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It is shown that for finite Coulombic systems the density per
particle, s [ r/N, determines the value of any observable quantity.
The associated variational principle is derived.

Conventional quantum mechanics tells us that the N-particle
wavefunction, a function of 4N coordinates that is normal-

ized to one, can be used to compute the value of any observable
quantity. Hohenberg and Kohn extended this result, proving that
the ground state particle density, a function of three coordinates
that is normalized to N, contains sufficient information to
compute the value of any observable (1). The present paper
offers a further extension: for finite Coulombic systems, knowl-
edge of the shape function,

s~rW! ;
r~rW!

N
5 O

s1 . . . ,sN

EEEC*~rW1, s1, . . . , rWN, sN!

d~rW 2 rW!C~rW1, s1, . . . , rWN, sN!drW1 rW2 . . . drWN , [1]

is sufficient to compute the value of any observable quantity. s
is called the shape function (2) because it contains information
about the relative amount of particle density at one point in
space relative to other places but contains no directly accessible
information about the number of particles in the system. Because
multiplication of s by the number of identical particles in the
system gives the conventional N-particle density, s may be
considered the ‘‘single-particle density’’ or ‘‘density per particle’’
of an N-particle system.

Theoretical Development
The Hohenberg–Kohn theorem states that the particle density,
r, uniquely determines the number of identical particles, N, and
determines the external potential, v0, to within an additive
constant. Knowledge of N and v0 allows us to construct the
Hamiltonian operator, which determines the N-particle wave-
function, C, which can be used to find the value of any
observable. So, in principle, one can find the value of any
observable from r.

Hohenberg and Kohn’s observation may be viewed as the
fundamental theorem of density functional theory (DFT)
(so named because the Hohenberg–Kohn theorem intimates
that any observable may be expressed as a functional of the
particle density) (3, 4). DFT has been used by electronic-
structure theorists, among others (5, 6), to design efficient
computational procedures (7) and to build a conceptual
framework for understanding electronic structure and molec-
ular reactivity (3).

The present paper proceeds in much the same way, first
proving that s determines v0, then showing that s can be used
to find N. Extension of this result to excited states is straight-
forward. The Hohenberg–Kohn variational principle is extended
from the density to the shape function.

THEOREM 1. For any Coulombic system, s determines the
external potential, v 0 , up to an additive constant.

Proof: The external potential of a Coulombic system may be
ex-pressed (in units with \ 5 e 5 mparticle 5 1) as

v0~rW! 5 O
a

Sq
Za

urW 2 RW auD . [2]

Here particles of charge q move in the field produced by
stationary point charges of charge Za at the points RW a 5 (Xa, Ya,
Za). Steiner’s corollary to Kato’s theorem (8–11) provides an
explicit procedure for generating the external potential from the
density: the type of particle density under consideration deter-
mines q (e.g., q 5 21 for electron density), the positions of cusps
in the density locate the point charges, and the point charges
themselves are found from the cusp condition:

Za 5
1

2qS 1

r~rW!
z

r# ~rW!

urW 2 RW auDU rW5RW a

. [3]

( r# denotes the spherical average of the density about the
point RW a.) Appendix A treats the exceptional case in which the
density at one of the point charges is zero.

A similar procedure can be performed for Coulombic s. The
charge, q, is obtained from the type of particle. Because s 5 r/N and
N is a constant, cusps in r and s occur at the same places, and

1
2qS 1

r~rW!
z

r# ~rW!

urW 2 RW auDU rW5RW a

5
1

2qUS 1

Ns~rW!
z

Ns# ~rW!

urW 2 RW auDU rW5RW a

5
1

2qS N

Ns~rW!
z

s# ~rW!

urW 2 RW auDU rW5RW a

5
1

2qS 1

s~rW!
z

s# ~rW!

urW 2 RW auDU rW5RW a

. [4]

Eq. 3, coupled with the analysis of Eq. 4, indicates that

Za 5
1

2qS 1

s~rW!
z

s# ~rW!

urW 2 RW auDU rW5RW a

, [5]

and hence the cusps in s determine not only the positions of the
point charges, RW a, but also the charges themselves, Za. v0 is then
obtained by substituting q, the RW a, and the Za into Eq. 2.† e

To prove that s also determines N, we need some background:

Abbreviation: DFT, density functional theory.
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CONVEXITY POSTULATE. Suppose we are given a Coulombic
external potential v0. The decrease in the system’s ground state
energy due to the addition of a particle gets successively less as the
number of particles increases until finally the energy stops decreas-
ing at all on the addition of further particles (because these particles
are no longer bound by v0, they are no longer part of the system).
Mathematically:

E@N 1 1, v0# 5 E@N, v0# . E@N, v0# 2 E@N 2 1, v0# [6]

unless the Nth particle is unbound, in which case:

E@N 1 1, v0# 5 E@N, v0# 5 E@N 2 1, v0#. [7]

Though a formal proof seems never to have been given, the
convexity postulate may be assumed to be true because there are
no known counterexamples for Coulombic systems (3). Lieb, for
instance, in a formal discussion of density functional theory,
suggests that Eq. 6 holds for all systems with a Coulombic
interparticle repulsion (12). The establishment of a variational
principle for the grand canonical ensemble in density functional
theory requires the assumption of convexity (3, 13, 14).

The convexity postulate may be rationalized by the following
argument [see also the discussion of Perdew, Parr, Levy, and
Balduz (14)]. Consider that when one adds a particle to an N 2
1 particle system, the number of interparticle repulsion terms in
the Hamiltonian increases by N 2 1 (for a total of N(N 2 1)y2
such terms). Because each successive particle contributes one
more interparticle repulsion term to the Hamiltonian than did
the previous particle, and because this term raises the total
energy, each additional particle is expected to reduce the energy
of the system less than did the previous particle, up until the
extreme case where the previous particle was unbound.

An important corollary follows directly from Eq. 6:
IONIZATION POTENTIAL COROLLARY. Provided the particle

removed was bound to the system, successive ground state ioniza-
tion potentials (IP) of a Coulombic potential increase:

IP~N 1 1 3 N! , IP~N 3 N 2 1!. [8]

This relationship between successive ionization potentials is
important because the logarithmic derivative of the density
asymptotically approaches the constant value (15–19)

limÇ
r3`

F ln~r~rW!!

r G 5 2Î8zIP , [9]

where r is the spherical coordinate that measures the distance to
the average particle position, (^xzs&, ^yzs&, ^zzs&).

THEOREM 2. For the ground state of any Coulombic system, s
determines the number of particles bound to the system, N.
Equivalently, in Coulombic systems N is a functional of s.

Proof: The logarithmic derivative of the density equals the
logarithmic derivative of the shape function, because

 ln~r~rW!!

r
5

 ln~Ns~rW!!

r
5

~ln~N! 1 ln~s~rW!!!

r

5
 ln~N!

r
1

 ln~s~rW!!

r
5

 ln~s~rW!!

r
. [10]

Substituting this result into Eq. 9, we find that

limÇ
r3`

F ln~s~rW!!

r G 5 2Î8zIP. [11]

Now we show that it is impossible for one Coulombic shape
function, s, to correspond to two different particle numbers, N1
and N2. First, obtain v0 from the procedure of Theorem 1. Eq. 11

implies that if the system (v0, N1) and the system (v0, N2) have
the same shape function, their ionization potentials are also the
same. Because the ionization potential corollary indicates that
the ionization potential is a strictly decreasing function of N, if
the ionization potentials for the N1-particle and N2-particle
systems are the same, then N1 5 N2. Just as f is a function of x
when every x corresponds to one and only one value of f, N is
a functional of s because every Coulombic s corresponds to one
and only one value of N.

The argument is clarified by an explicit procedure for computing
N from s. Use the methods of Theorem 1 to find v0[s]. Now,
construct the Hamiltonian for v0[s] and every possible number of
particles, N 5 1, 2, 3, . . . . Solve the Schrödinger equation for each
of these systems and get the ionization potentials of their ground
states. It follows from the ionization potential corollary that no two
of these systems have the same IP; hence only one of these IPs is
consistent with the asymptotic decay of s (Eq. 11). N[s] is the
number of particles corresponding to that IP. e

Theorem 2’s proof is similar to the original Hohenberg–Kohn
proof (1), where it is shown that it is impossible for one density, r(rW),
to correspond to two external potentials, v1 and v2, which differ by
more than a constant. Hence the external potential may be con-
sidered a functional of the ground state density. [(Analogous to the
second part of the proof, there is a search procedure for finding the
external potential that goes with a given density (12, 20)].

THEOREM 3. For the ground state of any Coulombic system,
knowledge of s is sufficient for finding the value of any observable.

Proof: s determines both v0 (Theorem 1) and N (Theorem 2).
Knowledge of N and v0 allows construction of the Hamiltonian
operator, which determines the ground state N-particle wave-
function, C, which can be used to find the value of any
observable. e

Theorem 3 implies that, for Coulombic systems, any observable
property is a functional of the shape function. The following
alternative proofs of Theorems 2 and 3 are instructive.

Alternative Proof of Theorem 2: Consider the following asymp-
totic series for the logarithmic derivative of s (16–19):

F ln~s~rW!!
r GO¡

large r
2 Î8 z IP 1 2S~Ztotal 1 q~N 2 1!!

Î2zIP
2 1DzS1

r
D

1 Sterms with higher powers of 1
r
D , [12]

where Ztotal is the total nuclear charge (the sum of all the Za),
N is the number of particles, and all other terms have the same
meaning as in Eq. 11. Just as in the derivation of Eq. 11, we use
the equivalence of the logarithmic derivatives of r and s (Eq. 10
to derive Eq. 12 from the analogous expression for the density
(16–19).

By going to very long range (where 1/r is infinitesimal), we can
find the value of the IP from s. We can find Ztotal by summing
the result of Eq. 5 over all the nuclear cusps. Using

limÇ
r3`3H ln~s~rW!!

r J
S1

rD 4 5 2S ~Ztotal 1 q~N 2 1!!

Î2zIP
2 1D , [13]

we obtain

N 5 1 2
1
q3Z total 1

1
4

z limÇ
r3`5 ln~s~rW!!

r 12ln~s~rW!!

S1
rDr

1 2264 .

[14]
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Because Eq. 14 is an explicit formula for N in terms of s and
Ztotal (which we calculate from s using Eq. 5), Theorem 2 is
proved. e

This proof suggests on alternative proof of Theorem 3 that does
not require knowledge of the external potential (but only the
knowledge of Ztotal needed to prove Theorem 2).

Alternative Proof of Theorem 3: Theorem 2 establishes that s
can be used to find N. Invoking the definition of the shape
function (Ns 5 r), we see that s determines r. Invoking the
Hohenberg–Kohn theorem (1), we have Theorem 3. e

It seems prudent to explore whether there are practical
methods for determining N from s. Eqs. 5 and 14 imply that
(N 2 1) is homogeneous of degree one with respect to the
coordinate scaling (21–23) of s:

~N 2 1!@s~ax, ay, az!# 5 az~N 2 1!@s~x, y, z!#. [15]

We choose to express the functional (N 2 1) as a linear
combination of moments of the shape function that have the
correct coordinate scaling (24, 25). Choosing seven evenly
spaced moments, we then optimize the coefficients in the
moment expansion by minimizing the least squares error on the
data set of the Hartree–Fock shape functions for all neutral
atoms with atomic numbers between 1 and 86 and their first 20
positive ions. Doing so, one obtains the fit:

@N 2 1#moments 5 38,450 z ^r22 z s~r!&
1
2

2 192,300 z ^r 2 1.8 z s~r!&
5
9 1 398,900 z ^r 2 1.6 z s~r!&

5
8

2 442,300 z ^r 2 1.4 z s~r!&
5
7 1 278,300^r 2 1.2 z s~r!&

5
6

2 94,760^r 2 1.0 z s~r!&1 1 13,710^r 2 .8 z s~r!&
5
4 , [16]

which has an rms absolute error of 1.78. Fig. 1 provides a plot
of the absolute error of Eq. 16. Considering the simplistic
functional form of Eq. 16 and that 1,806 systems are fit with

just 7 constants, the accuracy obtained is remarkable.† Although
this numerical test does not constitute a proof of Theorem 2, it does
support the assertion that the shape function determines the
number of particles. Moreover, this numerical test indicates that
practical ways to determine properties from the shape function are
within the purview of current theoretical methods.

Excited States

THEOREM 4. If s is the shape function for either a ground or
excited state of a Coulombic system, then s determines everything.

Proof: Suppose we are given a Coulombic shape function,
s0(rW). To prove the theorem, we need to show that s0 determines
v0, N, and also the state (ground state, first excited state, etc.)
of the system. Once we know that we want the kth eigenstate of
the Hamiltonian, Ĥ(N, v0), then we can find the appropriate
wavefunction Ck and hence all properties of the system.

Part 1. Getting v0. Theorem 1 applies to both ground and excited
state Coulombic shape functions because Kato’s theorem applies
to both ground and excited states (8, 9, and 26). In the rare case
where s0 is zero at a nuclear cusp (as in the 2p state of the
hydrogen atom), the more elaborate treatment of Appendix A is
necessary.

Part 2. Getting N. Eq. 12 can be generalized to excited states,
hence both ground and excited state shape functions determine
N through Eq. 14.‡

†One could argue that it is dangerous to evaluate a functional’s reliability on the set of
data to which it was fitted. Because (no. of fitted parametersyno. of systems fit) 5

0.0039, this is not expected to be a problem. This was confirmed by performing a
calculation in which the fitted set consisted only of atomic systems (atomic numbers 1
to 86) whose net charges were even (0, 12, 14, . . . , 120). This fit differed negligibly
from that presented in the text.

‡To treat excited states (as the hydrogen 2p state) whose shape functions are not asymp-
totically spherically symmetric, it is necessary to use the spherical average of s in Eqs. 14
and 17.

Fig. 1. The absolute error in the particle number as computed by Eq. 16 for atoms with atomic numbers 1 through 86 and their first 20 positive ions. N is the
number of electrons in the atom, and Q is the total charge on the atom. The atomic number is Q 1 N. The legend relates patterns of crosshatching to ranges
of absolute error.
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Part 3. Getting k. Parts 1 and 2 of this proof show that s0

determines N and v0 and hence the Hamiltonian operator, Ĥ(N,
v0). Now we need to find which eigenstate of this Hamiltonian
corresponds to s0. To do so, we first find the energy of s0. Then,
we find which eigenstate with this energy has s0 as its shape
function.

To find the energy of the excited state, we consider the
asymptotic behavior of the spherically averaged shape function‡:

limÇ
r3`

F ln~s# ~rW!!

r G 5 2Î8zIPk , [17]

where IPk is defined as (16):

IPk ; E@N, v0, kth excited state# 2 E@N 2 1, v0, ground state#.
[18]

Given the ground state energy of the N 2 1 particle system, Eqs.
17 and 18 determine the energy of s0.

Sometimes several eigenstates of Ĥ(N, v0) have the same energy.
By computing the shape function for each of these eigenstates, we
can find which eigenstate (or linear combination of eigenstates) is
consistent with s0. This mapping from s0 to a Coulombic wave-
function allows us to determine the value of any observable. Similar
to the degenerate state problem in ground state density functional
theory, sometimes several degenerate eigenfunctions of Ĥ(N, v0)
have s0 as their shape function; in this case, we may allow s0 to
correspond to a family of degenerate eigenstates. e

This proof is easily extended into density functional theory; for
a Coulombic system, both ground and excited state densities
determine everything (26). The proof is similar: Eqs. 4 and 10
indicate that changing from the shape function to the density does
not change the ideas in parts 1 and 3 of the proof. Because we can
find N by integrating the density, part 2 of the proof is eliminated.

Variational Principle
The Hohenberg–Kohn proof that r determines the value of every
observable would be of less practical importance without the
computationally useful variational principle:

DFT VARIATIONAL PRINCIPLE. If r0 is the ground state density
of the N-particle system with external potential v0, then the total
energy, Ev0

[r0], is less than Ev0
[r], where r is a different N-particle

density (1).
Recognizing that the practical importance of Theorem 3 is

enhanced if there is a variational principle for the energy as a
functional of s, we now develop a variational principle.

The DFT variational principle applies to a situation in which we
are given a specific N and v0. Using the fact that N and v0 are given,
we define the energy as a functional of s according to:

Ev0 ,N@s# ; Ev0
@Ns# 5 Ev0

@r#. [19]

If Ev0
[r0] # Ev0

[r] at constant N, then Ev0
[Ns0] # Ev0

[Ns]. Eq.
19 then indicates that Ev0,N[s0] # Ev0,N[s]. Hence, the varia-
tional principle for the density is easily extended the shape
function.

As an example, consider the Levy constrained search energy
functional (27):

Ev0
@r# 5 minÇ

HCUr~rW!5NEEEC*~rW1, . . . rWN!d~rW12rW!C~rW1, . . . rWN!drW1, . . . drWNJ
z S ^CuĤ~N, v0!uC&

^CuC&
D , [20]

where the notation indicates that we search for the C consistent
with r, which minimizes ^CuĤ(N, v0)uC&/^CuC&. We can write an
equivalent functional for s, namely:

Ev0,N@s# 5 minÇ

HCUs~rW!5EEEC*~rW1, . . . rWN!d~rW12rW!C~rW1, . . . rWN!drW1 . . . drWNJ
z S ^CuĤ~N, v0!uC&

^CuC&
D . [21]

Comparison of Eqs. 20 and 21 reveals that Ev0,N[s] 5 Ev0
[r], in

accord with Eq. 19 (the Euler–Lagrange equations associated
with the variational principles for s and r are discussed in depth
in ref. 2). A different constrained search approach to Ev0,N[s] has
been developed by Lieb (12).

One can concoct other variational principles for s; for in-
stance, by not constraining the number of particles, one arrives
at a different variational principle. Because the energy vs. the
number of bound particles is a strictly decreasing function, this
variational principle minimizes at the shape function corre-
sponding to the maximum number of particles bound by the
external potential, v0.

Discussion
Density functional theory is motivated by the observation

that, compared to the wavefunction, the density represents a
simpler, more compact package that still contains all of the
essential information about the system. The shape function repre-
sents a package that is marginally simpler than the density, yet still
contains all of the essential information about finite Coulombic
systems.

The restriction to finite systems is induced by the use of
asymptotic decay in the proofs of Theorem 2. In essence, this
restriction reflects the fact that systems with an infinite number
of particles (but finite particle density) have a s that is zero
everywhere. (Actually, such a s may be thought of as a gener-
alized function (as the a3 01 limit of (a3/8p)e2ar) that is zero
everywhere but normalized to one.) We may be able to extend
the applicability of shape functional theory to infinite systems by
treating an infinite system as the limit of an appropriate
sequence of finite systems.

More severe than the restriction to finite systems is the
restriction to Coulombic systems. Because there is no easy test
for determining whether a shape function is Coulombic,§ it is
desirable to extend Theorem 3’s domain of applicability to a
topologically well-defined set of shape functions. The present
author believes that it will be possible to extend the domain of
Theorem 3 to the set of normalized and continuous shape
functions.¶ Once such an extension is established, approximate
functionals whose domain is the set of normalized and contin-
uous shape functions can be defined. If these functionals are
sufficiently smooth, their functional derivatives exist and can be
used to predict how the energy, chemical potential, etc., change
as our system evolves from one Coulombic system (reactants) to
another (products). However, even after an appropriate exten-
sion is established, developing approximate functionals may be

§A method does exist: find v0 from Eq. 29 and N from Eq. 14. Solve the Schrödinger equation
for Ĥ(N, v0); s is Coulombic if and only if one of the eigenvectors of Ĥ(N, v0) has this shape
function.

¶The set of Coulombic shape functions is a tiny subset of the set of v-representable shape
functions. This indicates that shape functional theory suffers from problems that are
similar in form to, but more severe in magnitude than, those associated with the Hohen-
berg–Kohn formulation of density functional theory.
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difficult since the shape function is not size consistent—the
shape function for H2 at infinite internuclear distance is not the
sum of the shape functions for the isolated hydrogen atoms (as
that shape function would not be normalized).

The result that s determines everything for finite Coulombic
systems provides a fundamental insight into the character of
Coulombic systems. But studies of the shape function are more than
theoretical bric-a-brac: the shape function is an experimentally
observable quantity. Most experimental methods for measuring the
density of Coulombic systems in fact measure the shape function.
For instance, an experiment might find that the signal caused by the
electron density at the point rW0 is 0.2zQ, whereas the signal caused
by the density at rW1 is 0.6zQ. Such directly accessible experimental
data are enough to determine the shape function, which is just the
amount of density at rW1 relative to that at rW0. (By contrast, one does
not know that the density at rW1 is 15[electrons/(Angstrom)3] until
one has calibrated the apparatus with a system of known density.)
Because molecular reaction, rearrangement, and spectroscopy are
changes from one finite Coulombic system to another, we may study
chemistry by observing changes in the shape function. This moti-
vates the author’s pursuit of a shape function based description of
chemical reactivity.

Appendix A
This appendix extends the cusp condition (8, 9, 11) (Eq. 3) to the
case where the density at the point charge is zero. The devel-
opment is patterned after that of Pack and Brown (11).

Assume that

1

urW 2 RW au
..

1

urWi 2 RW bu
,

1

urWi 2 rWju
,

1

uRW b 2 RW gu
. [22]

That is, the only nearly singular point in the Hamiltonian is
associated with the coalescence of a particle at rW with a point
charge at RW a. In this case, we may write the Schrödinger equation
as

F2
1
2
¹rW

2 1
Zzq

r
1 ~terms of order r0 and higher!GC~rWut! 5 0,

[23]

where we have chosen to center the coordinate system at RW a, and
we have denoted the parametric dependence of the wavefunction
on the other spatial and spin coordinates by t [ (s1, rW2, s2, . . . rWN, sN).
Following Pack and Brown, we then expand C(rWut) according to:

C~rWut! 5 O
l50

` O
m52l

l

fl,m~rut!rlYl,m~u, f! [24]

fl,m~rut! 5 O
k50

`

fl,m
~k! ~t!rk ,

where Yl,m(u, f) are the spherical harmonics. Substitution of Eq.
24 into Eq. 23 and the resulting recursion relation for the fl,m

(k)(t)
gives Eq. 15 of ref. 11, which in our notation is:

C~rWut! 5 rlH O
m52l

l

fl,m
~0! ~t!Yl,m~u, f!S1 1

Zq
l 1 1

rD
1 r O

m52~l11!

l11

fl1l,m
~0! ~t!Yl1l,m~u, f! 1 O~r2!J . [25]

Here l is chosen such that fl,m
(0) (t) Þ 0, and fl,m

(0)(t) 5 0 for 0 #
l , l.

These results are extended by considering the form of the
spherically averaged Nth order density matrix, G# N(rWut). Near RW a,

G# N~rWut! 5 r2lH O
m52l

l

~fl,m
~0! ~t!!2S1 1

Zq
l 1 1

rD 1 O~r2!J . [26]

Eq. 26 is simpler than Eq. 25, because the orthonormality of the
spherical harmonics causes many terms to vanish upon spherical
averaging. Dividing G# N(rWut) by r2l and differentiating reveals that

3SG# N~rut!

r2l D
r

4
r50

5 2
Zq

l 1 1
G# N~0ut!. [27]

To get results for the spherical average of the density, we
integrate both sides of Eq. 26 with respect to the spatial variables
rW2, rW3, . . . , rWN and sum both sides with respect to the spin
variables s1, s2, . . . sN. Defining (fl,m

(0) )2 [ ***(fl,m
(0) (t))2dt, we

find that

r# ~rW! 5 r2lH O
m52l

l

~fl,m
~0! !2S1 1

Zq
l 1 1

rD 1 O~r2!J , [28]

and hence

3Sr# ~r!
r2l D
r

4
r50

5 2
Zq

l 1 1
r# ~0!. [29]

Because of Eq. 4, Eq. 29 also applies to the spherically averaged
shape function.

The revised procedure for finding the external potential from
the density is then:

(i) Find the cusps in the density; at these points, l 5 0, and Eq.
29 reduces to Eq. 3.

(ii) Find the points, rW0, where r(rW) 5 0. These points correspond
either to the location of point charges, nodal surfaces, or
both. When a point charge is coincident with a nodal
surface, the point charge will generally be located at the
point of highest symmetry along the surface (as in the 2p
state of hydrogen).

(iii) At the position of each point charge, find the smallest
integer, k, such that:

limÇ
rW3rW0

H r~rW!

urW 2 rW0u2kJ Þ 0. [30]

(iv) Apply Eq. 29 with l 5 k.
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