^{2+} and is eliminated by intracellular Ca^{2+} buffering

To test the concept that NO inhibits CCE due to impairment of local Ca^{2+} handling and promotion of Ca^{2+} -mediated autoregulation, we performed experiments with Ba^{2+} ions which are known to permeate through many Ca^{2+} entry channels but barely activate negative feedback mechanisms. Neither DEANO (10 μ M) nor CCCP (300 nM) inhibited Ba²⁺ entry when extracellular free Ca²⁺ was buffered below 1 μ M, as predicted for a Ca^{2+} -mediated mechanism [\(Figure 8A,C\)](#page-6-0).

Figure 7 Effects of DEANO (10 μ M) on Ca²⁺ loading of mitochondria during carbachol (CCh; $200 \mu M$) stimulation of HEK293 cells. Mitochondrial Ca²⁺ was monitored by expression of a ratiometric-pericam that is specifically targeted to mitochondria. (A) Representative time courses of Ca^{2+} sensitive fluorescence in individual cells with $\Delta R1$ and $\Delta R2$ taken as a measure of the increase in mitochondrial Ca^{2+} before and after administration of DEANO or vehicle. (B) Effect of 10 μ M DEANO on mitochondrial Ca² uptake calculated as the relation between $\Delta R1$ and $\Delta R2$ for DEANO and vehicle (control), respectively. Mean values \pm s.e.mean derived from six experiments. *Denotes statistically significant difference at $P<0.05$ versus control.

Moreover, the inhibitory action of both agents was regained when extracellular Ca^{2+} was elevated above 10 μ M ([Figure](#page-8-0) [8B,D](#page-8-0)). Thus, the inhibitory action of both CCCP and the NO donor was Ca^{2+} -dependent. Mean values of the inhibitory effects of both compounds at different extracellular free Ca^{2+} concentrations are depicted in [Figure 8E](#page-8-0). Consistent with the hypothesis that both NO and CCCP inhibit CCE due to promotion of an intracellular Ca^{2+} -dependent mechanism, the inhibitory action of both agents was eliminated by preincubation of cells with the cell-permeant Ca^{2+} chelator BAPTA/AM. Loading of the cells with BAPTA/AM (10 μ M) substantially enhances the intracellular Ca^{2+} buffer capacity whilst still allowing for moderate elevation of fura-2 fluorescence during $Ca²⁺$ mobilization and entry. [Figure 9](#page-6-0) illustrates that in BAPTA/AM-loaded cells, both DEANO and CCCP failed to inhibit TG-induced CCE in HEK293 cells.

Discussion

With the present study we provide evidence for a key role of mitochondria in NO-mediated control of capacitative Ca^{2+}

entry and thus in the coordination of cellular NO and Ca^{2+} signals. Our results demonstrate for the first time that two previously recognized actions of NO, i.e. modulation of mitochondrial function and inhibition of CCE, are tightly coupled.

NO-induced inhibition of CCE in HEK293 cells is independent of cGMP and peroxynitrite formation

The classical target of NO is soluble guanylyl cyclase [\(Dierks](#page-8-0) [& Burstyn, 1996\)](#page-8-0), and a variety of biological actions of NO involve cGMP/cGMP-kinase-mediated signal transduction ([Looms](#page-8-0) [et al](#page-8-0)[., 2001](#page-8-0)). Besides this classical signal transduction pathway, NO is known to directly affect other target proteins such as components of the respiratory chain ([Brown, 1999\)](#page-8-0) and to exert biological effects due to modification of proteins by S-nitrosation or tyrosine nitration ([Hanafy](#page-8-0) [et al](#page-8-0)[., 2001](#page-8-0); [Poteser](#page-8-0) [et al](#page-8-0)[., 2001](#page-8-0)). Here, we report that NO as well as NO donors inhibit TG-induced (capacitative) Ca^{2+} entry (CCE) in HEK293 cells. The rapidly decomposing NO donor ProliNO, which generates peak NO levels close to the donor concentration, exerted significant inhibitory effects at submicromolar concentrations, indicating that these rather physiological NO levels are able to affect store operated $Ca²⁺$ signaling. High concentrations of NO donors as well as mitochondrial uncouplers gave rise to a moderate elevation of basal intracellular Ca^{2+} levels and a change in the time course of intracellular Ca^{2+} during CCE. It remains unclear whether the change in kinetics of the intracellular Ca^{2+} signals is due to suppression of CCE channel activity below a certain critical level or reflects an additional inhibitory principle of the NO donor.

The inhibitory actions of NO were neither mimicked by 8- Br-cGMP nor by SIN-1, a NO donor that decomposes to produce peroxynitrite resulting in elevated cGMP levels and enhanced protein tyrosine phosphorylation ([Takehara](#page-9-0) [et al](#page-9-0)[.,](#page-9-0) [1996\)](#page-9-0). Inhibitory effects of NO and NO donors were not correlated with intracellular cGMP levels. NO and ProliNO inhibited CCE without any detectable increase in cellular cGMP when administrated at threshold concentrations or when higher concentrations were administered in the presence of the guanylyl cyclase inhibitor ODQ. Moreover, SIN-1 produced a substantial elevation of cellular cGMP without affecting CCE. These results suggest that NO governs CCE in HEK293 cells by a mechanism independent of cGMP or peroxynitrite formation. The lack of mediator function of peroxynitrite was corroborated by experiments with authentic peroxynitrite. Both NO itself as well as peroxynitrite are known to affect mitochondrial function, albeit in a different manner. NO at physiological levels appears to interact predominantly with cytochrome c oxidase, leading to reduced mitochondrial oxygen uptake and consequently in rather profound alterations in mitochondrial function. By contrast, peroxynitrite is able to cause irreversible oxidative damage of components of the respiratory chain, depending on the effectiveness of mitochondrial scavenging systems, which protect against modification of mitochondrial proteins by peroxynitrite ([Radi](#page-8-0) [et al](#page-8-0)[., 2002\)](#page-8-0). The lack of effect of peroxynitrite in the present study indicates a relatively high resistance of mitochondria in HEK293 cells against oxidative modification.

Figure 8 Inhibition of TG-induced Ba²⁺ entry by DEANO (3 μ M) and CCCP (300 nM) at different extracellular Ca²⁺ concentrations ($<$ 1 μ M: A&C; 10 μ M: B&D). Time courses of fura-2 fluorescence ratio (F₃₄₀/F₃₈₀) during stimulation of cells with thapsigargin (TG) and addition of 3 mM Ba^{2+} . Thin lines denote control experiments performed in the absence of drugs, thick lines represent experiments performed in the presence of DEANO (A, 3 μ M); and CCCP (B, 300 nM). Data points are mean values derived from 10 experiments (E). Inhibition of the initial rate of Ba^{2+} entry (calculated from the increase in fluorescence ratio recorded within 1 min upon Ba^{2+} addition) by DEANO (white columns) and CCCP (black columns). Mean values \pm s.e.mean derived from $6-8$ experiments. *Denotes statistically significant difference at $P<0.05$ versus control.

Figure 9 Time courses of $[Ca^{2+}]_i$ determined from fura-2 fluorescence. Cells were loaded with $BAPTA/AM$ (10 μ M) and stimulated with thapsigargin (TG) in Ca²⁺-free solution, and extracellular Ca²⁺ (1 mM) was added to induce Ca^{2+} entry as indicated. Thin lines denote control experiments performed in the absence of drugs, thick lines represent experiments performed in the presence of DEANO $(A; 10 \mu M)$ and CCCP (B; 300 nm). Data points are mean values derived from $6 - 18$ experiments. Mean values \pm s.e.mean are given for $n = 6 - 18$. *Denotes statistically significant differences at $P < 0.05$ versus control.

Since a key role of mitochondria in Ca^{2+} signalling is well established [\(Werth & Thayer, 1994](#page-9-0); [Herrington](#page-8-0) [et al](#page-8-0)[., 1996\)](#page-8-0), we were prompted to hypothesize that NO exerts its effect on CCE by modulation of mitochondrial Ca^{2+} handling.

NO modifies mitochondrial Ca^{2+} handling in HEK293 cells

An inhibitory effect of DEANO on mitochondrial function was evident from the observed suppression of oxygen consumption. Cellular respiration was suppressed by DEA-NO but not by SIN-1, indicating that the effect on oxygen consumption was, as that on CCE, not mediated by cGMP or peroxynitrite. Experiments with the fluorescent dyes JC-1 and rhod-2, which report mitochondrial membrane potential and Ca^{2+} levels, respectively, confirmed the substantial impairment of mitochondrial function by NO. NO reduced mitochondrial membrane potential as evident from a significant reduction of JC-1 fluorescence, and NO-induced reduction of rhod-2 fluorescence indicated suppression of mitochondrial Ca^{2+} accumulation. Since rhod-2 fluorescence may be affected to some extent by changes in mitochondrial membrane potential, we set out to test for impairment of mitochondrial Ca^{2+} sequestration by use of an additional, highly specific method for recording of mitochondrial Ca^{2+} . Cells were transfected to express a ratiometric-pericam that is targeted to mitochondria. Measurements of Ca^{2+} uptake into mitochondria by this approach revealed a clear inhibitory effect of NO on mitochondrial Ca^{2+} sequestration. These results are in agreement with previous reports suggesting the ability of NO to decrease mitochondrial Ca^{2+} levels in hepatocytes and the β -cell lines, INS-1 [\(Richter](#page-8-0) $et al., 1994$ $et al., 1994$; Laffranchi $et al., 1995$ $et al., 1995$). In principle, the effects of

Figure 10 Mitochondria are proposed to function as a sink that reduces the Ca^{2+} concentration close to cytoplasmic face of CCE_C. NO as well as CCCP inhibit mitochondrial Ca²⁺ uptake and increase Ca²⁺ concentrations in regions close to cytoplasmic face of CCE_C. The resulting accumulation of local Ca²⁺ promotes Ca²⁺-induced negative feedback regulation of CCE_C.

NO on mitochondrial Ca^{2+} handling may be the consequence of mitochondrial depolarization [\(Richter](#page-8-0) [et al](#page-8-0)[., 1994\)](#page-8-0) due to inhibition of cytochrome c oxidase [\(Kushnareva](#page-8-0) [et al](#page-8-0)[., 2001](#page-8-0)). Consistently, the classical mitochondrial uncoupler CCCP, which dissipates mitochondrial H^+ gradients and membrane potential mimicked the effects of NO on CCE.

To further analyse the mechanisms that link changes in mitochondrial function to inhibition of CCE, we tested whether a Ca^{2+} -dependent negative feedback regulation of CCE channel is involved.

Impairment of mitochondrial function by NO promotes Ca^{2+} -mediated negative feedback regulation of CCE

Functional mitochondria appear to maintain CCE after depletion of intracellular Ca^{2+} stores by effective sequestration of subplasmalemmal Ca^{2+} and by the consequent attenuation of Ca^{2+} -induced inactivation of CCE channels [\(Hoth](#page-8-0) *[et al](#page-8-0).*, [1997\)](#page-8-0). The possible role of Ca^{2+} -mediated inactivation of CCE channels in the inhibitory action of NO was studied by variation of the divalent cations permeating through the CCE channels. Ba^{2+} is a divalent which is transported well by many $Ca²⁺$ entry channels but lacks classical negative feedback effects on the involved transport systems e.g. the voltage-gated L-type channel [\(Hofer](#page-8-0) *[et al](#page-8-0).*, 1997) or capacitative Ca^{2+} entry channels [\(Zweifach & Lewis, 1995\)](#page-9-0). Ba²⁺ entry into TGstimulated HEK293 cells was completely insensitive to NO. Thus, the regulation of CCE by NO was clearly dependent on the permeant divalent. Addition of Ca^{2+} ions at micromolar concentrations was sufficient to regain significant inhibitory effects of NO in experiments with Ba^{2+} as the main extracellular cation. Moreover, attenuation of intracellular Ca^{2+} rises by use of BAPTA/AM eliminated the inhibitory effects of NO. Although elevation of basal Ca^{2+} at the inner mouth of CCE channels may not be prevented completely by BAPTA/AM, sub-plasmalammal Ca^{2+} gradients are most likely blunted. Modulation of intracellular Ca^{2+} gradients by use of Ba^{2+} as substrate for divalent cation entry or BAPTA/

AM as intracellular Ca^{2+} buffer is expected to affect a variety of cellular signalling processes. Thus, the results from these experiments need to be interpreted with caution. Nonetheless, our results strongly suggest Ca^{2+} dependence of CCE inhibition by NO and indicate an involvement of Ca^{2+} dependent feedback regulation of CCE channels. Based on this hypothesis we propose a novel concept (Figure 10) in which NO-induced impairment of mitochondrial functions causes a substantial promotion of Ca^{2+} -mediated feedback inhibition of CCE. This feedback regulation is unlikely to involve facilitated refilling of the regulatory Ca^{2+} store since refilling of stores was effectively prevented in our experiments by thapsigargin. The role of mitochondria in NO-induced modulation of Ca^{2+} signals which are initiated by phospholipase C-dependent depletion of intracellular Ca^{2+} stores remains to be clarified. Since mitochondrial Ca^{2+} uptake has been recognized as a key determinant of the spatiotemporal organization of IP₃-induced cytosolic Ca^{2+} responses ([Haj](#page-8-0)[noczky](#page-8-0) [et al](#page-8-0)[., 2000\)](#page-8-0), it is tempting to speculate that impairment of mitochondrial function by NO represents an effective mechanism for the control of phospholipase C dependent Ca^{2+} signalling. NO-induced suppression of Ca^{2+} uptake into mitochondria during phospholipase C stimulation may affect agonist-induced Ca^{2+} entry not only by promotion of Ca2+-dependent feedback regulation of CCE channels but also by incomplete discharge and/or enhanced filling of the stores.

With the present study we provide evidence for a role of mitochondria as a link between NO and Ca^{2+} signalling. Since capacitative Ca^{2+} entry is a rather ubiquitous Ca^{2+} signalling mechanism which appears of importance for both excitable as well as non-excitable cells ([Philipp](#page-8-0) [et al](#page-8-0)[., 1998](#page-8-0); [Freichel](#page-8-0) *[et al](#page-8-0).*, 1999) it is tempting to speculate that the proposed mitochondrial-based crosstalk between NO and CCE is a general regulatory principle. We propose the spatial and functional relation between mitochondria and Ca^{2+} entry channels as a key determinant of the sensitivity of capacitative Ca^{2+} entry to NO.

We thank Dr Atsushi Miyawaki from the Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan very much

References

- BISCHOF, G., BRENMAN, J., BREDT, D.S. & MACHEN, T.E. (1995). Possible regulation of capacitative Ca^{2+} entry into colonic epithelial cells by NO and $cGMP$. Cell Calcium, 17, 250 – 262.
- BROWN, G.C. (1999). Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta., 1411 , $351-369$.
- CLEMENTI, E. (1998). Role of nitric oxide and its intracellular signaling pathways in the control of Ca^{2+} homeostasis. *Biochem*. Pharmacol., 55, 713-718.
- CLEMENTI, E. & MELDOLESI, J. (1997). The cross-talk between nitric oxide and Ca^{2+} : a story with a complex past and a promising future. Trends Pharmacol. Sci., 18, 266-269.
- COHEN, R.A., WEISBROD, R.M., GERICKE, M., YAGHOUBI, M., BIERL, C. & BOLOTINA, V.M. (1999). Mechanism of nitric oxideinduced vasodilatation. Refilling of intracellular stores by sarcoplasmic reticulum Ca^{2+} ATPase and inhibition of storeoperated Ca²⁺ influx. Circ. Res., 84, 210-219.
- DIERKS, E.A. & BURSTYN, J.N. (1996). Nitric oxide (NO), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase. Biochem. Pharmacol., 51 , $1593 - 1600$.
- FASOLATO, C., HOTH, M. & PENNER, R. (1993). A GTP-dependent step in the activation mechanism of capacitative calcium influx. J . Biol. Chem., 268 , $20737 - 20740$.
- FREICHEL, M., SCHWEIG, U., STAUFFENBERGER, S., FREISE, D., SCHORB, W. & FLOCKERZI, V. (1999). Store-operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol. Biochem., $9, 270 - 283$.
- FRIEDEN, M., MALLI, R., SAMARDZIJA, M., DEMAUREX, N. & GRAIER, W.F. (2002). Subplasmalemmal endoplasmic reticulum controls K_{Ca} channel activity upon stimulation with moderate histamine concentration in a human umbilical vein endothelial cell line. *J. Physiol.*, 544 , $73 - 84$.
- GRAIER, W.F., PALTAUF, D.J., HILL, B.J., FLEISCHHACKER, E., HOEBEL, B.G., KOSTNER, G.M. & STUREK, M. (1998). Submaximal stimulation of porcine endothelial cells causes focal $Ca²$ elevation beneath the cell membrane. J. Physiol., 506 , $109 - 125$.
- GRYNKIEWICZ, G., POENIE, M. & TSIEN, R.Y. (1985). New generation of Ca^{2+} indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450.
- GUKOVSKAYA, A. & PANDOL, S. (1994). Nitric oxide production regulates cGMP formation and calcium influx in pancreatic acinar cells. Am. J. Physiol., 266 , $G350 - G356$.
- HAJNOCZKY, G., CSORDAS, G., KRISHNAMURTHY, R. & SZALAI, G. (2000). Mitochondrial Ca2+ signaling driven by the IP₃ receptor. J. Bioenerg. Biomembr., 32 , $15-25$.
- HANAFY, K.A., KRUMENACKER, J.S. & MURAD, F. (2001). NO, nitrotyrosine, and cGMP in signal transduction. Med. Sci. *Monitor*, $7, 801 - 819$.
- HERRINGTON, J., PARK, Y.B., BABCOCK, D.F. & HILLE, B. (1996). Dominant role of mitochondria in clearance of large $Ca²⁺$ loads from rat adrenal chromaffin cells. Neuron, 16 , $219-228$.
- HOFER, G.F., HOHENTHANNER, K., BAUMGARTNER, W., GROSCHNER, K., KLUGBAUER, N., HOFMANN, F. & ROMANIN, C. (1997). Intracellular Ca²⁺ inactivates Ca²⁺ channels with a Hill coefficient of approximately 1 and inhibition constant of approximately $4 \mu M$ by reducing channel's open probability. Biophys. J., 73 , $1857 - 1865$.
- HOTH, M., BUTTON, D.C. & LEWIS, R.S. (2000). Mitochondrial control of calcium-channel gating: A mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. U.S.A., 97, 10607-10612.
- HOTH, M., FANGER, C.M. & LEWIS, R.S. (1997). Mitochondrial regulation of store-operated calcium signalling in T lymphocytes. J. Cell Biol., 137, 633-648.
- KRAUSE, E., SCHMID, A., GONZALEZ, A. & SCHULZ, I. (1999). Low cytoplasmic $[Ca^{2+}]$ activates I(CRAC) independently of global Ca^{2+} store depletion in RBL-1 cells. J. Biol. Chem., 274, 36957 – 36962.

for kindly providing us the ratiometric-pericam-mt. Supported by the Austrian Science Funds (P-14950 and SFB-715 to K. Groschner; P-14586-PHA and SFB-714 to W.F. Graier).

- KUKOVETZ, W.R. & HOLZMANN, S. (1989). Tolerance and crosstolerance between SIN-1 and nitric oxide in bovine coronary arteries. J. Cardiovasc. Pharmacol., 14, S40-S46.
- KUSHNAREVA, Y.E., POLSTER, B.M., SOKOLOVE, P.M., KINNALLY, K.W. & FISKUM, G. (2001). Mitochondrial precursor signal peptide induces a unique permeability transition and release of cytochrome c from liver and brain mitochondria. Arch. Biochem. $Biophys.$, 386, 251 - 260.
- LAFFRANCHI, R., GOGVADZE, V., RICHTER, C. & SPINAS, G.A. (1995). Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem. Biophys. Res. Commun., 217, 584-591.
- LAWRIE, A.M., RIZZUTO, R., POZZAN, T. & SIMPSON, A.W.M. (1996) . A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J. Biol. Chem., 271, 10753 -10759.
- LOOMS, D.K., TRITSARIS, K., NAUNTOFTE, B. & DISSING, S. (2001). Nitric oxide and cGMP activate Ca^{2+} -release processes in rat parotid acinar cells. *Biochemical Journal*, 355, $87 - 95$.
- MAKOWSKA, A., ZABLOCKI, K. & DUSZYNSKI, J. (2000). The role of mitochondria in the regulation of calcium influx into Jurkat cells. Eur. J. Biochem., $267, 877 - 884$.
- NAGAI, T., SAWANO, A., PARK, E.S. & MIYAWAKI, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca²⁺. Proc. Natl. Acad. Sci. U.S.A., **98**, 3197–3202.
- PALTAUF-DOBURZYNSKA, J., FRIEDEN, M., SPITALER, M. & GRAIER, W.F. (2000). Histamine-induced Ca^{2+} oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptor and SERCA. J. Physiol., 524 , $501 - 514$.
- PHILIPP, S., HAMBRECHT, J., BRASLAVSKI, L., SCHROTH, G., FREICHEL, M., MURAKAMI, M., CAVALIE, A. & FLOCKERZI, V. (1998). A novel capacitative calcium entry channel expressed in excitable cells. $EMBO$ J., 17, 4274-4282.
- POTESER, M., ROMANIN, C., SCHREIBMAYER, W., MAYER, B. & GROSCHNER, K. (2001). S-nitrosation controls gating and conductance of the alpha 1 subunit of class C L-type $Ca²⁺$ channels. J. Biol. Chem., 276, 14797-14803.
- PUTNEY, JR. J.W. (1986). A model for receptor-regulated calcium entry. Cell Calcium, $7, 1-12$.
- PUTNEY, JR. J.W. (1990). Capacitative calcium entry revisited. Cell $Calcium, 11, 611 - 624.$
- PUTNEY, JR. J.W. (1999). Kissin' cousins: intimate plasma membrane-ER interactions underlie capacitative Ca^{2+} entry. Cell, $99, 5 - 8$.
- PUTNEY, JR. J.W., BROAD, L.M., BRAUN, F.J., LIEVREMONT, J.P. & BIRD, G.S. (2001). Mechanisms of capacitative calcium entry. J. Cell Sci., 114, 2223-2229.
- RADI, R., CASSINA, A. & HODARA, R. (2002). Nitric oxide and peroxynitrite interactions with mitochondria. Biol. Chem., 383, $401 - 409$.
- RANDRIAMAMPITA, C. & TSIEN, R.Y. (1993). Emptying of intracellular Ca^{2+} stores releases a novel small molecule that stimulates Ca^{2+} influx. Nature, 364, 809-814.
- RICHTER, C., GOGVADZE, V., SCHLAPBACH, R., SCHWEIZER, M. & SCHLEGEL, J. (1994). Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem. Biophys. Res. Commun., 205, $1143 - 1150$.
- RIZZUTO, R., BASTIANUTTO, C., BRINI, M., MURGIA, M. & POZZAN, T. (1994). Mitochondrial Ca^{2+} homeostasis in intact cells. J. Cell Biol., 126, 1183-1194.
- RIZZUTO, R., BRINI, M., MURGIA, M. & POZZAN, T. (1993). Microdomains with high Ca^{2+} close to IP₃-sensitive channels that are sensed by neighbouring mitochondria. Science, 262, $744 - 747$
- RUTTER, G.A., THELER, J.M., MURGIA, M., WOLLHEIM, C.B., POZZAN, T. & RIZZUTO, R. (1993). Stimulated Ca^{2+} influx raises mitochondrial free Ca^{2+} to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonistinduced insulin secretion. J. Biol. Chem., 268 , $22385 - 22390$.
- SCHMIDT, K., MAYER, B. & KUKOVETZ, W.R. (1989). Effect of calcium on endothelium-derived relaxing factor formation and cGMP levels in endothelial cells. Eur. J. Pharmacol., 170, 157 -166.
- TAKEHARA, Y., NAKAHARA, H., INAI, Y., YABUKI, M., HAMAZA-KI, K., YOSHIKO, T., INOUE, M., HORTON, A.A. & UTSUMI, K. (1996). Oxygen-dependent reversible inhibition of mitochondrial respiration by nitric oxide. Cell Struct. Funct., 21 , $251 - 258$.
- TREPAKOVA, E.S., COHEN, R.A. & BOLOTINA, V.M. (1999). Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum $Ca²⁺$ -ATPasedependent refilling of Ca^{2+} stores. Circ. Res., 84, 201 – 209.
- WATSON, E.L., JACOBSON, K.L., SINGH, J.C. & OTT, S.M. (1999). Nitric oxide acts independently of cGMP to modulate capacitative Ca^{2+} entry in mouse parotid acini. Am. J. Physiol., 277, $C262 - C270.$
- WAYMAN, C.P., MCFADZEAN, I., GIBSON, A. & TUCKER, J.F. (1996). Inhibition by sodium nitroprusside of a calcium store depletionactivated non-selective cation current in smooth muscle cells of the mouse anococcygeus. Br. J. Pharmacol., 118 , $2001 - 2008$.
- WERTH, J.L. & THAYER, S.A. (1994). Mitochondria buffer physiological Ca^{2+} loads in cultured rat dorsal root ganglion neurons. J. Neurosci., $14.348 - 356$.
- ZWEIFACH, A. & LEWIS, R.S. (1995). Rapid inactivation of depletion-activated calcium current (I_{CRAC}) due to local calcium feedback. J. Gen. Physiol., 105 , $209 - 226$.

(Received June 11, 2002 Revised August 20, 2002 Accepted August 29, 2002)