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We discuss the modern approaches of complexity and self-organization to understanding
dynamical systems and how these concepts can inform current interest in systems biology.
From the perspective of a physical scientist, it is especially interesting to examine how the
differing weights given to philosophies of science in the physical and biological sciences
impact the application of the study of complexity. We briefly describe how the dynamics of
the heart and circadian rhythms, canonical examples of systems biology, are modelled by sets
of nonlinear coupled differential equations, which have to be solved numerically. A major
difficulty with this approach is that all the parameters within these equations are not usually
known. Coupled models that include biomolecular detail could help solve this problem.
Coupling models across large ranges of length- and time-scales is central to describing
complex systems and therefore to biology. Such coupling may be performed in at least two
different ways, which we refer to as hierarchical and hybrid multiscale modelling. While
limited progress has been made in the former case, the latter is only beginning to be addressed
systematically. These modelling methods are expected to bring numerous benefits to biology,
for example, the properties of a system could be studied over a wider range of length- and
time-scales, a key aim of systems biology. Multiscale models couple behaviour at the
molecular biological level to that at the cellular level, thereby providing a route for
calculating many unknown parameters as well as investigating the effects at, for example, the
cellular level, of small changes at the biomolecular level, such as a genetic mutation or the
presence of a drug. The modelling and simulation of biomolecular systems is itself very
computationally intensive; we describe a recently developed hybrid continuum-molecular
model, HybridMD, and its associated molecular insertion algorithm, which point the way
towards the integration of molecular and more coarse-grained representations of matter.

The scope of such integrative approaches to complex systems research is circumscribed by
the computational resources available. Computational grids should provide a step jump in
the scale of these resources; we describe the tools that RealityGrid, a major UK e-Science
project, has developed together with our experience of deploying complex models on nascent
grids. We also discuss the prospects for mathematical approaches to reducing the
dimensionality of complex networks in the search for universal systems-level properties,
illustrating our approach with a description of the origin of life according to the RNA world
view.

Keywords: complexity; systems biology; self-organization; classical molecular dynamics;
multiscale model; hybrid models
Life is not some sort of essence added to a physico-
chemical system but neither can it simply be
described in ordinary physico-chemical terms. It
is an emergent property which manifests itself
when physico-chemical systems are organized in
particular ways. John Habgood (1994)
orrespondence (p.v.coveney@ucl.ac.uk).
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1. INTRODUCTION

The recent 50th anniversary of the discovery of the
structure of DNA serves as a reminder of the power of
reducing a system to its smallest possible components
and then studying them. In a mere half-century, there
has been an enormous growth in both molecular biology
and genetics, the Human Genome Project being but one
of many fruits (The International Human Genome
J. R. Soc. Interface (2005) 2, 267–280
q 2005 The Royal Society
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Mapping Consortium 2001; Venter et al. 2001). We now
understand the molecular basis of inheritance and how
the symptoms of certain diseases are caused by changes
in the action of one or more proteins owing to mutations
in the genes encoded by the DNA itself. Yet, although
reductionism is powerful, its scope is also limited. This
is widely recognized in the study of complex systems
whose properties are greater than the sum of their
constituent parts. In this article, we review the
application to biology of the concept of complexity,
a modern approach to addressing integration in the
sciences and engineering.

Complexity is the study of the behaviour of large
collections of simple, interacting units, endowed with
the potential to evolve with time (Coveney & Highfield
1996). Reductionism has given us a deep understanding
of these simple units, whether they are atoms, proteins
or cells, but it is equally important to study how these
units interact. As the writer Alvin Toffler so succinctly
described, ‘One of the most highly developed skills in
contemporary Western civilization is dissection: the
split-up of problems into their smallest possible
components. We are good at it. So good, we often
forget to put the pieces together again’ (Toffler 1984).
Fortunately, a more integrative view has begun to
establish itself in both the physical and biological
sciences over the past 30 years or so (Kohl et al. 2000;
Coveney 2003b).

A certain mutuality between, and order of appli-
cation of, reductionism and complexity (‘put[ting] the
pieces back together again’) is implied; we can only use
an approach based on complexity if we first understand
the simple units whose interactions we shall model.
This is usually described as an integrative approach. We
emphasize that we are not arguing against reduction-
ism, rather that it is now time to more closely embrace
the integrative approach (and therefore the concept of
complexity) in all areas of science, engineering and
medicine.

The recent growth of interest in systems biology
reflects the increasing importance that integrative
approaches are being accorded in the biological
sciences. Systems biology ‘.does not investigate
individual genes or proteins one at a time, as has been
the highly successful mode of biology for the past 30
years. Rather, it investigates the behaviour and
relationships of all of the elements in a particular
biological system while it is functioning. These data can
then be integrated, graphically displayed, and ulti-
mately modeled computationally’ (Ideker et al. 2001).
A recent article examines the concept of complexity
within the physical sciences (Coveney 2003b). Clearly,
there is a significant overlap between the approaches
now being taken in the physical and biological sciences.

The purpose of the present paper is to examine
complexity and systems biology from the perspective of
a physical scientist. The article is structured as follows.
In §2, we shall introduce some key concepts before
investigating in §3 what we mean by ‘modelling’ in
more detail. Although we can often describe biological
systems using differential equations, we illustrate how
it is usually difficult to determine all the required
parameters and then to solve the set of equations. Two
J. R. Soc. Interface (2005)
examples from the biological sciences (heart dynamics
and circadian rhythms) are presented in §4. In §5 we
describe several modern approaches drawn from the
physical sciences that reproduce aspects of the flow of
complex fluids. These models serve to illustrate certain
similarities and differences between the approaches
taken in the biological and physical sciences. Given the
importance of molecular biology, the modelling of
biomolecular systems is of central interest to biology;
we describe in §6 some of the problems faced and how
coupled or hybrid multiscale models may both alleviate
these and allow the calculation of parameters necessary
for the construction and study of cellular multiscale
models. All of these approaches require large amounts
of computational power. In §7, we discuss the potential
of computational grids and the progress made to date in
developing them into usable and powerful tools for all
forms of computational science including compu-
tational systems biology. Finally, a theoretical method
for contracting large-dimensional sets of differential
equations, of the type arising in descriptions of
biological networks, is described in §8, followed by its
application to an investigation of the possible origin of
the RNA world.
2. INTEGRATING ACROSS LENGTH- AND
TIME-SCALES

The biological sciences are subdivided into a large
number of fields, each of which is typically concerned
with studying behaviour over a small range of length-
scales—for example, molecular biology, cell biology,
physiology and zoology. These fields form a rich,
natural hierarchy of description and, in common with
the other sciences, there is a central and unifying need
to connect behaviours on different time- and length-
scales, thereby integrating the different disciplines. For
example, the aim of the Physiome Project (Hunter &
Borg 2003), an ambitious systems biology programme,
is ‘the quantitative description of the functioning
organism in normal and pathophysiological states’
(Bassingthwaighte 2000). This requires the vertical
integration of many biological disciplines from patho-
logy and physiology to cellular and molecular biology.
To achieve this goal, models operating at different
length-scales need to be integrated into a whole that
can, for example, correlate a disease symptom with
genetic mutations. This is clearly an immensely
challenging and open-ended research programme,
which is generally regarded as being more difficult
than the Human Genome Project (Kohl et al. 2000).
The paradigmatic, and hitherto most successful,
example of this type of project is the study of the
electrophysiological behaviour of the mammalian heart
(Kohl et al. 2000; Noble 2002), which we shall discuss in
more detail in §4.

Fracture mechanics provides an excellent example
from the physical (in this case, Earth) sciences where
one has to deal with everything from the breaking of
chemical bonds at a fracture tip to the propagation of
macroscopic fractures (Abraham et al. 2002). The flow
of complex fluids is another notoriously difficult
problem to model given the inherent inhomogeneities



Figure 1. Three separate snapshots of the spatial evolution of
the Belousov–Zhabotinsky reaction.
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within the system and the large range of length- and
time-scales over which phenomena are observed. In §5,
we describe several recent mesoscopic models that are
able to reproduce such physical phenomena. Perhaps
the widest separation between characteristic length-
scales is the explanation of the anisotropies in the
temperature of the cosmic microwave background in
terms of fluctuations in the density of the primordial
soup of particles (Hu 1997). The wide range of length-
scales that all these phenomena and systems inhabit
requires us to embrace the concept of complexity and to
use integrative multiscale approaches.
2.1. Self-organization and emergence

An approach based on complexity provides a means to
integrate across length- and time-scales by studying the
emergence of larger scale phenomena from the inter-
action of units at smaller length-scales. Such complex
phenomena are often self-organizing: ‘Self-organisation
is the spontaneous emergence of non-equilibrium
structural organisation on a macroscopic level, due to
the collective interactions between a larger number of
(usually simple) microscopic objects’ (Coveney &
Highfield 1996). Such structural organization may be
spatial, temporal or spatio-temporal in nature and is
an emergent property. A system is required to be
both dissipative and nonlinear for it to exhibit self-
organization. Most organisms meet these criteria, as
they are non-equilibrium dynamical systems and avoid
equilibrium (i.e. death) through the relentless ingestion
and dissipation of energy by their metabolism.

Reaction–diffusion equations are nonlinear, dissipa-
tive mathematical models (Murray 1993) that were first
studied by Alan Turing (1952). They can describe
many interesting complex phenomena from animal coat
patterns to the behaviour of chemical oscillators, for
example, the Belousov–Zhabotinsky reaction (see
figure 1). They are systems of partial differential
equations (PDEs) of the form

vu

vt
ZKV2uCFðuÞ; (2.1)

where K is the diagonal matrix of non-negative
definite constant diffusion coefficients and the vector
quantity u(x, t) describes the spatio-temporal beha-
viour of a set of dependent variables, such as the
concentration of chemicals, which themselves are
interacting according to generally nonlinear rate
processes F(u). Turing recognized that these simple
systems of equations could describe morphogenesis,
the process controlling shape, structure and function
in living beings.

Perhaps unsurprisingly, many biological systems can
be well described by sets of differential equations.
However, studying mathematical models, such as
reaction–diffusion equations, is frequently difficult as
the nonlinearities usually prevent us from applying
straightforward analytical mathematical tools
(Zwillinger 1997). There are, as always, several ways
of proceeding which we shall discuss in §3.3, but
before doing so, let us define what we mean by a
model itself.
J. R. Soc. Interface (2005)
3. WHAT DO WE MEAN BY A SCIENTIFIC
‘MODEL’?

A model is an abstraction of reality with which we can
make predictions that may be tested by experiment.
A model may be simple, for example, the logistic
equation describing how a population of bacteria grows
(Murray 1993), or as complicated as the Physiome
Project aims to be. A mathematical model makes
predictions, whereas statistical models enable us to
draw statistical inferences about the probable proper-
ties of a system.
3.1. Deductive and inductive models

When building a model, one must choose between two
fundamentally different philosophies of science, as
espoused by Popper and Bacon (Chalmers 1994). If
the prediction is necessarily true given that the model is
also true, then it is said to be a Popperian (deductive or
falsifiable) model. Alternatively, if the prediction is
statistically inferred from observations, then the model
is Baconian (inductive).

Deductive models contain a mathematical descrip-
tion (e.g. the reaction–diffusion equations) that makes
predictions about reality. If these predictions do not
agree with experiment, then the validity of the entire
model may be questioned. This approach dominates the
physical sciences, and hence physical scientists are
inclined to adopt its methods and assumptions unques-
tioningly. However, it is illuminating to consider the
Baconian philosophy as both philosophies are widely
used in the biological sciences.

An inductive model uses a statistical method to infer
from a set of observations a prediction whose success is
measured by its comparison to previously unseen data.
There is a natural shift from using inductive to
deductive models as our theoretical understanding
improves. However, it is important to recognize that
some systems may not yield to an adequate theoretical
description; even if they do, then extracting predictions
from the associated deductive model may be intract-
able. Therefore, we can expect to have to rely on
inductive models in some areas of science for some time
to come.

The use of both deductive and inductive models in
the biological sciences is partly attributable to the more
complicated nature of biological systems. It is also
a result of the rapid adoption of automation by
experimental biologists, which has led to the vast and
ever-expanding production of biological data. High-
throughput experimentation has revolutionized
several biological disciplines; consider the impact of
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microarrays on the genetic sciences (Lander 1999) and
of the development of combinatorial chemistry on the
search for and discovery of new drugs in the pharma-
ceutical industry. While equally intractable problems
exist within the physical sciences, for example,
discovering high-temperature superconductors, equiv-
alent approaches are being developed more slowly
(Evans et al. 2001). The more equal footing of
Popperian and Baconian approaches within the bio-
logical sciences can lead to tension between their
respective practitioners. From a practical, (not to say
utilitarian) point of view, both approaches are required
to advance our current understanding of biological
systems.
3.2. Multiscale modelling

Just as one cannot perform a single experiment that
simultaneously investigates all the length-scales of a
biological system, one cannot generally expect to
produce a single model that spans all the length- and
time-scales of interest. A conceptually simple solution
is to construct a chain of models such that the output of
one model is the input of another. One can apply this
approach in two broadly different ways.

In a hierarchical multiscale approach, the model at
the shortest length-scale is run to completion before its
results are passed to the model describing the next
level. ‘Effective theories’ can be used to bridge the gap
between these different scales, and one can therefore
arrange for a suitable matching of parameters at
different levels. However, if there is significant feed-
back—that is, if changes at the larger length-scale affect
behaviour at the smaller length-scale—then this
approach is no longer valid and we must use a hybrid
or coupled multiscale approach where schemes are
constructed with the physics, chemistry or biology
dynamically coupled across the length- and time-scales
involved. Computationally, it is simple to envisage
many nested models forming a single multiscale model
in a manner similar to a set of Russian matryoshka
dolls. However, care must be taken to minimize the
error introduced by each model, as errors will be
compounded. For example, fluctuations in a particulate
region must be correctly transferred to a continuum
region within a multiscale model, and vice versa
(Delgado-Buscalioni et al. 2005).

Hierarchical modelling is usually associated with
deductive approaches, although following the dynamics
of a protein whose structure has been predicted using
homology modelling is an example of combining both
inductive and deductive approaches in a simple
hierarchical approach (Giordanetto et al. in press).
Although the concept is simple, it is generally very
difficult to construct a computational multiscale model;
yet such models have huge potential to describe
biological systems. The Physiome Project has adopted
a hierarchical multiscale approach (Bassingthwaighte
2000; Hunter & Borg 2003), which, as the component
models exchange information infrequently, simplifies
enormously the problem of constructing the interface
between models. Consequently, the view persists that
the main challenge in multiscale modelling is
J. R. Soc. Interface (2005)
standardizing the format of the information exchanged
between models using, for example, the Systems
Biology Markup Language (sbml.org), an application
of eXtensible Markup Language (XML). An alternative
approach is exemplified by Finkelstein et al. (2004) who
present a metamodel that stretches beyond simply
model exchange and which emphasizes the key role of
abstraction in multiscale modelling. In our opinion, the
main challenge is the scientific one of dynamically
coupling the models involved.

In §4, we shall briefly describe the progress made in
modelling a specific organ—the mammalian heart—
and how the existing models could form part of a larger
multiscale model. The nascent development of multi-
scale modelling for the study of biomolecular systems is
discussed in §6.
3.3. Models of biological systems

Many biological systems can be described well by
deductive models, often as a scheme of coupled
nonlinear differential equations, congruent with our
earlier definitions of both systems biology and complex-
ity. Metabolic networks or signal transduction path-
ways provide canonical examples of biochemical
systems that can be described using differential
equations.

Sets of coupled, nonlinear ordinary differential
equations (ODEs) or PDEs cannot usually be solved
analytically, although there are cases where solutions
exist or approximations can be made (e.g. Zwillinger
1997). In some specific cases, it is possible to system-
atically contract the set of equations to produce a
simpler description that retains some universal features
of the dynamics. A specific example of this, as applied
to the evolution of self-replicating RNA sequences, is
discussed in §8. If, as is often the case, both these
approaches fail, then one must numerically solve the
equations and is therefore required to know large
numbers of (e.g. rate) coefficients that enter the
equations as free parameters. Whereas some advocates
of systems biology believe that given sufficient auto-
mation and other resources, it will eventually be
possible to determine all these parameters, others are
more sceptical. Assuming unknown parameters con-
tinue to exist, one empirical option is to ‘tune’ them to
reproduce biologically reasonable behaviour, although
such an ad hoc procedure is clearly unsatisfactory.
A further option is to calculate the unknown
parameters using another model. Depending on the
degree of integration between the two models, this
approach furnishes an illustration of either hierarchical
or hybrid multiscale modelling.
4. TWO EXAMPLES FROM THE BIOLOGICAL
SCIENCES: HEART DYNAMICS AND
CIRCADIAN CLOCKS

The electromechanical behaviour of the heart (Kohl
et al. 2000; Noble 2002) has been successfully modelled
using differential equations. This has been, and
remains, a particularly rich vein for systems biology.
Studying organs whose behaviour is more directly
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driven by chemical processes, for example, the liver
(Finkelstein et al. 2004), is more complicated than the
heart and is consequently at an earlier stage. A further
example is the development of systems biology models
to study the growth of tumour cells (Alarcón et al.
2004).

The size and behaviour of the system, the mamma-
lian heart, defines one set of length- and time-scales and
the choice of the subunit, the cardiac myocytes, defines
a second, smaller and shorter, set of length- and time-
scales. Creating and simulating a sufficiently detailed
model of the individual cells and their interactions (in
terms of ion fluxes) allows the scientist to both
reproduce the behaviour of the organ and to connect
the heart’s behaviour to that of its individual cells. The
UK Engineering and Physical Sciences Research
Council (EPSRC) funded e-Science pilot project called
‘Integrative Biology’ (www.integrativebiology.ac.uk),
in which one of us is a co-investigator, is attempting to
build much of the software and hardware infrastructure
to support such research worldwide (Gavaghan et al. in
press).

Extending this connection down to the behaviour of
the ion channels (modelled with atomistic detail) is a
significant challenge, but one that can be expected to
bring large benefits (Hunter & Borg 2003). To illustrate
this, compare modelling the dynamics of a heart and a
Formula One racing car. The dynamics of each system
can be described by differential equations but, crucially,
the rhythmic behaviour of the heart varies significantly
with tiny changes at the molecular level, for example, a
genetic mutation in a key protein or the absence or
presence of one or more molecules (including drugs).
There is no analogue for this sophisticated dependency
in a Formula One car. Some progress can be made
without a hybrid multiscale model by inferring changes
in the cellular behaviour through the examination of
the effect of genetic mutations on a single ion channel
(Hunter & Borg 2003), a crude form of hierarchical
modelling. To properly integrate biomolecular detail
into the existing electromechanical models of the heart
will, however, require a hybrid multiscale approach.

Establishing direct connections between individual
protein–protein interactions and cardiovascular
dynamics is necessary to investigate the effects of
different genetic mutations on the behaviour of the
organ (Noble 2002). Additionally, as drugs are designed
at the molecular level, this connection would enable the
effect—intended or otherwise—of the drug to be
understood at the level of the whole organ. This in
turn would open up the possibility of in silico screening
of drug candidates; furthermore, connecting heart
dynamics down to the molecular level would put the
cellular model on a more solid footing, because it should
permit the calculation of unknown rate coefficients
within membrane-based electrophysiological models.

A new project funded by the UK’s Biotechnology
and Biological Sciences Research Council (BBSRC),
called ‘Integrative Biological Simulation’, in which one
of us (P.V.C.) is a co-investigator, aims to investigate
the behaviour of monotopic enzymes through the use of
multiscale models to couple coarse-grained, atomistic
and even electronic structure models. Unlike
J. R. Soc. Interface (2005)
transmembrane proteins, monotopic enzymes are
bound to only one side of cellular membranes. The
comparative lack of experimental data (the structures
of only a few monotopic enzymes are known), their
novel association with cellular membranes and the
importance of their enzymatic functions ensures that
this class of proteins is interesting to study. Perhaps the
best-known monotopic enzyme is prostaglandin H2
synthase, often referred to as ‘COX’ (Picot et al. 1994).
This protein is inhibited by non-steroidal anti-inflam-
matory drugs (NSAIDs), such as aspirin and ibuprofen
(Garavito & Mulichak 2003). Designing new NSAIDs
with diminished side effects remains an important goal
for the pharmaceutical industry.

Slower than the beating of the heart, circadian clocks
oscillate with periods close to 24 h and allow organisms
to adapt their behaviour to a changing environment
(Goldbeter 2002). A complicated network of interacting
proteins, RNA and genes produces these oscillations
and the experimental picture of these networks, while
incomplete, is steadily improving.

Much progress has been achieved in understanding
circadian clocks by describing them as systems of
nonlinear ODEs. These have become progressively
more complicated as additional experimental data has
become available (Goldbeter 2002; Leloup & Goldbeter
2003). A recent study by Rand et al. (2004) suggests
that such networks must be complex enough to ensure
that the system has the flexibility to simultaneously
satisfy several different requirements, for example,
compensating for changes in environment such as pH
or temperature. The nonlinearities enter through
molecular feedback mechanisms. Negative feedback,
usually in the form of a protein inhibiting the
expression of its gene, has been shown to be necessary
to reproduce oscillations and although positive feed-
back is also often encountered, recent computational
studies have shown that it is not essential (Becker-
Weimann et al. 2004).

Few of the existing circadian models contain
experimentally determined parameters; the values of
the parameters are usually tuned to fit the observed
behaviour (Rand et al. 2004). Despite this, theoretical
models have been able to predict birhythmicity,
a previously unobserved dynamical phenomenon
(Goldbeter 2002). Birhythmicity results from the
occurrence of two stable limit cycles separated by an
unstable cycle. In addition, the disruption (or other-
wise) of the mouse circadian clock by the mutation of
key genes has been reconciled with existing models
(Becker-Weimann et al. 2004). There is also speculation
about possible links between genetic mutations and
known circadian clinical conditions (Goldbeter 2002;
Leloup & Goldbeter 2003).

The existing models are often described as ‘molecular’
(Rand et al. 2004), yet they coarse-grain the action of
each enzyme’s catalytic processes to a single rate
constant. In common with whole-organ heart models,
there would be a large benefit in coupling the existing
models to true atomistic models of the individual
biomolecular components. This would allow both the
calculation of unknown model parameters and the
investigation of the effects of genetic mutation. This
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Figure 2. Simple two-dimensional lattice gas dynamics.
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would simultaneously give the existing theoretical
models more credibility and allow the investigation of
the possibly non-intuitive effects of more subtle genetic
changes. The construction of such hybrid multiscale
models will be discussed in §6.
5. A PEDAGOGICAL EXAMPLE FROM THE
PHYSICAL SCIENCES: COMPLEX FLUIDS

As a basis for comparison and to illustrate the concepts
introduced thus far, consider the modelling of complex
fluids, a ‘simpler’ case from the physical sciences.
Complex fluids are fluids in which processes occur on a
range of different length- and time-scales. Paradigmatic
cases include binary immiscible fluids and surfactant-
containing fluids (Coveney 2003a). In the past 15 years
or so, a radically new way of studying fluid dynamics
has emerged in keeping with our definition of complex-
ity. Rather than using conventional numerical methods
such as a continuum fluid dynamics (CFD) algorithm to
solve macroscopic PDEs, the approach is predicated
upon determining the fluid dynamics as an emergent
property from the interactions between very simple
fluid particles.
5.1. Lattice gas methods

Complete macroscopic hydrodynamic descriptions of
complex fluids are often not known and, indeed, may
not even exist. Therefore, a macroscopic approach in
the form of continuum PDEs (essentially the Navier–
Stokes equations with constitutive equations shoe-
horned in) are of doubtful validity. One might turn
instead to a microscopic approach such as classical
molecular dynamics (MD; see §6) but it is not yet
possible to simulate bulk fluid over macroscopic time-
intervals (at least seconds) using such techniques.
Instead, we adopt a mesoscopic approach where the
fluid behaviour emerges from the evolution of the
simple rules that define the model. The basic elements
of the two-dimensional model are simple to explain,
yet their emergent behaviour is equivalent to
J. R. Soc. Interface (2005)
that described by hydrodynamic equations for incom-
pressible flows (i.e. the Navier–Stokes equations) when
averaged over sufficiently large regions of space and
long periods of time (Frish et al. 1986; Wolfram 1986).

The fluid is represented by mesoscopic particles
propagating and colliding on a regular lattice (figure 2).
In this model, both space and time are discrete and
therefore this is a kind of cellular automaton. The
geometry of the lattice is chosen to guarantee isotropy
of flow and in two dimensions, a triangular lattice is
sufficient. In three dimensions, the geometry of the
lattice is rather more complicated (a projected four-
dimensional hypercube). The particles are Boolean, i.e.
they can only be present or absent from a given velocity
vector at a lattice site, as is the dynamics. In terms of
the atomic theory of matter, it is not clear what a single
mesoscopic particle of fluid represents; they are simply
chosen to give the correct macroscopic fluid behaviour
with each tick of the automaton clock. The mesoscopic
particles propagate by a single lattice spacing at each
tick and then collide conserving mass and momentum.
It is these collision laws that are ultimately responsible
for the correct hydrodynamic behaviour. The particles
are propagated again and the entire process repeats
leading to physically realistic, incompressible, single-
phase flow on the macroscopic scale (i.e. for lengths and
times much larger than the intrinsic lattice space and
time-scales).

Lattice gas models provide excellent examples of our
earlier definition of complexity. The collision rules
ensure that these systems are irreversible and nonlinear
leading to the emergence of complex, self-organizing
phenomena. Multicomponent fluids provide particu-
larly clear examples of these, for example, in the
separation of two immiscible phases. The lattice gas
automaton connects the descriptions of the particles at
a shorter length-scale to emergent behaviour at a longer
length-scale. Finally, although the rules of the model
are simple to understand, a computer is required to
perform the simulations, to visualize and analyse the
results and to store the data. In two dimensions, this
can be a workstation, but in three dimensions, one
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generally requires a parallel computer in order to
perform any serious investigation.

As indicated above, lattice gas models have been
extended to mixtures of two immiscible fluids, with
(ternary fluid) or without (binary fluid) an amphiphile.
A binary model was first introduced by Rothman &
Keller (1988) by adapting ideas from electrostatics.
Mesoscopic particles from different species are assigned
different colour ‘charges’ (conventionally blue for water
and red for oil). An order parameter is defined at each
lattice site, as the difference in the colour densities of
the two fluids. Phase separation is achieved by choosing
a post-collisional order parameter flux for which its
work against the colour field, a vector field defined by
the order parameter at surrounding lattice sites, is
minimized, or preferentially selected by some kind of
Monte Carlo procedure. This model reproduces spino-
dal decomposition (the separation of immiscible fluids)
and has been further extended to include surfactants
(Boghosian et al. 1996).

Lattice gas models describe the flow of complex
fluids well; they give the correct hydrodynamics,
immiscibility, interfacial and self-assembly behaviours
for low Reynolds numbers (Love et al. 2001; Love &
Coveney 2002). They are comparatively simple to
understand and implement and, given the Boolean
nature of the rules employed, are computationally
unconditionally stable, which is a very attractive
feature as far as their numerical simulation is con-
cerned. The discrete nature of the mesoscopic particles
also leads to significant fluctuations, which are vital to
model certain physical phenomena but can sometimes
make it difficult to observe standard hydrodynamic
phenomena without extensive ensemble averaging
(Chen et al. 2000).
5.2. Lattice-Boltzmann methods

Lattice-Boltzmann models are rather more recent
(Succi 2001) and overcome many of the problems listed
above that afflict lattice gases. The lattice particles are
discarded and each velocity at each lattice site is
instead populated with a single-particle probability
distribution function, which relaxes towards a tailored,
predefined Maxwellian equilibrium state. As with their
lattice gas progenitors, these models conserve mass and
momentum throughout, but they are susceptible to
machine-precision errors resulting from their use of
floating-point arithmetic. There are no fluctuations,
unlike the lattice gas case, and the models are
algorithmically much simpler to implement. However,
they are not unconditionally stable owing to the lack in
general of an ‘H-theorem’ guaranteeing the existence of
a Lyapunov function H (the H-function is the negative
of Boltzmann’s entropy), which evolves in a mono-
tonically increasing manner to its minimum at equili-
brium (Boltzmann 1886; Coveney & Highfield 1991).
Notwithstanding their drawbacks, lattice-Boltzmann
schemes are widely used and several exist for the study
of multicomponent and amphiphilic fluids.

Entropic lattice-Boltzmann models by contrast do
not have an arbitrary equilibrium distribution function
towards which the single-particle distribution functions
J. R. Soc. Interface (2005)
relax. Instead, an entropy (or H-) function is defined,
which, by construction, can only increase in magnitude
as the model evolves. For incompressible flow, it has
been shown that requiring the models to be Galilean
invariant essentially fixes the H-function (Boghosian
et al. 2003). Such models are unconditionally stable and
permit the fluid viscosity to assume vanishingly small
values—which is of considerable value in studying
turbulence, still a grand challenge problem in classical
physics.

Both lattice gas and lattice-Boltzmann models are
very different to the more conventional networks of
nonlinear coupled differential equations used to
describe the behaviour of the heart and circadian
rhythms in §4. However, both approaches rely on
simple units (mesoscopic particles of fluid or cells or
proteins and other molecules) interacting to reproduce
the behaviour of interest. The simplicity of the lattice-
Boltzmann and lattice gas models indicates that fluid
dynamics primarily emerges from the interactions
between the units rather than from the properties of
the units themselves. In biological systems, the units
(e.g. proteins) tend to be intrinsically very complicated
and, consequently, such alluringly simple theoretical
models cannot easily be constructed while retaining the
interest of bona fide biologists. We will discuss reasons
for this in the context of biomolecular modelling in §6.
6. BIOMOLECULAR MODELLING AND
COMPUTATIONAL SYSTEMS BIOLOGY

Understanding and predicting the properties and
behaviour of biomolecules (e.g. proteins and nucleic
acids) is an important and highly active area of research
in molecular biology, biochemistry and chemical
biology. Beyond investigating many important biologi-
cal phenomena (e.g. antibiotic drug resistance), models
of biomolecular systems are expected to form part of
(hierarchical or hybrid) multiscale approaches with the
advantages already discussed. Within this discipline,
hybrid multiscale models already exist that combine
quantum and classical mechanics (QM/MM) to study,
for example, enzymatic reactions (Leach 2001), but
these are rather ad hoc at present.

Biomolecular models are usually atomistic and based
on classical MD, because the degree to which it is
possible to coarse-grain a biomolecular system (while
retaining a good representation of biological behaviour)
is limited. Ab initio MD is out of the question owing to
the computational cost. Even classical molecular
models require enormous quantities of computational
power, although a hybrid multiscale approach may
mitigate this to some degree by only applying an
atomistic description to those parts of a biomolecular
system where it is necessary.

In this section, we shall first briefly consider the
tension between practitioners of deductive and induc-
tive modelling before discussing why an atomistic
description must be retained. Finally, we shall examine
a more detailed example of a hybrid multiscale model,
HybridMD, particularly the algorithm that maintains
the interface between the two descriptions. The general
same principle is applicable throughout systems biology
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and may, as alluded to earlier, form one layer within a
true hybrid matryoshka multiscale model for the study
of, for example, the electromechanical behaviour of the
mammalian heart.

The tension between Popperian and Baconian
approaches within the biological sciences is most keenly
felt in the domain of biomolecular modelling, especially
in the highly competitive field concerned with protein
structure prediction, for example, the critical assess-
ment of techniques for protein structure prediction
experiments (http://predictioncenter.llnl.gov/). This
is a shame because, although comparisons are often
made (e.g. Schonbrun et al. 2002), it is plainly
nonsensical to compare protein structure predictions
made by bioinformatics (an inductive approach) with
ensembles of structures produced by MD (a deductive
approach), because the former usually yields a static
snapshot of the protein’s structure typically frozen at
100 K, whereas the latter gives a dynamic view of the
protein’s structure at physiological temperatures.
Instead, we should recognize that these approaches
are complementary.

The free energy change between an initial disordered
state and the final structure of a protein (the process
known as folding) is typically very small, of the order of
a few hydrogen bonds (5–15 kcal molK1; Dobson et al.
1998). This is the result of the similar magnitudes of the
enthalpic and entropic components of folding. This
delicate balance has frustrated all attempts to coarse-
grain the description of a protein beyond classical MD,
an approach that computes the forces acting on each
atom using a force field, such as CHARMM or AMBER

(Pearlman et al. 1995; MacKerell et al. 1998). The time-
step by which the integrator can be advanced is
constrained to only a few femtoseconds by the fastest
oscillation within the system (Leach 2001; Frenkel &
Smit 2002). This places most phenomena out of the
reach of classical MD, although in the last 10 years,
improvements in the treatment of electrostatics and the
development of scalable parallel codes has begun to
bring significant improvements. Nonetheless, a sol-
vated system comprising a single major histocompat-
ibility complex protein, an epitope (a short peptide)
and a T-cell receptor protein contains around 100 000
atoms and requires tens of thousands of central
processing unit (CPU) hours on a supercomputer to
simulate 10 ns of dynamics (see the studies by Wan et
al. 2004, 2005). The study of biomolecular systems
using classical MD clearly necessitates the use of high-
performance computing (HPC), and this has been
recognized by the development of a new generation of
fast, scalable MD codes, for example, GROMACS
(Berendsen et al. 1995) and NAMD (Kalé 1999).
NAMD has been recently awarded a Gold Star award
at HPCx, a UK supercomputer, for its ability to scale
well up to 1024 processors when simulating sufficiently
large systems.

Even a comparatively complicated biomolecular
system of the kind described above is around 65%
water and therefore not only is the majority of the
computational effort spent computing forces between
water molecules, but the finite size of the system can
also introduce unphysical effects. Consequently,
J. R. Soc. Interface (2005)
modelling the bulk of the water using a simpler,
continuum-based description while retaining an
atomistic description (such as classical MD) for the
protein and surrounding water would remove the finite
size effects and reduce the computational overhead
considerably. This is a hybrid multiscale model and the
main challenge is constructing the interface between
the continuum and molecular domains. Water must be
able to flow from one region to the other; however, it is
not immediately obvious how to transmute a flux from
the continuum region into the molecular domain and
also conserve mass, momentum and energy. Developing
efficient particle insertion algorithms is an active area of
research of direct relevance to this approach (see
Delgado-Buscalioni & Coveney 2003b and references
therein). We shall briefly describe one such algorithm,
USHER, as developed by Delgado-Buscalioni &
Coveney (2003a,b), its inclusion in a simple model,
HybridMD, and its application to a simple system
(Barsky et al. 2004).

Consider a basic model of the behaviour of DNA
tethered to a wall in shear flow (Doyle et al. 2000). The
DNA is represented by a simple polymer composed of
beads, the last of which is tethered to a wall (also
composed of beads) and solvated by a van der Waals
liquid up to a certain height. Above this interface, the
liquid is represented by a continuum regime, the
solvent is sheared in a direction parallel to the wall by
applying a shear boundary condition in the continuum
regime and the dynamics followed using a CFD solver.
An equivalent, but entirely particulate, MD simulation
is also performed for comparison purposes.

The flow of mass, momentum and energy fluxes
across the interface requires the insertion of particles
and the alteration of flows in the particulate and
continuum regions respectively. USHER handles the
more difficult of these two cases; that of inserting
particles into dense fluids at a site where the potential
energy takes exactly the desired value. It does so not by
explicitly searching for cavities within the solvent but
rather by a combination of (i) randomly selecting a
starting site and (ii) applying a steepest descent
algorithm whose displacement step is dynamically
adapted according to the local topology of the energy
landscape. For more detail, the reader is referred to the
study by Delgado-Buscalioni & Coveney (2003b).

The HybridMD model reproduces the behaviour of
the MD model but the computational cost of the
insertion procedure is only 6% of that of the MD
algorithm (Barsky et al. 2004). This is an encouraging
result and we look forward to applications of this and
similar methods to biomolecular systems. Indeed, the
USHER algorithm has recently been extended to
handle the insertion of polar molecules (notably
water) into dense liquids (De Fabritiis et al. 2004).
Water is particularly challenging because of its
propensity to form extensive hydrogen bonded net-
works with its neighbours, including proteins (Levy &
Onuchic 2004). This substantially reduces the number
of insertion sites with low potential energy compared
to, for example, a simple van derWaals liquid. Treating
water correctly is an essential step in the simulation of
biological systems using hybrid models of this kind

http://predictioncenter.llnl.gov/
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as well as providing a route to the modelling
and simulation of open systems. We emphasize that a
simple increase in the speed of simulations and the
removal of finite size effects are not the only advan-
tages, but are merely the first benefits to be displayed.

A further challenge is the development of new or
existing algorithms to be used within a hybrid model.
The ability to replace one CFD solver by another, or
perhaps a different algorithm entirely, as well as to
‘plug and play’ a variety of different MD codes is
necessary to make such hybrid multiscale codes widely
applicable and attractive to large numbers of scientists
(Delgado-Buscalioni et al. in press; Mayes et al. in
press). This, in addition to the running the different
component codes on different computers for efficiency
reasons, will be discussed in the §7.
7. GRID COMPUTING

An integrative approach to studying biological systems,
especially if biomolecular detail is included, requires
extensive computational resources of all forms for
calculation, visualization and data storage. The (poten-
tially multiscale) models that comprise such an
approach are usually deductive in nature, but an
inductive modelling approach (such as that taken by
bioinformatics) also requires substantial computational
resources to process, store and retrieve the vast
quantities of genomic and other kinds of data that are
accumulated. The growth of computational systems
biology has often been constrained by a lack of adequate
computational resources; the advent of computational
grids offers one method of addressing this problem. For
more information on computational grids, see the
reviews by Foster & Kesselman (1999), Foster et al.
(2001), Berman et al. (2003), Foster & Kessleman
(2003), Taylor (2004) and the URLs printed later in
this section. Additionally, a set of papers discussing in
more detail many of the concepts introduced within this
section can be found in a forthcoming publication,
Scientific grid computing (Coveney in press).

The concept of a ‘computational grid’ has been
mentioned in passing and its potential has been alluded
to, so we should now define what it is. Grid computing is
distributed computing performed transparently across
multiple administrative domains; transparency implies
that there is minimal complexity for the user. Here,
computing refers to any form of digital activity, not just
numerical computation.

The term ‘computational grid’ was coined in analogy
with the electricity grid that seamlessly supplies
electrical power to our homes, offices and industry
(Vyssotsky et al. 1965; Foster & Kesselman 1999).
When we switch a kettle on to make a cup of tea, we do
not know, nor do we need to know, the source of the
electricity that is heating the water—we just plug our
appliances into the power sockets and pay the bills. The
vision for a computational grid is similar; it would
securely, seamlessly and transparently supply us with
computational resources (number crunching, visualiza-
tion, database access, data storage, etc.) on demand.
All we would have to do is pay the bill and hence
computing would have become a commodity. This
J. R. Soc. Interface (2005)
would represent a genuine paradigm shift in both how
we use computers to further scientific knowledge and,
indeed as humans, how we collaborate. Properly
fulfilled, the vision of grid computing would benefit all
of science and society (Coveney 2003b) but, as we shall
discuss later, we are currently still some distance from
realizing this goal.

Data sources, in the form of instruments, may also be
attached to a computational grid. Indeed, it is the
approaching commissioning of the Large Hadron
Collider in 2007—and the required analysis and storage
of the petabytes of data that it will generate—that has
provided much of the initial impetus for the develop-
ment of this technology. The size and scale of this
project, however, is also a risk to the successful
development of grid computing as too much focus on
the needs of experimental high-energy physics (par-
ticularly its more or less exclusive emphasis on running
a large number of independent jobs each on single CPUs
of loosely coupled compute clusters—so-called ‘task-
farming’) might inhibit the needs of other forms of grid
computing being properly addressed.

There has been a growth in the number of research
projects that aim both to develop the infrastructure
necessary for computational grids and to solve scientific
problems by deploying models on them, particularly
within the current 5 year UK e-Science programme
(2001–06). We note that many UK e-Science projects
are Baconian in nature and are therefore primarily
concerned with data processing and inferential models
(Berman et al. 2003). This distortion presents a second
risk to the balanced development of grid computing. It
is vital for scientists to be involved at an early stage in
the development of grid infrastructure in order to
convey their requirements to the computer scientists
and software engineers developing computational grids.
7.1. Computational steering and grid-based
workflows

P.V.C. is the principal investigator on a major UK
e-Science project called ‘RealityGrid’ (www.realitygrid.
org), which is concerned with pioneering the perform-
ance of real computational science on grids. Reality-
Grid (figure 3) has developed and continues to develop
tools to allow the seamless and transparent deployment
of a variety of condensed matter models on compu-
tational grids from physics and chemistry to materials
and biology.

A central tool developed by RealityGrid is the
steering library, an application programming interface
(API) available for download (Pickles et al. in press).
Once a scientific application has been interfaced with
the RealityGrid steering library API, the scientist is
able to monitor and interact with the simulation (i.e. to
steer it) in a wide variety of ways. All communication is
carried out via a central registry and therefore, in
principle, the scientist does not have to know where the
simulation is running. Several existing scientific codes
have already been interfaced with the steering library
(Pickles et al. in press), including a lattice-Boltzmann
code (Harting et al. 2004) and NAMD (Kalé 1999), one
of our chosen classical MD production codes, with

http://www.realitygrid.org
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Figure 4. A gyroid phase displaying defect dynamics (as
modelled by a three-dimensional lattice-Boltzmann code).

Figure 3. A schematic of the UK e-Science RealityGrid program demonstrating the different computational resources used and
the centrality of computational steering.

276 Modelling biological complexity P. V. Coveney and P. W. Fowler
the aim of significantly extending our capacity to do
computational science using HPC.

Applying the concept of computational steering
(Chin et al. 2003) along with the real-time visualization
of a simulation allows one or more computational
scientists to interact with a simulation or set of
simulations to ensure that the maximum understanding
is gained using the minimum of computational resource
and elapsed wallclock time. Consider the current
process of using a high-performance computer. Here,
the computational scientist prepares a set of input files
and therefore must make important decisions about
various aspects of the simulation before run-time, for
example, how long it will run for. These files are then
submitted to a specific high-performance computer
where the code to be used has been previously compiled
and a job is submitted to the batch queue. There is little
or no interaction with the simulation while it prog-
resses. The scientist then recovers the data output by
the simulation, analyses it and, if he or she is lucky,
there may be some interesting data. Computational
steering aims to recast this process by allowing the
scientist to interact in near real time with many
simulations as they progress. Monitoring the separation
of two immiscible fluids and adjusting a coupling
parameter to achieve the desired behaviour is one
example (Harting et al. 2004).

The steering library further allows simulations to
take checkpoints and for those checkpoints to be moved
onto another computer, perhaps with a different
architecture, and then used to start a new simulation.
This important feature is called malleable checkpoint-
ing (Mayes et al. in press) and allows scientists to clone
or spawn simulations to, for example, explore several
different parameter values before back-tracking to the
checkpoint and proceeding with the chosen value. The
ability of simulations to take checkpoints also allows
more complicated grid workflows to be constructed. At
the very least, steering and checkpointing can prevent
computational cycles being wasted by needless simu-
lation. Used judiciously, it can lead to new science that
would have been impractical using the old ‘fire-and-
forget’ mode of working.
J. R. Soc. Interface (2005)
RealityGrid has run two successful large-scale
computational projects federating the US and UK
computational grids that made extensive use of
steering. The first, TeraGyroid, investigated an exotic
cubic liquid crystalline amphiphilic fluid mesophase,
the beautiful gyroid phase; see figure 4 (González-
Segredo & Coveney 2004a,b). Interestingly, some
scientists believe that the endoplasmic reticulum is
gyroidal in structure (Landh 1995). During the
TeraGyroid Project, we ran the largest set of lattice-
Boltzmann simulations to date using our home-grown
LB3D code within a study of defect dynamics. The work
tied together more than 6000 processors and 17
teraflops of computing at six different facilities on two
continents, including high-end visualization machines,
by federating the US TeraGrid with the UK’s super-
computing facilities at HPCx and CSAR and a
visualization engine at UCL.

This project won the HPC Challenge Award for most
data-intensive application at Supercomputing 2003 in
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Phoenix, Arizona, USA and an integrated data and
information management award at the International
Supercomputing Conference in Heidelberg, Germany,
2004. For more information, the reader is referred to
papers by Harting et al. (2003), Chin et al. (2004),
Pickles et al. (2004), Blake et al. (in press) and Haines
et al. (in press).

A more recent project undertaken by Fowler et al.
(2004) aimed to calculate a difference in binding
affinities between two peptides and an Src SH2 protein
domain in under 48 h during the course of the 2004 UK
e-Science All Hands Meeting at the University of
Nottingham. The calculation of such quantities is of
vital importance, both academically and to the phar-
maceutical industry, because a successful computation
can yield significant insight into how a drug candidate
binds to its target. The technique, thermodynamic
integration (Pearlman & Rao 1999; Leach 2001), is well
established, but its widespread adoption is hampered by
its extreme complexity and very high compute intensity
(Chipot & Pearlman 2002). As part of this project, the
MD code NAMD was interfaced with the RealityGrid
steering library. This allowed the launching, control,
spawning and steering of the many classical MD
simulations required to compute a single difference in
binding affinities. This process is referred to as steered
thermodynamic integration using molecular dynamics;
for more details see Fowler et al. (in press).
7.2. Towards a general coupling framework
for hybrid multiscale models

As mentioned in §3.2, another RealityGrid research
activity is the development of a coupling framework
that manages both the coupling of codes (e.g. CFD and
MD) and their subsequent deployment on a range of
computer architectures, from single workstations
(where each model must execute in sequence) to
parallel computers and computational grids. A bespoke
version of the HybridMD model discussed earlier is
being developed, which should be deployable in this
flexible fashion (Delgado-Buscalioni et al. in press).
Within this framework, XML-based metadata must be
included to describe the individual models being
coupled, their composition within the coupled system
and their deployment on specific resources. Conse-
quently, this metadata has a different and more
complicated function to that of the Systems Biology
Markup Language.

A ‘bespoke framework generator’ produces the
appropriate control and communication code enabling
the model to be coupled in the specified manner. Several
benefits are apparent, including (i) individual models
can be composed into the coupled system using
composition metadata with no change to the model
code and (ii) code can be generated to run a particular
coupled model on a specified architecture (e.g. personal
digital assistant PDA, desktop, parallel machine or a
computational grid) simply by changing the metadata.
This approach to coupled models is at a very early
stage of development; we ourselves are looking at
other frameworks that may be more flexible (Coveney
et al. 2004).
J. R. Soc. Interface (2005)
For the computers involved to interface with one
another and with the RealityGrid bespoke job control
software, some kind of ‘middleware’ has to be adopted.
Globus (www.globus.org) is the current de facto
middleware and, as such, is installed on most of the
resources that claim to be ‘grid-enabled’—the US
Teragrid (www.teragrid.org), the UK National Grid
Service (www.ngs.ac.uk) and the European grid
produced by the Enabling Grids for E-SciencE
programme (Gagliardi et al. (in press; egee-intranet.
web.cern.ch). Globus is not on its own a complete
solution (Chin & Coveney 2004), and RealityGrid also
uses the Perl grid middleware packages OGSI:Lite and
WSRF:Lite (based on two different grid specifications)
to provide essential additional services required for any
scientific application (McKeown 2004).
7.3. The present state of computational grids

It would be misleading to give the impression that
today’s computational grids are well developed and
easy to use. In fact, it is extremely difficult to set up
such grid projects as they require both extensive
support by dedicated software engineers and for all
concerned to climb a steep learning curve (Chin et al.
2004). This current lack of usability has several sources:
(i) there is lack of a common API for core functionalities
(e.g. file transfer) usable across distinct grid appli-
cations and domains. Consequently, the application
developer (who most often is also the end-user scientist)
is left with no option but to hard code domain specific,
grid-level calls into the given application; (ii) hetero-
geneous software stacks make grid-application port-
ability a nightmare; (iii) there is a high barrier for
getting security certificates accepted beyond the issuing
domain; (iv) scheduling and job launching resources
and policies are frequently non-uniform and incompa-
tible and (v) as we have highlighted extensively
(Chin & Coveney 2004; Coveney et al. 2004), much
existing grid middleware is difficult to use and is
detrimental to most scientific research, in flagrant
violation of the stipulated goal of grid computing which
is meant to be ‘transparent’ for users.

Notwithstanding the current problems for users of
grid computing, we believe that, if present efforts are
sustained—for example through the efforts of the UK’s
Open Middleware Infrastructure Institute (www.omii.
ac.uk), albeit with more attention being paid to users’
needs—grid computing should become of significant
value to many computational scientists, including those
working in computational systems biology, in the next
3–5 years.
8. COMPLEX BIOLOGICAL NETWORKS,
UNIVERSALITY AND THE ORIGIN OF
THE RNA WORLD

Biochemical pathways and networks are, in their full
glory, of immense complexity and correspond mathe-
matically to very high-dimensional sets of coupled
nonlinear ordinary or PDEs; the reader is referred back
to the discussion of models of circadian rhythms in §4
for an example. These equations contain a very large
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number of parameters, which must generally be
determined empirically. Typically, they are rate
coefficients for various molecular processes. From a
theoretical standpoint, it would be very helpful if one
could demonstrate that certain quantitative macro-
scopic behaviours were insensitive to the details of
many of the individual coefficients; that is, that it would
not be necessary to know all these parameters. We have
shown this to be the case for certain complex kinetic
schemes based on the Becker–Döring model for step-
wise polymerization/depolymerization as shown below

Cr CC1#CrC1: (8.1)

More generally, they represent a wide range of
nucleation and growth systems (Coveney & Wattis
1999; Wattis & Coveney 2001a,b). For the Becker–
Döring process given in equation (8.1), we can write
down the kinetic equations for the formation of RNA
sequences

_cr Z JrK1 KJr ; r Z 2; 3.; (8.2)

_c1 ZKJ1 K
XN

rZ1

Jr ; (8.3)

Jr :Z ararc1 KbrC1crC1: (8.4)

Here, cr is an RNA sequence of length r with the dots
representing the time derivatives. Jr represents the flux
of sequences growing by a single monomer from
sequence cr to crC1 and ar is the forward rate coefficient
from equation (8.1) and brC1 the backward rate
coefficient. Equations (8.2)–(8.4) are an infinite set of
coupled nonlinear ODEs; to solve the equations, we
need to know two times an infinite number of rate
coefficients. It is possible to systematically coarse-grain
these equations by a renormalization group transform-
ation to a set of low-dimensional (two- or three-
dimensional) nonlinear ODEs whose dynamics can be
solved by standard phase–plane methods. The nub of
the method is that the renormalization group analysis
of the infinite set of nonlinear ODEs shows that the
dynamics, at the macroscopic level, subdivides into
only a few ‘universality classes’, and hence it is not
necessary to know all the microscopic rate coefficients
to determine the long-time (asymptotic) dynamics
(Coveney & Wattis 1999; Wattis & Coveney
2001a,b). Theoretical approaches along these lines
would allow the precise determination of the rate
coefficients, or properties of rate coefficients, of complex
biochemical networks that need to be measured in order
to predict the asymptotic behaviour of a biological
system. As an illustration of the power of such
a contraction procedure, consider the evolution of
RNA sequences of differing lengths from an initial
mixture of RNA monomers. Unlike proteins and DNA,
an RNA molecule can both store genetic information
and catalyse chemical reactions, as shown by Altman
and Cech who won the 1989 Nobel Prize in chemistry
(Zubay 2000). The hypothesis that RNA sequences
spontaneously evolved from a Darwinian primordial
soup to produce the earliest forms of life on Earth is
known as the RNA world view (Zubay 2000). How life
originally evolved can therefore be divided into two
questions: (i) Where did the RNA world come from?
and (ii) How did this RNAworld evolve into the current
J. R. Soc. Interface (2005)
molecular biology dogma that DNA makes RNA makes
protein? The study by Wattis & Coveney (1999)
concentrates on the first question, which may itself be
further subdivided: How did RNA ‘monomers’ of the
correct chirality arise (Wattis & Coveney in press) and
how did they interact to produce a rich RNA-polymer
based system?

Given that the maximum possible sequence length of
RNA polymers is unbounded, the set of Becker–Döring
(nonlinear ordinary differential) equations that
describe the origin and evolution of the RNA polymers
is infinite. This set of equations is coarse-grained, as
described above by considering only monomers, short
chains and long chains and the resultant low-
dimensional set of equations reproduces the desired
behaviours (Wattis & Coveney 1999). Hydrolysis
prevents the formation of RNA polymer sequences of
infinite length while still permitting the accumulation
of longer RNA polymers. The same study by Wattis &
Coveney (1999) demonstrated that viable concen-
trations of RNA chains of sufficient length will form
after sufficient time if the appropriate catalytic and
hydrolysis mechanisms are present. This is a clear
illustration of the utility of a complexity-led approach,
which, in this case, is predominantly analytical.
9. CONCLUSION

Like the physical sciences, the biological sciences are
recognizing the need to embrace the integrationist
approach and therefore the concept of complexity. This
is most clearly seen in the rapid growth of systems
biology, which typically describes systems such as the
dynamics of the heart or circadian rhythms using
nonlinear coupled differential equations. Although
sometimes described as molecular, such models do not
explicitly include atomistic detail permitting the
modelling of the dynamics of individual biomolecules
(e.g. ion channels). To do so would allow the calculation
of unknown coefficients within the existing differential
equation-based models and excitingly would permit the
study of how minute changes at the biomolecular level
influence, for example, the electrophysiological proper-
ties of the heart. Such changes include genetic
mutations, or the presence or absence of small
molecules such as drugs.

Combining both models would yield a multiscale
model and would be a first step towards connecting
behaviours at different length- and time-scales, thereby
integrating different biological disciplines. Although
there is discussion of multiscale models in, for example,
the Physiome Project, these are hierarchical and
consequently avoid many of the problems by limiting
the communication between the component models. To
include atomistic detail will probably require the
construction of true hybrid, coupled multiscale models.
These are far more complicated to build, primarily
owing to the problem of dynamically interfacing the
two algorithms. HybridMD (and its attendant particle
insertion algorithm USHER) is an example of an
embryonic hybrid model that could be further incor-
porated within the conventional systems biology
models with the advantages already discussed.
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Biological systems are intricate and complicated.
This is apparent in how biomolecular models cannot be
coarse-grained in the same gross way that lattice gas
and lattice-Boltzmann models have been. At the same
time, the biological sciences differ fundamentally from
the physical sciences today in their more balanced use
of both deductive and inductive approaches to model-
ling. We must ensure that ideological differences do not
prevent practitioners of these different approaches
working together to produce new science.

Theory can provide a means of analysing and
simplifying a set of coupled nonlinear differential
equations, as shown by the renormalization method
for contracting sets of Becker–Döring equations. The
application of this method to the evolution of RNA
polymers was briefly described and we hope and expect
that theoretical developments along these lines
continue.

Finally, many of these modelling techniques require
growing amounts of computational resource. If their
potential is realized, then computational grids will
provide a deluge of computational resource and will
enable us, as computational scientists, to exploit these
resources in more imaginative ways than is currently
possible. For example, the different components of a
multiscale model could be deployed on different
computers in different geographical locations although,
as scientists, we would be blissfully oblivious to this.
Within the UK e-Science project, RealityGrid, we have
already taken important steps to change the manner in
which we run simulations through the use of advanced
forms of computational steering.

The improvements in theory, techniques and the
quantity of computational resource becoming available
make us optimistic that significant progress can be
made in applying integrationist approaches in biology,
thereby promoting a deeper understanding of the
exquisite organization and complexity of life itself.
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