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Statistical geometry of pores and statistics
of porous nanofibrous assemblies

Stephen J. Eichhorn† and William W. Sampson

School of Materials, University of Manchester, Manchester M60 1QD, UK

The application of theoretical models to describe the structure of the types of fibrous network
produced by the electrospinning of polymers for use in tissue engineering and a number of
other applications is presented. Emphasis is placed on formal analyses of the pore size
distribution and porosities that one would encounter with such structures and the nature of
their relationships with other structural characteristics likely to be important for the
performance of nanofibrous materials. The theoretical structures considered result from
interactions between randomly placed straight rods that represent fibres with nanoscale
dimensions. The dominant role of fibre diameter in controlling the pore diameter of the
networks is shown and we discuss the perhaps counter-intuitive finding that at a given
network mass per unit area and porosity, increasing fibre diameter results in an increase in
mean pore radius. Larger pores may be required for ingrowth of cells to nanofibrous networks,
hence this study clarifies that simply making the diameters of the fibres smaller might not be
the way to improve cell proliferation on such substrates. An extensive review of structural
features of the network such as the distribution of mass, inter-fibre contacts and available
surface for cell attachment, fibre contact distributions for integrity of the networks and the
porosity and pore size distributions is given, with emphasis placed on nanofibre dimensions
for the first time.
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1. INTRODUCTION

There has been increasing interest over recent years in
the manufacture and properties of electrospun fibrous
networks for application as scaffolds in tissue engineer-
ing, filters, protective clothing, reinforcement in com-
posite materials and sensors (Jayaraman et al. 2004). In
particular, much emphasis has recently been placed on
the need to control the diameter of nanofibres for such
applications, and formal analysis of this has taken place
(Fridrikh et al. 2003). During the electrospinning
process, it is usual that a volume of polymeric solution
is contacted with a large electric potential, and
ultimately delivered to a needle tip where it is deformed
under the electric field. This deformation is caused by
the build-up and repulsion of like-charges on the surface
of the solution which, if they reach a certain density,
will overcome the surface tension and cause a jet to be
delivered to an earthed target (Doshi & Reneker 1995).
The understanding of the process itself has its roots
with the work of Rayleigh (1882) who investigated the
effect of an electrostatically charged object in close
proximity to a liquid. Later Zeleny (1914) discovered
the point of electrostatic instability of a liquid, and a
form of the electrospinning process was patented by
Formhals (1934). Taylor (1964, 1969) made attempts to
derive in a formal mathematical sense the physics of the
orrespondence (stephen.j.eichhorn@manchester.ac.uk).
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process at the point at which the surface tension of a
liquid breaks down under electrostatic charge. Later,
work by Larrondo et al. (1981a–c) into the use of
polymer melts, and subsequently polymer solutions by
Doshi & Reneker (1995) has subsequently led to a large
body of work in this area. The materials produced by
this process usually resemble fibrous networks (Doshi &
Reneker 1995; Srinivasan & Reneker 1995). Although
nanoscaled fibres can be produced by electrospinning,
typical diameters have been reported in the range
10 mm–10 nm (Fridrikh et al. 2003). Circular cross-
sections are also typically produced, although under
certain conditions, other geometries such as tubes and
collapsed tubes that result in ribbon-like structures
have been reported (Koombhongse et al. 2001).

The production of nanofibrous networks is not
exclusive to the process of electrospinning, and some
recent work has investigated the similarities between
carbon nanotube networks and paper (Yi et al. 2004).
Other work has focused on the geometry of these
networks and the mechanical properties achievable
from such structures (Berhan, Yi & Sastry 2004;
Berhan, Yi, Sastry et al. 2004). It is well known from
the literature that the properties of stochastic fibrous
networks such as paper are strongly influenced by their
structure, and this work has been extensively reviewed
(Deng & Dodson 1994; Sampson 2001a).

Conventionally, the standard reference structure
for the modelling of such networks is one where
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Figure 1. Images of fibrous networks for an electrospinning process (left), a paper-like material (middle) and a modelled
structure (right). Scale for the modelled structure is for 20 fibre widths (20u).
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the locations of fibre centres are distributed according
to a point Poisson process in two-dimensions, and hence
are independent of each other. In such random fibrous
networks, the orientation of the major axes of fibres to a
given direction typically has a uniform distribution.
This body of theory allows computation of several
important structural features of random fibre networks.
Here, we provide a summary of these theoretical
expressions, and for the first time present their
sensitivity to network and fibre variables pertinent to
nanoscale structures. Two variables, with particular
reference to tissue engineering, will be emphasized;
namely available fibre fraction (for cell adhesion) and
pore size and its distribution (for cell ingrowth). The
distribution of mass will also be discussed since this has
implications for the uniformity of voids in the structure.
Formulae are presented as a toolbox for the reader to
estimate structural characteristics of networks, and
to guide the selection of experimental conditions likely
to yield desirable structural characteristics such as pore
size and its distribution. Importantly, we do not
differentiate between the origin of the networks
discussed (e.g. nanotubes or paper) and concentrate
only on the issues of scale, as the class of structures is
the same to a large degree, irrespective of the
constituent materials.
2. BACKGROUND THEORY

There are five primary variables that influence the
structural characteristics of a random fibrous network.
These are often coupled to some extent, and we shall see
that one of the benefits of applying statistical models to
predict the influence of these variables on network
structure is that they allow them to be fully decoupled
in a manner not readily achievable in the laboratory.

Fibres in a network, for simplicity, can be modelled
as solid straight rods characterized by three variables:
length, l, width, u, and linear density, d. The linear
density of a fibre is defined as its mass per unit length,
and is given by the product of the density of the solid
from which the fibre is formed, and the cross-sectional
area of the fibre. The two variables that characterize
the network as a whole are its mean porosity (3) and its
mean coverage ð�cÞ, the latter of which is defined as the
expected number of fibres covering a point in the plane
of support of the network. This latter variable is
extremely important since, for fibres of a given
J. R. Soc. Interface (2005)
morphology, it influences the expected mass, and
total fibrous length, per unit area of the network and
therefore controls the extent of interaction between
fibres. It is therefore an important parameter in the
structural integrity of a tissue engineering scaffold. We
term the mass per unit area of the network its ‘areal
density’ and a network with mean areal density �b has
mean coverage

�cZ
�bu

d
: (2.1)

While the mean coverage can take any positive real
value, the coverage at any point, c, is a discrete random
variable. The probability that a point in the plane of the
network has coverage c is given by the Poisson
probability

PðcÞZ �cceK�c

c!
for cZ 0; 1; 2; 3. : (2.2)

We note that in a network of mean coverage �c, the
expected number of fibres in an area x2 is given by

�nf Z
�cx 2

lu
: (2.3)

It is apposite at this point to highlight the qualitative
similarity between theoretical structures and those of
stochastic fibrous networks that can be formed exper-
imentally. Figure 1 shows two micrographs of exper-
imentally realized fibre networks and graphical
representation of a random fibrous network. It is
important to note that all models produced here relate
to analytical expressions, and numerical solutions to
these where analytical forms are intractable. Therefore,
we do not generate computer images, and thus the
model structure shown in figure 1 is illustrative, and not
for analysis. Hence, boundary conditions as described
by Yi et al. (2004) would not apply to our approach. On
first inspection it is clear that the electrospun network
shown in the image on the left is qualitatively similar to
that of the laboratory-formed paper sample shown in
the central image and these in turn share similarities
with the random network of fibres shown on the right.
Interactions between fibres and other stochastic per-
turbations result in the structure of industrially formed
stochastic networks exhibiting a greater degree of fibre
clumping than is observed for random networks,
though many structural characteristics are affected
only locally and global average values are often
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Figure 2. The fractional between zones variance, r plotted against fibre length for different fibre widths and scales of inspection.
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unaffected (Deng & Dodson 1994; Sampson 2001a). In
electrospinning, the network is formed effectively at the
same time as the fibres, and opportunities for inter-
actions between fibres are limited until they assume
their final location in the network. As such, we expect
the random model to agree more closely with the
structures formed in these experiments, and note
that this agrees with observations of other workers
(Matthews et al. 2002). Models that discuss the
percolation of what could be considered light networks
of random straight rod constructs, such as those
espoused by Balberg & Binenbaum (1983) and sub-
sequent papers, where percolation is an issue, are not
covered in our treatment. This is because our networks
are so dense that we are well-above the percolation
thresholds, and therefore do not require this type of
analysis. In the case of electrospun networks, the fibres
can be considered infinitely long, and therefore by
definition percolated.
3. DISTRIBUTION OF MASS

Having discussed some preliminary definitions of the
networks, we now turn to the distribution of material,
andhence thevoid structure.Now, since the coverage is a
randomprocess,we expect its local average value to vary
from region-to-region. One the most fundamental
measures of network uniformity is the distribution of
local average coverage in the plane, and this manifests
itself as a distribution of local average areal densities.
From the central limit theorem in statistics, we expect
the distribution of local averages of coverage to be
Gaussian. As for any stochastically structured porous
material, the observed variability will depend on the
scale of the observation.Theparameter of scale isworthy
of some discussion, eventually with reference to nano-
scaled structures, but initially to paper-like materials.

If one imagines an experiment where a piece of paper
is taken and is cut into four equally sized squares, and
then each piece is weighed, we can calculate the mean
and variance of the mass of the intact sheet. If each
individual piece is then cut again equally into four
pieces as before, and we now weigh all 16 squares, we
find that the observed variance increases. Continued
cutting in this fashion and reweighing increases the
variance, and we find, therefore, that the value of this
J. R. Soc. Interface (2005)
parameter depends on what we term ‘the scale of
inspection’; here we will use the length of the side of
such squares to characterize this scale.

Expressions to calculate the variance of local cover-
age at all scales have been derived by Dodson (1971),
and the background theory to this covered elsewhere in
the literature (Deng & Dodson 1994). The maximum
variance occurs when sampling is of points, and not
areas, and since we have a Poisson process, this point
variance is equal to the mean. At all finite scales, the
variance of local coverage is less than this by a factor, r
that is a function of fibre length, width and the scale of
inspection and is known as the ‘fractional between-
zones variance’. Thus, the variance of local coverage at
a scale of inspection x is given by

s2xð~cÞZ �cr; (3.1)

and the coefficient of variation of local coverage is

CVxð~cÞZ
ffiffiffi
r

�c

r
: (3.2)

Calculation of the fractional between-zones variance
requires numerical integration of expressions that can
be found elsewhere (Dodson 1971). We have calculated
this parameter for the fibre geometries that we expect
to be typical of stochastic nanofibrous assemblies. The
influence of fibre width, length and inspection zone
size are shown in figure 2. We note, with reference to
figure 1, and the vast literature in the area, that
electrospun fibres will have lengths much greater than
the 10 mm size likely to be encountered with the largest
papermaking fibres. However, it is clear that the
fractional between-zones variance is strongly depen-
dent on fibre diameter and that it increases with
increasing fibre length, reaching a plateau when the
fibre length is approximately five times the inspection
zone size. The observed increase with increasing fibre
width is very close to linear (Deng & Dodson 1994).
When the fibre length is greater than

ffiffiffi
2

p
x, the

fractional between-zones variance can be found using
the approximation (Sampson 2002)

rz4
u

px

� � 1K
ffiffiffi
2

p

3
K

x

4l
C logð1C

ffiffiffi
2

p
Þ

� �

for lO
ffiffiffi
2

p
x;

(3.3)
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such that as l/N, rz0.95u/x. So, as a rule-of-thumb,
we can estimate the fractional between-zones variance
for electrospun networks as the ratio of fibre diameter to
the scale of inspection and hence, from equation (3.2),

CVxð~cÞz
ffiffiffiffiffiffi
u

x�c

r
: (3.4)

Equation (3.4) allows us to gauge the degree of non-
uniformity that we can expect to observe in electrospun
networks. At a scale of inspection of 1 mm, which is
close to that at which the human eye detects variability
(Deng & Dodson 1994), the coefficient of variation of
local coverage of a network of fibres with diameter
100 nm, when expressed as a percentage is approxi-
mately 1=

ffiffiffi
�c

p
. As such, we may arguably consider the

distribution of mass of electrospun networks to be
uniform at any mean coverage likely to be realized in an
experiment. In what follows it will be shown also that
this uniformity of mass does not manifest itself as
uniformity in the void or porous structure of the
network, and this has implications for the use of
nanofibrous networks for tissue engineering.

A salient point to make at this juncture is that the
kind of formalism employed here is required for the
characterization of tissue engineering substrates made
by this technique. This is because, while it is relatively
easy to make qualitative judgments as to the avail-
ability of free surfaces (related to the distribution of
mass), and more so about porosity, such an approach
will not yield sensible data on how cells might attach
and proliferate in such a scaffold. Another point to be
made is that we must beware that when we perform an
analysis of an electrospun network, the scale of our
measurements must be carefully monitored with
reference to fibre diameter to ensure a statistically
meaningful sample is taken. Before considering this in
more detail we consider the density of contacts between
fibres, since these determine the dimensions of inter-
fibre voids.
4. INTER-FIBRE CONTACTS AND AVAILABLE
SURFACE

Much of the early theory describing the structure of
random fibrous networks considered the special case of
two-dimensional networks. Kallmes & Corte (1960)
defined a two-dimensional network, with particular
reference to paper as one with a mean coverage of
approximately 0.5. Deng & Dodson (1994) suggested
that a reasonable maximum value for the mean
coverage at which a network may be considered two-
dimensional is 1. When considering networks formed by
the superposition of several two-dimensional struc-
tures, Sampson (2004) has recently suggested an upper
limit for the mean coverage of a two-dimensional
network of p/2. These differences are not of importance
to the present discussion, and it is sufficient for us to
consider two-dimensional networks to be those with a
negligible structural component perpendicular to the
plane of the network.

The mean coverage of real networks will be much
greater than those of two-dimensional networks, and
J. R. Soc. Interface (2005)
many of their properties can be calculated by consider-
ing structures formed from stacking layers of two-
dimensional networks. Such structures are not truly
three-dimensional, since fibre axes may be inclined only
within a few degrees of the plane of the network,
whereas in a three-dimensional network, fibre axes may
take any orientation in the solid angle 2p. Here, we
restrict ourselves to discussion of layered, ‘planar’,
networks but note that recent advances in electrospin-
ning have allowed three-dimensional fibrous networks
via electrospinning (Li et al. 2005) and relevant
theoretical description of similar structures can be
found in, for example, Ogston (1958), Parkhouse &
Kelly (1995), Phillipse & Kluijtmans (1999) and
Dodson et al. (2001a).

We note that since the fractional open area, 3 of a
network of coverage, �c is given by the Poisson
probability that the coverage is zero, i.e.
3ZPð0ÞZeK�c, then the mean coverage of a two-
dimensional network ð�c2DÞ can be defined in terms of
its fractional open area such that �c2DZ logð1=3Þ. Higher
coverage networks can be modelled as stacks of such
two-dimensional networks with the number of layers
being given by �c=�c2D. For these networks, the fractional
open area of the two-dimensional layers is extended
into three dimensions, and is therefore equivalent to the
porosity of the network. Note, however, that while the
fractional open area of high coverage networks may still
be computed as eK�c, this does not correspond to the
network porosity, since networks of any realizable
coverage may exhibit any porosity and these two
parameters are only coupled for two-dimensional
networks.

The fraction of the fibre surface in contact with other
fibres in the network, and therefore related to the
available surface for cells to attach, is termed the
‘fractional contact area’, F. For networks of mean
coverage less than the two-dimensional coverage,
Sampson (2004) gives

F2DZ3 logð3Þ K
1

2
C

2logð3Þ
9

K
logð3Þ2

16
C

logð3Þ3

75
C/

� �
;

(4.1)

and for networks whose coverage is greater than a two-
dimensional coverage

FZ 1K
2�c2D
�c

� �
F2DC 1K

�c2D
�c

� �
F�; (4.2)

where F* is given by

F�Z23ð1K3Þ2logð3Þ K1C
logð3Þ
4

K
logð3Þ2

18

�

C
logð3Þ3

96
K

logð3Þ4

600
C/

�
; (4.3)

and when �c/N, FZF2DCF�. It follows, of course,
that the fraction of the fibre surface that is not
contacting other fibres, and is therefore available for
surface interactions with cells is (1KF).

Coleman et al. (2003) have reported a porosity
of 0.73 for laboratory-formed networks of carbon
nanoropes and Smith et al. (2000) report porosities in
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the range 0.7–0.9 for nanotube films with an isotropic
orientation of fibre axes, and 0.3 for networks where the
fibres have been oriented such that preferential
orientation has been set into the structure. Values for
the porosity of electrospun networks, beyond qualitat-
ive statements of it being high, are difficult to find in the
literature, although Kim et al. (2003) quote a value for
silk fibroin electrospun networks of 0.76.

Equations (4.1)–(4.3) should apply to networks
with arbitrary distributions of orientation, and
accordingly we have plotted the available surface
fraction (1KF) against network porosity for networks
with a range of mean coverages in figure 3, using the
range of porosities found in nanofibrous networks.
This graph also includes a range of coverages from the
two-dimensional case to an infinite value of this
parameter. It can be seen that in the range of porosity
for networks of nanofibres (0.7–0.9), the fraction of
the surface that remains available is rather insensitive
to mean coverage, although it is slightly higher for
networks of low coverage, since the fibres towards the
outer surfaces of the network represent a larger
fraction of the total than for networks of a higher
coverage. This means that care must be taken when
assuming that increasing network coverage will yield
greater available surface fraction at any given
porosity. We note that for mean coverages greater
than 10 the gradients of the curves shown in figure 3
decrease monotonically with increasing porosity, and
as such, the potential to increase the availability of
surface fraction through control of network porosity
reduces with increasing porosity.

Discussions will now turn the distribution of fibre
contacts. This has implications for the structural
support of the network in tissue engineering appli-
cations, as for instance in cartilage, where the scaffold
should reinforce the surrounding matrix (Svensson
et al. 2005).
5. FIBRE CONTACTS

For two-dimensional random networks of fibres with
length l and width u, Kallmes & Corte (1960) give
the expected number of inter-fibre crossings in an
J. R. Soc. Interface (2005)
area, x2 as

�nc Z
ðl�nfÞ2

x2p
: (5.1)

Following Kallmes & Corte (1960), Sampson (2001a)
derived the expected number of crossings per fibre as

�nc;fib Z
2�c2Dl

pu
: (5.2)

From equation (2.3), the expected length of fibre per
unit area is �c=u, so we may state that the expected
number of fibre crossings per unit area in a two-
dimensional network is

�nc;area Z
�nc;fib

l

�c2D
u

Z
2

p

�c2D
u

� �2

: (5.3)

Now, as discussed previously, real networks, whether
they are formed by electrospinning, nanotubes or by
conventional papermaking, differ from the two-
dimensional structures considered by Kallmes &
Corte (1960) in that they have an appreciable
structural component perpendicular to the plane of
the network. We also note at this juncture that fibres
will not be perfectly straight, and indeed Kallmes and
Corte accounted to some extent for this by the
introduction of the parameter t. This parameter scaled
for the effective reduction in fibre length as a
consequence of the fibre ‘waviness’ (Kallmes & Corte
1960) and this treatment has been refined recently by
Yi et al. (2004). However, Yi et al. (2004) noted that for
tw1 the theory of Kallmes and Corte was adequate.
Referring to figure 1, real networks can be seen to have
approximately straight fibre segments. The model
proposed by Yi et al. (2004) can accommodate much
higher values of t, and thus is well suited to the
characterization of structures formed from crimped
fibres such as those described by Scharcanski et al.
(2002). Assuming that the available area for contact is
2lu, and noting that the expected area of a single
crossing is pu2/2, then it follows that the expected
number of crossings per unit area in a near planar
network of coverage �c is

�n�
c;area Z

2

p

�c

u2
F: (5.4)

Now, each crossing generates a contact on each of the
fibres involved, and from equation (2.3), the expected
number of fibres per unit area is �c=ðluÞ. It follows,
therefore, that the expected number of contacts per
fibre is

�n�
c;fib Z

4

p

l

u
F; (5.5)

and that the expected ligament length ð�gÞ, or the
expected distance between crossings is, to a first
approximation,

�gz
l

�n�
c;fib

Kuz
p

4F
K1

� �
u: (5.6)

These expressions are important because they indicate
precisely what parameters influence the structural
characteristics that we expect to be desirable in
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commercially realized networks. For example, we
expect the distance between crossings to be closely
coupled to the pore size distribution, and equation (5.6)
tells us that the only fibre property that we expect to
influence this is the fibre width (or diameter), and that
the network property of interest is the fractional
contact area, F, which we know to be influenced
primarily by porosity. This means that control of fibre
width is important for optimization of porosity and
pore size distribution, and hence cell ingrowth into
electrospun networks. The control of the diameter in
electrospinning has been highlighted as a key area of
investigation (Fridrikh et al. 2003), and perhaps a
worthy experimental study would be the effect of
diameter on the pore size distribution of such networks,
given careful control of the mean areal density of the
network.

The influence of fibre width on the expected number
of fibre crossings per mm2, as given by equation (5.4), is
given in figure 4. For comparison, a family of curves
giving the expected number of crossings per mm2, as
given by equation (5.3), are plotted on same axes. The
porosities chosen for this plot are within the range
reported by Smith et al. (2000), Coleman et al. (2003)
and Kim et al. (2003). At mean coverages greater than
approximately 10, the number of contacts per mm2 is
predictably proportional to coverage at a given fibre
width and increases with decreasing fibre width. This
latter observation is particularly important when
considering fibres at the nanoscale, as in an electrospun
network, since the sensitivity of the function increases
with deceasing fibre width. Since the number of
crossings per unit area is a measure of the number of
ligaments per unit area, it follows that the structural
integrity of a fibrous scaffolding material can only
benefit from reducing the fibre width.
6. POROSITY AND PORE SIZE DISTRIBUTION

We have seen that the distribution of mass in a random
fibrous network can be expressed in terms of the
dimensions of the fibres, and the coverage of the
network, and that, while this distribution of mass is
not influenced by the mean porosity of the network,
other properties, such as the number of crossings
J. R. Soc. Interface (2005)
between fibres and the available fraction of the fibrous
surface area, are. The distribution of porosity in the
plane is of course determined by the distributions of
local averages of coverage and thickness, and it has
been reported that these are well described by a
bivariate normal distribution (Dodson & Sampson
1999; Dodson et al. 2001a). Experimental measure-
ments made on paper samples show that at the 1 mm
scale of inspection, the coefficient of variation of density
has a similar magnitude to that of coverage (Dodson
et al. 2001b). Now, the coefficient of variation of
coverage has been shown earlier to be low at this
scale, and so we expect, therefore, that the coefficient of
variation of porosity of these networks will be low also.

While the voids within a network are, by their very
nature, highly interconnected and tortuous, it is often
convenient to think of the network as having a
distribution of pore sizes. In two-dimensional networks,
pores can be considered as the polygons bounded by the
segments of fibre length that occur between crossings.
A study by Miles (1964) showed that the length of the
sides of polygons formed from randomly generated
lines has an exponential distribution, that the expected
fraction of polygons that are triangles is approximately
0.36, and that the expected number of sides per polygon
is four. The fraction of polygons with four sides was also
shown by Miles (1964) to be approximately 0.38, and
the remaining fraction can be considered to have five
and seven sides. In another study, Tanner (1983) has
showed that there will be few polygons in fibrous
networks with more than seven sides. For a full
discussion of polygons generated by a random line
process in the plane, see Stoyan et al. (1987).

Of course the local geometry of the pores will have an
effect on the spreading of cells within the nanofibrous
networks used for tissue engineering. The precise
distribution of polygon areas is not known analytically,
but there is a growing literature that suggests that
these, and the distribution of pore radii, may well be
approximated by the gamma distribution (Johnston
1983, 1998; Dodson & Sampson 1996; Sampson 2001b),
and that the standard deviation of pore radii is
proportional to the mean (Bliesner 1964; Corte &
Lloyd 1965; Dodson & Sampson 1996; Sampson 2001b).
For a two-dimensional random network, of porosity



1Of course chondrocytes are usually smaller than 10 mm and do not
flatten or spread in the same manner as fibroblasts or osteoblasts.
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greater than about 0.3, the mean pore radius can be
approximated by a function of network porosity and
fibre width (Sampson 2003)

�r2Dz

ffiffiffi
p

p

4

p

2 logð1=3ÞK1

� �
u: (6.1)

Assuming the distribution of pore radii in the two-
dimensional structure can be modelled using a gamma
distribution with mean �r2DZk=b (where k and b are
parameters that characterize the distribution) and
coefficient of variation CVðr2DÞZ1=

ffiffiffi
k

p
, Sampson

(2003) derived the probability density of pore radii in
a structure formed by the superposition of n two-
dimensional layers as

f ðrÞZ n

3

Gðk; brÞ
GðkÞ

� �ðn=3ÞK1 bk

GðkÞ r
kK1eKbr ; (6.2)

where the number of layers is given by

n Z
�c

logð1=3Þ Z
�bu

d logð1=3Þ : (6.3)

The probability density function, given by equation
(6.2) itself closely resembles a gamma distribution. The
mean pore radius is given by the integral

�r Z

ðN
0
r f ðrÞdr; (6.4)

and this must be evaluated numerically. Parameter k
characterizes the uniformity of the pore radius distri-
bution via the coefficient of variation of pore radii.
While this may be affected by processing variables, here
we consider it to be constant. This is because our
interest is the special case of random networks
and these have coefficient of variation of pore radii
CVðrÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Kp2

p
=p (Corte & Lloyd 1965) and since

we know k and �r2D from equation (6.1) we know b also.
We have computed the mean pore radius for a range

of fibre morphologies and network properties that are
likely to be appropriate to the study of nanofibrous
assemblies. Thus, we have considered fibres of circular
cross-section, with diameter up to 100 nm. The
assumption of a circular cross-section permits a unique
and simple relationship between diameter and linear
density, which is influenced only by the density of the
material from which the fibres are formed. We have
assumed fibre densities between 0.9 and 1.7 g cmK3 to
include values quoted in the literature for polycapro-
lactone (Koleske 1996), carbon nanotubes (Smith et al.
2000) and cellulose fibres (Ganster & Fink 1999). This
range of values also includes most forms of polymeric
materials currently used in electrospinning. The
porosity range of interest here is between 0.7 and 0.9,
as previously discussed. Our final parameter influen-
cing the pore radius distribution is the mean areal
density of the network. There are few studies that
report this property of a nanofibrous network, although
Coleman et al. (2003) suggest a value of about 20 g mK2,
and as such, we have used this as an upper limit for our
calculations. We also make note that this corresponds
to approximately the lower limit realized in commercial
papermaking operations.
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The influence of the variables of interest on the mean
pore radius, calculated using equations (6.1)–(6.3) is
shown in figure 5. Many of the observed behaviours are
intuitively correct. For example, the mean pore size
increases with increasing porosity, and decreases with
increasing areal density and decreasing fibre density
since these parameters influence the total fibre length
per unit area in the network, and hence increase the
total length of void perimeter. A less intuitive result is
that at a given mean areal density and porosity, the
mean pore radius increases with fibre width. This is
perhaps best explained by considering two networks
with the same areal density and porosity formed from
fibres of different widths. As the areal density and
porosity of the networks are the same, it follows that
their total volumes are the same also. Denoting this
volumeV, we note that the volume of the networks that
is occupied by fibres is (1K3)V. As our networks are
formed from fibres of different widths, the only way that
the fibres may occupy the same volume is if the total
fibre length per unit area of the thinner fibres is
proportionally greater than that of the wider fibres. It is
this density of fibre length per unit area that dominates
the size of voids in the network.We note that, at a given
coverage, increasing fibre width in a two-dimensional
network will reduce the size of polygons, because the
fractional open area is reduced. This should be taken
into account when engineering nanofibrous networks
using electrospinning techniques. The average size of a
cell (Alberts et al. 2002), be it osteoblast, fibroblast or
chondrocyte, is approximately 10 mm, and increases to
50 mm when flattened.1 This means that large pores
(approximately 10 mm) are required in fibrous scaffolds,
unless shearing of the cells is to occur during cell
migration into the network. We acknowledge that cells
will have mobility (Alberts et al. 2002) within the
network as has been seen within bacterial cellulose
constructs (Svensson et al. 2005), but this additional
component is not addressed in the present work.
Additionally, we have seen that one can get different
mean pore sizes for networks of the same porosity, and
hence we must take care when making porosity
measurements that we have pores large enough for
cell migration. From figure 5a it is also clear that below
20 nm for the fibre width there is less difference in the
mean pore radii of networks with porosities in the range
than there is for larger fibre widths. There does, in the
electrospinning community, seem to be a drive to
produce ever smaller diameter fibres, with the aim of
increasing surface area, but it must be emphasized that
if cell proliferation into the network is desired, then the
control of network porosity and mean pore radius
should be decoupled.

Figure 5b shows how the mean pore radius
(expressed in nm) increases with increasing fibre
density. The scale extends to 1.7 g cmK3 and recent
studies into using bacterial cellulose for tissue engin-
eering (Svennsson et al. 2005), whose fibril dimensions
are of the order of a few nanometers (Iguchi et al. 2000),
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are particularly interesting with reference to this result.
The density of cellulose is approximately of the order
1.5 g cmK3 (Ganster & Fink 1999), whereas polycapro-
lactone is of the order 0.9 g cmK3 (Koleske 1996). As
one can see from figure 5b, this difference in density
produces a dramatic difference in mean pore size, and
hence the choice of material for fibrous scaffolds,
particularly at the nanoscale, is of importance.

Figure 5c also highlights a possible risk when
producing electrospun networks. Typically, the process
involves spinning fibres onto a fixed target (Doshi &
Reneker 1995; Fridrikh et al. 2003 and others). This
repeated deposition over time can only increase the
areal density of the network, and therefore rapidly
decrease the mean pore radius. This may seem
intuitive, but it is a point that has thus far not been
addressed in the literature.
7. CONCLUSIONS

Much work in the area of tissue engineering, and the
possibility of using nanostructured networks of fibres
for composite manufacture, has been reported in the
literature. However, in the former case, the need for a
proper understanding of the geometry and structure of
the pores within the networks is required, if optimized
cell-culturing is to be obtained. Here, we have reported
on the use of theoretical models to describe the
structures of the types of fibrous networks produced
by electrospinning and other techniques. Qualitatively,
it has been shown that electrospun networks have a
J. R. Soc. Interface (2005)
similar structure to fibrous networks formed by
papermaking, although we suggest that the random
models used as a reference for such structures should
agree better with the former. With this in mind, we
have shown that especially at the nanoscale of fibre
width, a number of key issues arise. In terms of the
distribution of mass, it is clear that a uniformity in this
parameter does not manifest itself in the void or porous
structure, and that this is strongly dependant on fibre
diameter. This means that any control of fibre diameter
must be done with due care to address its effect on the
pore structure, and obviously and ultimately the
ingress and growth of cells. It has been shown that
at the nanoscale it is important that the correct
inspection sizes are used for analysis of pore size and
distribution, since this also depends on fibre diameter,
so that statistically meaningful data is obtained. The
nature of electrospun networks, in terms of their two-
dimensionality has been reported. It has been shown
that care must be taken when assuming that by
increasing network coverage, this will in turn increase
available surface area, since this is shown to be rather
insensitive at the nanoscale. In terms of the fibre
contacts, such a region is deemed to be a prohibited
contact point for a potential cell, and hence the
distribution of fibre contacts is introduced as an
important parameter in fibrous networks for tissue
engineering. The sensitivity of the number of fibre
contacts per unit area has been shown to be pro-
portional to coverage, and more importantly, increases
with decreasing fibre width. This means that this
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parameter can be clearly engineered through fibre-
width control. Structural integrity of the network,
particularly useful for applications where the tissue
engineering scaffold may provide mechanical support,
also increases with decreasing fibre width and this may
be one advantage of electrospinning. However, a salient
point to be derived from this work is that the mean pore
radius increases with fibre width, and it may be this,
and not porosity, that is desirable for such substrates.

This work has been funded by the EPSRC (grant no.
EP/C004930/1). The authors wish to thank Dr Chris Wilkins
for the light microscopy images of the paper samples and
Nicholas Fry (Smith and Nephew) for use of the electrospun
network image.
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