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Fermions need to satisfy the Pauli exclusion principle: no two can
be in the same state. This restriction is most compactly expressed
in a second quantization formalism by the requirement that the
creation and annihilation operators of the electrons satisfy anti-
commutation relations. The usual classical limit of quantum me-
chanics corresponds to creation and annihilation operators that
satisfy commutation relations, as for a harmonic oscillator. We
discuss a simple classical limit for Fermions. This limit is shown to
correspond to an anharmonic oscillator, with just one bound
excited state. The vibrational quantum number of this anharmonic
oscillator, which is therefore limited to the range 0 to 1, is the
classical analog of the quantum mechanical occupancy. This inter-
pretation is also true for Bosons, except that they correspond to a
harmonic oscillator so that the occupancy is from 0 up. The
formalism is intended to be useful for simulating the behavior of
highly correlated Fermionic systems, so the extension to many
electron states is also discussed.

P lanck ushered in quantum mechanics with the proposal that
matter be regarded as a collection of harmonic oscillators.

Dirac (1) showed that this description is in fact exact, fully
consistent with the (then) new quantum mechanics, if every
quantal state of the system is represented as an oscillator. Solving
the time-dependent Schrödinger equation for the system is then
equivalent to solving the classical dynamics of these fictitious
harmonic oscillators. This scheme is, of course, practical if the
system can sample only a finite number of states. When the
system is in a stationary state, the corresponding oscillator is
uncoupled to others. In theoretical chemistry (2, 3) and in
quantum optics (4), this correspondence has been used to
considerable advantage, because solving classical equations of
motion, which are local and first order in time, is computation-
ally much more tractable then solving the quantum ones.

In both chemistry and solid-state physics, electrons can be
highly correlated, and special methods need to be developed (5).
We recently encountered this problem in connection with the
onset of metallic behavior (6) in assemblies of quantum dots (7).
To discuss the transport properties of electrons in such arrays,
one must allow electrons to move from one site to the other,
subject to the limitations of the Pauli principle and to the
Coulomb repulsion of electrons. This repulsion depends on
where in space any two different electrons are and so is not well
approximated in terms of a mean field (because of the average
positions of the other electrons) in which a given electron moves.
On the other hand, when the repulsion between two electrons on
the same site is not high, there are numerous possible electronic
states for the system. This is because ionic states, which are
typically higher in energy, need to be included. As an example,
even in a simple model (one spatial orbital per dot) of a
completed hexagonal array of 19 nanodots, there are over 2
billion states in a narrow energy range, so replacing each
electronic state by a classical degree of freedom is not quite an
advantage.

In this paper, I discuss a simple approach whereby a classical
limit is useful. The starting point is an orbital picture, long
familiar to chemists. Because electron correlation will be fully

taken into account, this starting point is not necessarily a
limitation. There are at least as many orbitals (or, strictly
speaking, spin orbitals) as there are electrons, but there can
easily be more orbitals than electrons. There are usually more
states than orbitals, and in the model of quantum dots that
motivated this work, the number of spin orbitals is twice the
number of sites. For the example of 19 sites, there are 38
spin-orbitals vs. 2,821,056,160 doublet states.

The point of the formalism is that it ensures that the Pauli
exclusion principle is satisfied, namely that no more than one
electron occupies any given spin-orbital. Note that the occu-
pancy can be below one and need not be either zero or one. The
idea that an orbital is either full or empty belongs to simple
orbital pictures and need not be the case when electron corre-
lation is allowed. In both stationary and time-evolving states, a
partial occupancy is possible both in quantum mechanics and in
the classical limit that we consider here.

The orbitals that are used as a basis can be chosen in different
ways, depending on the physics of the problem and also on the
question. For an extended array, they can be site orbitals, but
they can also be self-consistent-field delocalized orbitals [which
are coupled by the residual interaction (8)]. Other examples
where orbitals are coupled by residual interactions include, e.g.,
the Auger process and other instances of electronic autoioniza-
tion, electronic energy transfer, etc. The different choices are
made possible by a unitary transformation of the Hamiltonian.
We will address the question of different classical limits below.
Two other points that will be discussed are: (i) the extension of
the formalism to many electron systems where, in addition to the
exclusion principle, it is also necessary to satisfy the requirement
of antisymmetry of the state under exchange, and (ii) an active
point of view where the states are left unchanged, and it is the
operators that are transformed to a classical limit.

The Spin States
The essential idea is that the z component of a spin, in units of
\y2, has a range from 21 to 11. Therefore the variable (1 1
Sz)y2 has values in the range 0 to 1 and so provides an analog
for the occupation number of an orbital by a Fermion. This is not
just an analog, and we argue below that this is a consequence of
the result that the Pauli spin matrices (9, 10) (Eq. A.2 of the
Appendix) realize the same anticommutation relations as the
Fermionic creation and annihilation operators (denoted by a
carat):

@â†, â#1 ; â†â 1 ââ† 5 1 [1]

The intended application of the theory is to the dynamics of
correlated many-electron systems. It is then the case that the
occupancy of a spin orbital need not be either 0 or 1 but can be
any number in between. We therefore need to consider states
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where the occupancy is fractional. For this purpose, we define a
spin state ux& as follows.

The spin state ux& that has a definite component \y2 along a
unit vector u specified by the polar angles u and f can be written
as (10):

ux& 5 exp~2ify2!cos~uy2!u1& 1 exp~ify2!sin~uy2!u2&, [2]

where the two basis vectors, u1& and u2&, are the two eigenstates
of the operator Ŝz. Eq. 2 is derived in the Appendix. The
derivation shows that the state ux& can be regarded as a ‘‘coherent
spin state’’ (11).

One can also define spin up, Ŝ1, and down, Ŝ_, operators Ŝ6 [
(Ŝx 6 iŜy)y2, which will be the realization of the Fermionic
creation annihilation operators, [Ŝ1, Ŝ2]1 5 1, such that

Ŝ1u1& 5 0, Ŝ1u2& 5 u1&

Ŝ2u1& 5 u2&, Ŝ2u2& 5 0. [3]

Then,

^xuŜ1ux& 5 sin~uy2!cos~uy2!exp~if!

^xuŜ2ux& 5 sin~uy2!cos~uy2!exp~2if!. [4]

And, by explicit evaluation by using Eq. 3 or by using Ŝ1Ŝ2 5
(1 1 Ŝz)y2, one can express the orbital occupancy, n, as the
expectation value of the number operator n̂ 5 â†â

n ; ^xuŜ1Ŝ2ux& 5 cos2~uy2!, [5]

which manifestly satisfies the Pauli exclusion, 0 # n # 1.
Another manifestation of there being a place for at most one
electron in the orbital is that two electrons cannot be added or
removed ^xuŜ6Ŝ6ux& 5 0. Also, because Ŝx

2 5 Ŝy
2 5 Ŝz

2 5 I, we
have the result ^xuŜz

2ux& 5 1, etc. (Note that the result is 1 and
not \2y4, because we measure the spin in units of \y2.)

For application in many electron systems, note that the state
ux&, which is a state where the spin is ‘‘up’’ along the unit vector
u specified by the polar angles u and w can be regarded as the
state u1&, where the spin is ‘‘up’’ along the z axis, which is rotated
to the required direction (10)

ux& ; R̂~u!u 1 & [6]

Using Eq. 6 as a starting point allows the introduction of an
‘‘active’’ point of view in which it is the operators rather than the
state that are rotated. This is discussed, with a worked-out
example, in the Appendix.

The Anharmonic Oscillator
An anharmonic oscillator has a finite number, say N, of excited
bound vibrational states. Typically, the lower the number of
bound states, the higher the anharmonicity, and this relation is
particularly simple for the Morse oscillator for which the anhar-
monicity, [vexe in the notation of Herzberg (12)] is exactly 1y2N.
For the Morse and other anharmonic oscillators whose vibra-
tional spectrum is quadratic in the vibrational quantum number
n, the expectation values of the raising and lowering operators
scale as (13) =n(1 2 nyN), with the harmonic limit correspond-
ing to N3 `. The correspondence, Eq. 5, n 5 cos2(uy2) allows
Eq. 4 to be written as

^xuŜ1ux& 5 În~1 2 n! exp~if!

^xuŜ2ux& 5 În~1 2 n! exp~2if!. [7]

Thereby we conclude that, whereas a Bosonic degree of freedom
corresponds to a harmonic oscillator (which has a countable

infinite number of bound states), a Fermionic degree of freedom
corresponds to an anharmonic oscillator with exactly one bound
state, in addition to the ground state. Because we identify the
vibrational quantum number with the occupancy, this corre-
sponds to the possibility of a Bose–Einstein condensation, n 3
`, on the one hand and to the Pauli exclusion principle, 0 # n #
1, on the other.

The Schwartz inequality implies that ^x uŜ 1Ŝ 2 ux& $
^xuŜ1ux&^xuŜ2ux&, and this is explicitly n $ n(1 2 n) with equality
only when the oscillator is in the ground state, n 5 0.

The correspondence with an oscillator also suggests that n and
f can be regarded as a pair of classical action-angle variables.
There are well known (14, 15) problems with the definition of an
angle (or phase) operator even in the harmonic case, and these
are associated with the spectrum of n being bounded from below.
Here the spectrum is bounded from both ends. Therefore, it is
not possible to start from a quantum mechanical commutator of
the operators and conclude that the classical Poisson bracket
satisfies Hn, fJ 5 1.

The Classical Limit
The classical limit is taken by replacing operators by their
expectation values in the spin state ux&, where the expectation
value is regarded as a function of the classical (action-angle
variables) n, n 5 cos2(uy2) 5 (1 1 cos u)y2, and f. Specifically,
the classical Hamiltonian is defined by

Hcl~n, f! ; ^xuĤux&, [8]

and the classical equations of motion are Hamiltonian

ṅ 5 2
­Hcl

­f
, ḟ 5

­Hcl

­n
, [9]

where the dot signifies a time derivative. From these, one can
derive equations of motion for other variables such as u rather
than n.

The classical limit is an approximation because, as we noted,
the classical limit of a product of operators is not necessarily
equal to the product of the classical limits. The importance of this
can be examined by comparing the quantal and classical equa-
tions of motion. Take the number operator n̂ as an example.
Quantum mechanically, ­n̂y­t 5 i[Ĥ, n̂], where here the square
bracket is the usual commutator. Consider first an isolated
system, with an electronic Hamiltonian Ĥ 5 vn̂. Then both
quantum mechanically and classically, the number is conserved
while the phase changes classically as ḟ 5 v. Quantum mechan-
ically, ­ây­t 5 i[Ĥ, â] 5 2ivâ, so that taking expectation of
both sides ­acly­t 5 2ivacl 5 2iv=n(1 2 n) exp(2if), which
is consistent with the classical equations. To perturb the system,
we add an external field, f(t)(â† 1 â), to the Hamiltonian. Now
[(â† 1 â), n̂] 5 2â† 1 â, so taking expectation values, the
external field changes n as i­ncly­t 5 f(t)^xuâ 2 â†ux& 5
22if(t)=n(1 2 n) sin f. The classical equation of motion is,
from Eq. 9, ṅ 5 2f(t)­^xuâ† 1 âux&y­f 5 2f(t)=n(1 2 n) sin
f. There is agreement, because in all the examples so far, the
commutator in the quantum mechanical equation of motion is
linear in the operators.

The reader familiar with group theory will recognize that the
operators Î (the identity), Ŝ1, Ŝ2, and Ŝz are the four generators
of the Lie group SU(2). This means that they form a collection
of operators that is closed under the binary operation of
(ordinary) commutation.‡ So as long as the Hamiltonian is linear
in these generators, the classical equations of motion will be

‡The expert will also know that, using the Schwinger Boson calculus (9, 16) one can
represent the generators of SU(2) as bilinear products of creation and destruction oper-
ators of electrons of a given component of spin. Using a Holstein–Primakoff-like (17)
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exact, because the commutator of H with any one of the
generators will be linear in the generators. Even further, bilinear
products such as Ŝ1Ŝ2 or Ŝx

2, Ŝy
2, and Ŝz

2 are also closed under
commutation with the generators. So Hamiltonians that are
bilinear in certain combinations of generators will also admit of
an exact classical limit. Other examples where such closure was
used to advantage have been discussed elsewhere (18). Work is
in progress (19) on the numerical solution of the classical
equations of motion in the many-electron case. What is already
clear is that for shorter time dynamics, which is what one is really
interested in, the classical limit works quite well.

Finally, we comment that the classical limit can also be taken
in the active point of view in which it is the Hamiltonian that is
rotated:

Hcl~n, f! ; ^xuĤux& 5 ^ 1 uR̂†ĤR̂u1&. [10]

An explicit example for the rotation of the raising operator is
worked out in the Appendix. Any other function of the creation
and annihilation operators can be worked out from it by matrix
multiplication, because, e.g., R̂†Ŝ1Ŝ2R̂ 5 R̂†Ŝ1R̂R̂†Ŝ2R̂.

The expert will know that, because the operator R̂ is an
element of the group [R̂ 5 exp(2iuS z u) (10)], by the Campbell–
Baker–Hausdorff theorem (9), if the original Hamiltonian con-
tains only generators then so will the rotated Hamiltonian.

Many-Electron Systems
Once we have more than one electron, the restrictions on the
wave function go beyond the Pauli exclusion principle. As is very
well known, the wave function needs to be antisymmetric under
the exchange of two electrons, which means that creation (or
annihilation) operators of different orbitals also need to anti-
commute, e.g., [âr, âs]1 5 0, where r and s refer to different sites.
This can be achieved in the following way. First, the orbitals (or
sites) are arranged in a fixed order, 1, 2, 3, . . . , n. Then a Slater
determinant is built up from these orbitals such that, as usual,
each row corresponds to a different orbital, and each column
corresponds to a different electron. Therefore, the rth orbital
corresponds to a fixed row in the determinant. Then, the
operation of âr on such a determinant is given by the following
known rules: in the determinant, interchange the row where the
rth orbital appears with each row above it where, by construc-
tion, these are rows with orbital indices below r. Continue until
the row of the rth orbital is at the top of the determinant. This
gives a phase factor (21)r21. Strike out the first row and the last
column. Normalize the resulting (n 2 1) z (n 2 1) determinant.
Symbolically,

âr

1
În! 1

w1~r1! z z z w1~rn!
z

wr~r1! z z z wr~rn!
wn~r1! wn~rn!

25
~21!r21

În! 1
–wr~r1! z z z –wr~rn!
w1~r1! –w1~rn!

z z z z z
wn~r1! –wn~rn!

2
5

~21!r21

Î~n 2 1!! 1
w1~r1! z z w1~rn21!

z z z z
z z z z

wn~r1! z z wn~rn21!
2 .

[11]

In the final (n 2 1) z (n 2 1) determinant, the r 2 1 row is
followed by the r 1 1 row. The rth row was struck out. Consider
next the action of the product ârâs and say that s . r. Then the
action of ârâs results in the phase factor (21)r1s and an (n 2 2)
z (n 2 2) determinant in which the rows r and s are absent. Next

consider the action of âsâr. The resulting determinant is the same
as for the action of ârâs, but the phase factor is now (21)r1s21

because the first action by âr has brought the row s up by one
position. For n Fermions, the n z n Slater determinants form a
complete set (20), and hence we have in general that since the
action of two bilinear operators is the same up to a phase factor
of 21, ârâs 1 âsâr 5 0.

In a single Slater determinant, an orbital is either occupied or
is empty. The general wave function is, however, a linear
combination of Slater determinants, and so an orbital can have
partial occupancy. The spin states required to represent this are
introduced in the next section.

Therefore, in the case of n orbitals, where the orbitals are
arranged in a specified order, one can define the action of the
creation and annihilation operators in one of two ways. One can
associate with the action of âr (or of âr

†) the phase factor wr 5
(21)(Sj,rnj), or one can explicitly write such an operator that gives
rise to the desired phase factor. We need a factor of 21 for each
occupied orbital below r, no phase factor if an orbital below r is
unoccupied, and no phase factor for all orbitals above r. An n
orbital spin operator that will do so is

âr 5 ~2Ŝz!1~2Ŝz!2zz~2Ŝz!r21~Ŝ2!r~Î!r11zz~Î!n, [12]

where the subscript is that of the orbital on which the operator
acts, and Î, as before, is the identity operator. The realization of
âr

† will be the same, except that for the rth orbital the factor will
be (Ŝ1)r and not (Ŝ2)r.

In quantum chemistry, one is often not concerned with
changing the number of electrons in the system.§ The operators
that typically appear in the Hamiltonian will therefore conserve
the total number of electrons. They will be either number
operators, such as âr

†âr, for which the phase factor is unity or shift
operators, such as âr

†âs 1 âs
†âr. The phase factor associated with

a shift operator is (21)nrs, where nrs is the number of orbitals
that, in our prearranged ordering of orbitals, appear between r
and s (20). An n z n matrix representation for each such shift
operator is a matrix with zeros everywhere except for a single
entry of unity in the r, s position (20). In group theory literature,
this is usually known as a Gelfand representation for the
generators of the unitary group.

The Many-Electron Spin States.
The states that the n orbital operators act on are the so-called
occupation number representation. A typical such state is the list
of occupancies of each orbital in the prearranged set. The
coordinate space representation of each such state is a Slater
determinant. Using, as before, 1 and 2 to denote an occupied
and an empty orbital, one such possible state is
u1&1u2&2zzu1&rzzu1&n. To generate the states that have the spin in
a direction specified by the unit vector ur, which is possibly
different for different orbitals, we rotate each state, as in Eq. 6,
so that the particular occupation number state above leads to the
state

ux& 5 ux1&1u2x2&2zzuxr&rzzuxn&n. [13]

The expectation values of creation and annihilation operators in
such a state can now be computed as for the one-electron case.
In terms of a completely empty state, usually denoted as uvac&,
with vac standing for vacuum, and by analogy to Eq. 6

ux& 5 R̂Pr51
n ~âr

†!nruvac&. [14]

transformation, one can rewrite this Bosonic representation to be more like what we use
here.

§This is often but not always true. An example of an exception relevant to nanodots is a
scanning tunneling microscopy probe where, by changing the voltage on the tip, one can
add or remove electrons from the sample. Other examples include the scattering of
electrons off molecules and, of course, photoionization.
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Here R̂ is an n site rotation, and one can use this form to show
that the classical limit can also be taken directly in the occupation
number basis set by rotation of the operators rather than the
state. This active point of view is discussed further, with an
example, in the Appendix.

Coupled Orbitals
In general, a Hamiltonian resulting from electrostatic inter-
actions can directly couple up to four different sites (21, 22) so
that, indirectly, all sites can be coupled. Often direct coupling
of two sites is sufficient for a description that is realistic but
not accurate to chemical standards. A widely used form of such
a Hamiltonian is that attributed to Pariser, Parr, and Pople,
(21) and is also known in solid state physics as a Hubbard
Hamiltonian (22):

H 5 O
i, j

n

hij O
m56

ai,m
† aj,m 1

1
2 O

i

Iin̂i~n̂i 2 1! 1
1
2 O

i, j

gijn̂in̂j.

[15]

To avoid any possible confusion, note that each orbital is indexed
by a space (i, j, etc.) and a spin label, and n̂i counts the total
population in orbital i, summing over both directions of the spin.
The space and spin labels together specify a spin orbital, and it
is each spin orbital that is represented by a spin state ux&, such
that its occupancy is characterized by the two polar angles u and
f. The classical Hamiltonian is obtained as the expectation value
of the quantum mechanical Hamiltonian in the many-electron
spin states.

A (possibly oversimplified) Hamiltonian is the Hückel one:

H 5 O
i, j

n

hij O
m56

ai,m
† aj,m, [16]

which can be diagonalized exactly by the introduction of molec-
ular orbitals as linear combination of site orbitals (22, 23)

âl,m
† 5 O

k51

n

c*lkâk,m
† , âl,m 5 O

k51

n

cklâk,m. [17]

If the coefficients c are chosen so as to diagonalize the matrix h,
then the Hückel Hamiltonian is diagonal, H 5 ¥l

n «l ¥m56

al,m
† al,m. The point to examine is whether one can take the

classical limit in either orbital basis. Now the transformation of
the site orbitals to yield the molecular orbital (MO) ones is a
linear operation. So for any Slater determinant (which is equiv-
alent to a state in the occupation number representation), the
expectation number of the operators in the MO basis is a linear
combination of the expectation values of the site operators.
Hence, using an active point of view in which it is the operators
(rather than the state) that are rotated (see the discussion in the
Appendix), any finite linear combination of operators can be
rotated term by term. Even when the n orbital wave function is
not a single Slater determinant but is a linear combination of
determinants, one can still take the classical limit term wise.

Concluding Remarks
The dynamics of electrons in highly correlated systems is of
current interest but is not easy to discuss quantitatively because
many states are coupled. It is here suggested to approximate
the dynamics by a classical limit based on orbitals rather than
on states. Such a description needs to satisfy Fermi statistics,
which include the Pauli exclusion principle for the limitation
on the occupancy of a single orbital. A way of taking the
classical limit where the statistics is inherently satisfied is

discussed. The limit is based on the equivalence between the
requirements of the Pauli principle and the up component of
the spin of a (fictitious) electron. This is then generalized to
the many-electron case. Technically, the limit is taken by using
coherent spin states that are obtainable by rotation. It is also
possible to take the limit in an active way, where it is the
operators that are changed by (a counter) rotation. Realistic
Hamiltonians and relevant observables (such as the number
operator or shift operators) for which the classical limit can be
an exact description are discussed.

Appendix: An ‘‘Active’’ Transformation
In this Appendix we show, with an explicit example, how rotation
of an operator can provide a complementary ‘‘active’’ route to
the classical limit. Because we realize the creation and
annihilation operators as spin raising and lowering operators,
the rotation operator R̂ needs to be written explicitly in the
Hu1&, u2&J basis. The derivation of the matrix representation of R̂
follows (10). For a rotation by an angle a about a unit vector v,

R̂~a! 5 cos~ay2!I 2 i sin~ay2!Szv. [A.1]

The Pauli matrices have the form

Sz 5 S1 0
0 21D , S1 5 S0 1

0 0D , S2 5 S0 0
1 0D , [A.2]

and it is readily verified that the realization of â† and â by Ŝ1 and
Ŝ2 satisfies the anticommutation relation, Eq. 1.

Coherent Spin States. S z v is the matrix representing the spin along
the unit vector v. For the unit vector u of direction angles u and
f, one has

Szu 5 S cos~u! exp~2if!sin~u!
exp~if!sin~u! cos~u! D [A.3]

with two eigenfunctions, ux&, as given by Eq. 2 and the opposite
component

u2x& 5 2exp~2ify2!sin~uy2!u1& 1 exp~ify2!cos~uy2!u2&.

The Spin-Rotation Matrix. The unit vector u of direction angles u
and f is obtained from a unit vector along the z axis by a rotation
through an angle u about a vector v whose components are (2sin
f, cos f, 0). So

R~u! 5 cos~uy2!I 2 sin~uy2!~S1 exp~2if! 2 S2 exp~if!!

5 S cos~uy2! 2exp~2if!sin~uy2!
exp~if!sin~uy2! cos~uy2! D . [A.4]

An Active Point of View. Rather than rotating the state and keeping
the operators fixed, as in Eqs. 4 and 5, one can take an active
complementary point of view of keeping the states (as up or
down along the z axis) and counter rotate the operators, e.g.,

^xuŜ1ux& 5 ^1uR̂†Ŝ1R̂u1& ; ^1uŜR1u1&. [A.5]

Because in the Hu1&, u2&J basis the action of Ŝ1 is like that of
u1&^2u, the operator ŜR1, ŜR1 [ R̂†Ŝ1R̂ can be written as
R̂†u1&^2uR̂. Note that this is a counter rotation to the rotation
of the state, Eq. 6. Using the matrix representation (A.4) and its
Hermitian adjoint,

SR
1 5 S sin~u!exp~2if!y2 cos2~uy2!

2sin2~uy2! 2sin~u!exp~if!y2D [A.6]

Using Eq. A.6, we recover the earlier result, Eq. 4, for ^xuŜ1ux&,
but now computed as the matrix element of the rotated operator
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in the unrotated, Hu1&, u2&J, basis. Because the rotation operator
is unitary, the matrix representation of the rotation of any
function of Ŝ1 can be evaluated by matrix products, R̂†f(Ŝ1)R̂ 5
f(R̂†Ŝ1R̂). Rotation of the operators is therefore a viable
alternative to rotation of states. In the many-electron case,
rotations of different spins will commute. Hence for the product

rotation operator that is needed in Eq. 14, one can either use a
product of the matrices, each operating on a different spin, or a
single 2n z 2n rotation matrix with entries along the diagonal.

The Alexander von Humboldt and Volkswagen foundations supported
this work.
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