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Effects of coiling on the micromechanics
of the mammalian cochlea
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The cochlea transduces sound-induced vibrations in the inner ear into electrical signals in the
auditory nerve via complex fluid–structure interactions. The mammalian cochlea is a spiral-
shaped organ, which is often uncoiled for cochlear modelling. In those few studies where
coiling has been considered, the cochlear partition was often reduced to the basilar membrane
only. Here, we extend our recently developed hybrid analytical/numerical micromechanics
model to include curvature effects, which were previously ignored. We also use a realistic
cross-section geometry, including the tectorial membrane and cellular structures of the organ
of Corti, to model the apical and basal regions of a guinea-pig cochlea. We formulate the
governing equations of the fluid and solid domains in a curvilinear coordinate system. The
WKB perturbation method is used to treat the propagation of travelling waves along the
coiled cochlear duct, and the O(1) system of the governing equations is solved in the
transverse plane using finite-element analysis. We find that the curvature of the cochlear
geometry has an important functional significance; at the apex, it greatly increases the shear
gain of the cochlear partition, which is a measure of the bending efficiency of the outer hair
cell stereocilia.

Keywords: cochlear curvature; cochlear micromechanics; shear gain; organ of Corti;
fluid–structure interaction
1. INTRODUCTION

Spiral or helical shapes are seen in many biological
systems, such as the double helix structure of DNA, the
spiraling of plants, the helical bends of arteries and the
snail-like shape of the mammalian cochlea. Is there a
functional significance to having a particular shape? In
this paper, we study cochlear coiling. The mammalian
cochlea, located in the inner ear, has a snail-like shape,
which is commonly believed to pack the hearing organ
into a very limited space of the skull. Whether its shape
also has a functional role as well has attracted the
attention of auditory researchers for many years.
However, owing to technical difficulties, both measur-
ing and modelling the motion of the cochlear partition
(CP) and its surrounding fluid present extremely
difficult challenges. As a result, the assessment of the
functional significance of the spiral nature of the
cochlea is poorly understood and inconclusive.

In those few cochlear models where coiling has been
considered, the CP was often reduced to the basilar
membrane (BM) only (Viergever 1978; Loh 1983; Steele
& Zais 1985; Kagawa et al. 1987; Kohllöffel 1990;
Manoussaki & Chadwick 2000; Givelberg & Bunn
2003). Most of these models reported a negligible
effect of curvature on cochlear macromechanics. An
orrespondence (chadwick@helix.nih.gov).
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exception is the paper of Manoussaki & Chadwick
(2000) who concluded that coiling helps to lower the
fluid impedance in the cochlea. Huxley (1969) also
speculated that coiling of the cochlear geometry could
mechanically isolate adjacent sections along the CP
and provide a sharp resonance effect. West (1985)
studied the relationship of the spiral turns and the
length of the BM to the range of audible frequencies in
ground dwelling mammals. In his hybrid three-dimen-
sional model, Steele (1999) included cochlear curvature
by modelling the structures of the organ of Corti (OC)
as orthotropic shells, but did not report effects of coiling
on cochlear function.

In cochlear micromechanics, one studies the
vibration of the different parts of the CP relative to
each other, as well as the detailed motions of the
cellular structures within the OC, while in macrome-
chanics, one studies the vibration of the CP, which is
often reduced to the BM only, relative to its surround-
ing bony structures. What, then, is the role of coiling in
cochlear micromechanics? To answer this question, we
extend our recently developed hybrid analytical/finite-
element approach (Cai & Chadwick 2003; Cai et al.
2004) to a curvilinear coordinate system to investigate
the significance of curvature in the hearing organ. The
new computational model includes the detailed cellular
structures within the OC, the interactions between the
cochlear partition and fluid, as well as the coiling of the
J. R. Soc. Interface (2005) 2, 341–348
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cochlear duct. The fluid is assumed to be viscous and
incompressible whose dynamics follows the linearized
Navier–Stokes equation. The BM is modelled as a
clamped annular spiral plate whose deflection is
calculated by the Green’s function method. The local
annular geometry introduces a radial bending asym-
metry which is not present for a straightened geometry.
The OC and the tectorial membrane (TM) are modelled
as Voigt solids whose governing equations are also
formulated in the curvilinear coordinate system, using
linear elastic theory. We use the WKB method to treat
the propagation of the travelling wave along the coiled
cochlear duct, and use the finite-element method
(FEM) to solve the O(1) system of the governing
equations in the transverse plane. We use an iterative
algorithm to solve an eigenvalue problem for the
wavenumber of the travelling wave, the solid displace-
ments, and the pressure and velocity fields of the fluid.
As no local forcing is applied in the cross-section in
solving the eigenvalue problem, we can calculate only
the relative displacements of the cochlear structures
(Cai et al. 2004). Simulations are taken in the apical and
basal regions of a guinea-pig cochlea. The effects of
cochlear curvature on the structure of the travelling
wave and the function of the cochlea are analysed.
Simulation results are compared with those of our
straightened cochlear model (Cai & Chadwick 2003;
Cai et al. 2004).
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Figure 1. Curvilinear coordinate system and cochlear
geometry. (a) Model representation of a guinea-pig cochlea
with four turns of coiling. Z is the modiolar axis, with the
positive direction pointing out of R–S plane; S is along the
coiled duct; R is the radial distance from the Z-axis. Rbase

and Rapex represent the minimum R at the base and the apex
of the cochlea, respectively. (b) Magnified view of a cross-
section at the apical region. Tectorial membrane (TM) and
organ of OC are represented by two-dimensional elastic
domains. The OC rests on the BM. The stereocilia of the
OHC elastically couple the TM and OC. The scala tympani
(ST) is the fluid chamber on the lower side, whereas the
upper fluid region is the combined scala media (SM) and
scala vestibuli (SV).
2. MODEL FORMULATION

To model the curvature effects in the cochlea, we adopt
a curvilinear coordinate system (q1, q2, q3)Z(R, S, Z ),
in which R represents the radial distance from the
modiolar (the Z-) axis, S is the arc length along
the coiled cochlear duct and Z, the modiolar axis. The
positive direction of Z points out of the R–S plane in
figure 1a. This coordinate system is simplified from the
helicoidal coordinates used in Manoussaki & Chadwick
(2000), by setting the pitch of the helix equal to zero.

We also assume the geometry of the cochlear
partition and fluid changes slowly with S, slower than
the rate of change along R and Z (Manoussaki &
Chadwick 2000), which allows us to use the WKB
approximation to treat the propagation of the travel-
ling waves along the coiled cochlear duct. We then use
FEM in the transverse R–Z plane, which is divided into
fluid and elastic domains (figure 1) and is meshed by
Matlab PDE Toolbox (Mathworks, Natick, MA). The
lower fluid chamber in figure 1b represents the scala
tympani (ST), and the upper fluid domain is the
combined scala media and scala vestibuli (SMCSV),
with Reissner’s membrane removed in the present
model. The OC and TM solid domains are coupled by
the cochlear fluid and the outer hair cell (OHC)
stereocilia. The OC rests on the BM, which is modelled
as a vibratory clamped annular plate. The cellular
structures in the OC include the inner and outer pillar
cells, the Deiter’s cells, and the inner and outer hair
cells. The cross-section of the cochlea is bounded by
rigid walls, represented by circular arcs and straight
segments in figure 1.
J. R. Soc. Interface (2005)
2.1. Non-dimensional coordinate system

We introduce the following non-dimensional coordi-
nates

r ZR=H0; z ZZ=H0; sZS=S0; (2.1)

where H0 is some characteristic dimension of the
cochlear cross-section, and S0 is the total arc length of
the CP from the apex to the base of the cochlea.

Let q be the polar angle around the modiolar axis,
then

dS Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 CðdR=dqÞ2

q
dq:
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We can show (dR/dq)2 is small compared with R2

(slowly varying geometry) as follows. Suppose R is
related to q by

RðqÞZRapex exp
a

2pN

n o
q;

where N is the number of turns of the cochlear spiral,
then

dR

dq

� �2

=R2 Z ða=2pNÞ2:

As RapexZ0.01 cm, RbaseZ0.12 cm, and q varies from 0
to 8p from the apex to the base of a guinea pig cochlea
(NZ4, figure 1), we obtain (a/2pN )2z0.01. The
corresponding arc length can then be approximated as

S Z

ðq
0
Rðq0Þdq0 Z q �Rq;

where �Rq is the average value of R within the interval of
[0,q]. The total arc length of the CP is then

S0 Z

ð2pN
0

RðqÞdqZ
ð8p
0

RðqÞdqZ 8p �R0;

where �R0 is the average value of R within the interval of
[0,8p], i.e. �R0Zð1=8pÞ

Ð 8p
0 RðqÞdq. As R increases from

the apex to the base of the cochlea, �Rq% �R0. Therefore,
the non-dimensional arc length is sZ3q, where

3Z
1

8p

�Rq

�R0

%
1

8p
/1; (2.2)

for a guinea-pig cochlea with four turns of coiling. Note
that 3 will serve as the small perturbation parameter in
the WKB analysis.

Thenon-dimensional coordinates (r, s, z) are related to
the Cartesian coordinate system (x 1, x 2, x 3)Z(X, Y, Z )
by

fX ;Y ;ZgZH0fr cosð3K1sÞ; r sinð3K1sÞ; zg; (2.3)

and the contravariant base vectors ðgmZðvqm=vxnÞinÞ
of the curvilinear coordinate system are

fg1; g2; g3gZHK1
0 er ;

3

r
es COð32Þ; ez

n o
; (2.4)

from which we can obtain the gradient operator
ðVZgmðv=vqmÞÞ

VZHK1
0 er

v

vr
C

3

r
es

v

vs
Cez

v

vz

� �
COð32Þ; (2.5)

and the Laplacian operator V2fZV$ðVfÞ (Green &
Zerna 1968)

V2 ZHK2
0

v2

vr2
C

1

r

v

vr
C

32

r2
v2

vs2
C

v2

vz2

� �
COð33Þ;

(2.6)

which are useful for deriving governing equations of the
cochlear fluid and structures in the following sections.
Thus, to O(32), the curvilinear coordinate system
reduces to essentially a cylindrical coordinate system.
J. R. Soc. Interface (2005)
2.2. Fluid domains

We assume that the fluid velocity ~V and pressure ~P
satisfy the linearized Navier–Stokes and mass conser-
vation equations

r
v ~V

vt
ZKV ~PCmV2 ~V ; (2.7)

and

V$ ~V Z 0;

where r and m are the density and viscosity, respect-
ively, of the cochlear fluid. For such a fluid, the pressure
is harmonic (apply the divergence operator to equation
(2.7))

V2 ~P Z 0: (2.8)

To apply the WKB expansion of (2.8), we assume a
wave propagates along s from the base to the apex of
the cochlea, and express the pressure in the form

~P Z ðP0 C3P1 C/Þexp i utK3K1

ðs
0
kðs 0Þds 0

� �� �
;

where k(s) is the dimensionless complex-valued wave-
number normalized by H0, and u is the radian
frequency. Similar expansions are used for all other
dependent variables.

Equations (2.6) and (2.7) lead to

r2
v2P0

vr2
C

v2P0

vz2

� �
Cr

vP0

vr
Kk2P0 Z 0; (2.9)

which is the dominant equation of the WKB expansion
of (2.8). Note that equation (2.9) does not contain a
v/vs term, and therefore can be solved in the r–z plane.
Computations are performed in the r–z plane; however,
we still retain the coupling in the fluid along the coiled
arc length s through the wavenumber k. Although we
introduce an additional unknown, the wavenumber k,
through the WKB expansion, it is still computationally
simpler to find k as the square root of the eigenvalue
than to numerically compute all of the sections coupled
together (Cai et al. 2004).

We use the no-slip condition in the normal direction
as the boundary conditions for the pressure (Cai &
Chadwick 2003),

n $V ~P ZKr
v2 ~Un

vt2
; (2.10)

where t represents time, r is the density of the solid
domains and nZnrerCnsesCnzez is the outward unit
normal of the boundary segments of fluid domains. ~Un

is the normal component of the displacement vector of
solid domains.

From (2.5) and (2.10), we obtain

nr

vP0

vr
Cnz

vP0

vz
Z ru2H0Un0; (2.11)

where Un0 is the dominant term in the expansion of ~Un.
2.3. OC and TM solid domains

We solve an almost incompressible plane strain
problem (without axial coupling) for the OC and TM
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solid domains. The equation of motion is

KV$~sCr
v2U

vt2
Z 0; (2.12)

where the stress tensor ð~sÞ is related to displacement
vector ðUZ ~uerC ~wezÞ by

~srr

~szz

~srz

0
B@

1
CAZC �V

v~u

vr
v ~w

vz
1

2

v~u

vz
C

v ~w

vr

� �

0
BBBBBB@

1
CCCCCCA
; (2.13)

where

C Z
H0E

ð1CnÞð1K2nÞ ;

and

�V Z

1Kn n 0

n 1Kn 0

0 0 ð1K2nÞ

0
B@

1
CA;

where E and n are the Young’s modulus and Poisson’s
ratio, respectively.

Again, we express ~u and ~w in the form

~fZ ðf0 C3f1 C/Þexp i utK3K1

ðs
0
kðs 0Þds 0

� �� �
:

(2.14)

Combining (2.5) and (2.10)–(2.12), we obtain

ð1KnÞ v2u0
vr2

C
1

r

vu0
vr

� �
C

1

2
ð1K2nÞ v

2u0
vz2

C
1

2

v2w0

vrvz

C
n

r

vw0

vz
ZKru2H 2

0

ð1CnÞð1K2nÞ
E

u0;

1

2

v2u0
vrvz

C
1

2r
ð1K2nÞ vu0

vz
C

ð1K2nÞ
2

v2w0

vr2
C

1

r

vw0

vr

� �

Cð1KnÞ v
2w0

vz2
ZKru2H 2

0

ð1CnÞð1K2nÞ
E

w0:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2.15)

We compute the unknown displacement components
(u0 and w0) in (2.15) by an iterative algorithm that
couples (2.9) and (2.15). Equations (2.9) and (2.15) are
solved separately, and loads are transferred at the
common boundaries of the fluid and solid between
iterations (see §2.5).

Boundary conditions for the two-dimensional solid
domains are fully discussed in Cai & Chadwick (2003).
Note that the stereocilia of the OHCs couple elastically
the TM and RL, which is the top boundary of the OC.
2.4. Vibratory annular spiral plate

We calculate the deflection of the BM via a plate
Green’s function G (Cai & Chadwick 2003). To obtain
the Green’s function of an annular plate in the
coordinate system (r, s, z), we follow Timoshenko &
Woinowsky-Krieger (1959), who described the bending
J. R. Soc. Interface (2005)
displacement (Y ) of plates by

V2V2Y Z
q

D
; (2.16)

where q is the intensity (force/area) of load on the plate,
D is the radial rigidity of the plate and

V2 Z
v2

vR2
C

1

R

v

vR
C

1

R2

v2

vq2

is the Laplacian operator in the RKq plane, which has
the form of

V2 ZHK2
0

v2

vr2
C

1

r

v

vr
C

32

r2
v2

vs2

� �

in the r–s plane. Thus, for a vibratory BM, the Green’s
function G satisfies

V2V2GK
rbHb

D

v2G

vt2
ZK

dðrKr 0Þ
D

; (2.17)

where rbHb is the mass per unit area of the BM, d is the
Dirac delta function and r 0 represents the radial
location where load is applied. Hence, we have

v2

vr2
C

1

r

v

vr
K

k2

r2

� �
v2

vr2
C

1

r

v

vr
K

k2

r2

� �
G0

K
rbHbu

2H 4
0

D
G0 ZK

H 4
0 dðr Kr 0Þ

D
;

(2.18)

where G0 is the dominant term of G. Equation (2.18)
can be transformed to

v2

vr2
C

1

r

v

vr
K

k2

r2
Kk2

� �
v2

vr2
C

1

r

v

vr
K

k2

r2
Ck2

� �
G0ðr ;r 0Þ

ZK
H 4

0 dðrKr 0Þ
D

;
(2.19)

where k4ZrHbu
2H 4

0 =D. The solution of (2.19) is of the
form

G0ðr ;r 0ÞZ

GLðrÞZC1JkðkrÞCC2YkðkrÞ
CC3IkðkrÞCC4KkðkrÞ if r%r 0;

GRðrÞZD1JkðkrÞCD2YkðkrÞ
CD3IkðkrÞCD4KkðkrÞ if rOr 0;

8>>>>><
>>>>>:

(2.20)

where J and Y are, respectively, Bessel functions of the
first and second kind, and I and K are the modified
Bessel function of the first and second kind, respect-
ively. In the present study, we neglect the axial
coupling in the plate Green’s function to solve a plane
strain problem. The arbitrary constants Ci and Di

(iZ1, 2, 3, 4) are to be determined by the following
boundary conditions for a clamped annular plate

GLðb1ÞZ0; GRðb2ÞZ0;
vGL

vr
ðb1ÞZ0;

vGR

vr
ðb2ÞZ0;
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and continuity conditions

GLðr 0ÞZGRðr 0Þ;
vGL

vr
ðr 0ÞZvGR

vr
ðr 0Þ;

v2GL

vr2
ðr 0ÞZv2GR

vr2
ðr 0Þ; v3GR

vr3
ðr 0ÞKv3GL

vr3
ðr 0ÞZK

H 3
0

D
;

where b1 and b2 are the radial coordinates of the BM
endpoints. Note that the continuity conditions at the
loading point (at rZr 0) are obtained by integrating
both sides of equation (2.19) across the loading point.
These boundary and continuity conditions form a 8!8
linear algebraic system, which is numerically solved for
the Ci andDi in Matlab (Mathworks, Natick, MA). The
deflection of the BM then can be calculated by

Yb0ðrÞZH0

ðb2
b1

G0ðr ;r 0ÞDsn0ðr 0Þdr 0; (2.21)

where Dsn0 is the difference between the pressure at the
lower surface of the BM and the negative of the normal
stress at the lower surface of the OC (Cai & Chadwick
2003).
2.5. Numerical algorithm

We solve the above fluid–solid interaction eigenvalue
problem by an iterative algorithm. First, we guess
values of the wavenumber k and of the displacements of
BM, TM and OC, and solve the elliptic problem in the
fluid domains for the pressure field P0, by using the
Matlab elliptic solver ðKV$ðcVP0ÞCaP0Z f Þ to solve
equation (2.9). Then, we solve the two-dimensional
plane strain problems sequentially for the OC and TM
using the Matlab elliptic system solver of the form

KV$ð~c5VU 0ÞC �aU 0 Z f ;

where U 0ZðU0r ;U0zÞT is the displacement vector,
f 0Zðfr ; fzÞT is the volume-force vector, �a is a rank-two
tensor and ~c is a rank-four tensor, which is written as
four 2!2 matrices, c11, c12, c21, c22, with the form

cij Z
cij11 cij12

cij21 cij22

� �
; i; j Z 1; 2:

By the notation V$ð~c5VU 0Þ, we mean the 2!1 vector
with (i, 1)-component

X2
jZ1

v

vr
cij11

v

vr
C

v

vr
cij12

v

vz
C

v

vz
cij21

v

vr
C

v

vz
cij22

v

vz

� �
U0j :

After obtaining the displacements of OC, we compute
the stress within the OC, which are used to calculate
the updated deflection of the BM in (2.21). The
impedance of the deformable surfaces is then defined
as ZnZKP0=Un0, which provides the eigenvalue solver

ðKV$ðcVP0ÞCaP0ZldP0Þ
mixed homogeneous boundary condition. The eigen-
value solver gives the updated wavenumber, which is
used in the elliptic solver for the next iteration, and so
on (Cai & Chadwick 2003). At each iteration, we
calculate the real and imaginary parts of the wave-
number k, as well as the amplitude of the shear gain,
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and compare these values with those of the previous
iteration. A convergent solution is thought to be found
when the relative changes of all these values are smaller
than 1%.

Matching between the coefficients of the governing
equations and the PDE coefficients of the Matlab
solvers is needed; for example, for solving P0 in (2.9), we
let fZ0, aZKk2/r, cZKr in the elliptic solver, and for
solving the eigenvalue k 2 and eigenvalue pressure, we
let cZKr, dZ1/r and aZ0 in the eigenvalue solver.
The boundary condition for solving P0 is the general-
ized Neumann type,

n$ðcVP0ÞCqP0 Z g;

and we use qZ0 and gZKrru2H0Un0 (Un0Z0 for rigid
walls) for the elliptic solver, and gZ0 and qZrru2Zn

for the eigenvalue solver, respectively. For solving U0

in (2.15), the PDE-coefficients matching for the Matlab
elliptic system solver and for its boundary conditions is
a similar process (see Cai & Chadwick 2003).

The inputs to the computation are geometry and
mesh of the cross-section (figure 1), the material
properties, and the frequency u. The outputs are
wavenumber k, the relative displacements of the TM,
OC and BM, together with the corresponding modal
fluid pressure fields in the scalae. To study the
curvature effects alone, we keep in the present model
the same inputs (cross-section geometry and mesh,
Young’s modulus and Poisson’s ratio of the cochlear
structures) as in Cai et al. (2004).
3. RESULTS AND DISCUSSION

We first compute the detailed deformations within the
TM and OC and obtain the orbits of simulated
microspheres, by tracing the points on the surface of
TM and Hensen cells during a vibrational cycle. Then
we compare our simulation results to those of our
previous developed straight model (Cai et al. 2004).
Unless otherwise indicated, computations are done at
the apex, where the curvature is the greatest, with
1 kHz of stimulation frequency and the minimum apical
radius RminZ0.01 cm.

Curvature effects can be clearly seen from the
changes of the trajectory of a simulated microsphere
on the TM surface (figure 2): (a) the inclination of the
long axis of the orbits changes from transversal in the
straight model to radial in the coiled model; (b) the
rotation direction of the simulated microsphere changes
from counter-clockwise in the straight model to clock-
wise in the coiled model. The simulation results of the
coiled model agree with the observation at the same
frequency (1 kHz) of Gummer et al. (1996), who
measured the trajectories of microspheres on the top
of the TM at the apex of the guinea-pig cochlea.
Without coiling (Cai et al. 2004), however, the orbit of
the simulated microsphere on the TM is similar to the
observation of Hemmert et al. (2000) at a lower
frequency (0.5 kHz). In addition, the detailed move-
ments within the OC is rather vertical in the curved
model (figure 2), following more efficiently the motion
of the BM.
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Figure 3. The (a) amplitude and (b) phase of the SG at the
apex of the cochlea. SG is defined as the ratio of shearing
displacement of the tectorial membrane and the top of the
organ of Corti to the basilar membrane deflection. SG is a
complex number whose phase represents the timing difference
between the OHC-stereocilia deflection and the basilar
membrane displacement. Curvature improves greatly the
shear gain, which is a measure of the bending efficiency of the
outer hair cell stereocilia.
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Figure 2. Detailed movements of the CP in (a) straight and
(b) coiled models at the apex. Orbits are shown for three
simulated microspheres on the tectorial membrane, Hensen
cells and basilar membrane, respectively, during a vibrational
cycle. The snapshot of CP motions is represented by arrows,
whose direction and size represent, respectively, the direction
and relative amplitude of the CP displacements. The position
of the solid triangles on the trajectories indicates the initial
time at which the snapshots are taken. The rotation of the
simulated microsphere on the TM is counter-clockwise in the
straight model and clockwise in the coiled model. Stimulation
frequency is 1 kHz. RminZ0.01 cm in the coiled model.
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From the relative motion of the CP, we can compute
the shear gain (SG) of the cochlea, which is defined as
the ratio of shearing displacement of the TM and the
top of the OC to the BM deflection (Rhode & Geisler
1967; Allen 1980). The shear gain thus defined is a
complex number whose amplitude and phase represent,
respectively, the bending efficiency of the OHC stereo-
cilia and the phase (timing) difference between the
deflections of the OHC stereocilia and the BM. We
calculate the shearing motion at the second row of
OHCs. The BM deflection is computed at its centre,
near the footplate of the Deiter’s cell of the first row.
Figure 3 shows the comparison of our computed shear
gain in straight and coiled models. At 1 kHz, the coiled
model (RminZ0.01 cm) gives a shear gain of ca 2.7,
against ca 0.96 in the straight model, a more than 180%
of increase in amplitude. The phase of the shear gain
changes sign in straight and coiled models. Note that,
without losing generality, we define the zero phase for
J. R. Soc. Interface (2005)
the BM as the instant when BM is in its equilibrium
position (zero deflection) and tends to displace towards
scala vestibuli, and for the OHC stereocilia as the
instant when the stereocilia is in its equilibrium
position (zero rotation) and tends to rotate towards
the highest row (clockwise). In the coiled model, the
motions of the BM, TM and OC correlate in such a
manner that when the BM deflects towards the scala
vestibuli, the shearing movement between the TM and
the OC bends the OHC stereocilia in the excitatory
direction.

As pointed out byWest (1985), although von Békésy
(1960, 1970) described a similarity of the BM
vibrational patterns in straight and curved models, he
did not suggest that cochlear coiling was unimportant
to hearing. Rather, he suggested that while the
curvature did not affect the pattern of the travelling
wave on the BM, it did affect the deflection of the hair
cells in the OC and the motion of the TM. Our present
passive model (without OHC electromechanical moti-
lity) confirms the suggestions of von Békésy.

The spiral shape of the cochlear geometry may affect
the travelling wave in the cochlea by changing the
loading condition in the fluid–structure interaction
process. In a straight tube, there may not be as much
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Figure 5. The (a) amplitude and (b) phase of the SG at the base
of the cochlea. Simulation results show that the cochlear
curvature does not play as important role in the basal region as
it does in the apical portion of the cochlea.

Figure 4. Comparison of the apical spatial distribution of
cochlear fluid pressure in SMCSV in the (a) straight and
(b) coiled models. Pressure fields are normalized by their
maximum absolute value and then scaled by the BMdeflection.
The snapshots of the pressure distributions are taken at the
initial time (tZ0) when the basilar membrane moves towards
the SV.
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interaction of the fluid with the solid structures as in a
curved one. Figure 4 shows the difference of the fluid
pressure fields in the combined scalae media and
vestibuli (SMCSV) between the straight and coiled
J. R. Soc. Interface (2005)
models. Pressure fields are normalized by their maxi-
mum absolute value and scaled by BM deflection. In the
coiled model, the pressure distributed on the upper
surface of the TM exhibits a larger radial variation.
This is consistent with predictions from our macro-
mechanics model of the effects of curvature (Manous-
saki et al. submitted).

What are the curvature effects on cochlear micro-
mechanics at the basal region of the hearing organ?
Figure 5 shows the comparison of our computed shear
gain in straight and coiled models at the basal portion of
the cochlea. These results indicate that the coiling
effects are not as significant as in the apical region of the
cochlea. In the frequency range of 11–13.5 kHz, we even
see a decrease in the shear gain amplitude in the curved
model. The phases of the shear gain are negative in both
straight and coiled models, and the effects of curvature
on the shear gain phase are small compared with those
at the apical portion. Our simulation results suggest
that cochlear curvature helps detection of low-
frequency sounds at the apex of the cochlea, but does
not help for the detection of the sounds of high
frequencies at the base. The radius of curvature is the
main parameter responsible for the difference between
the effects of coiling in the basal and apical regions of
the cochlea.

One limitation of our present model is that we can
calculate only the relative motions of the cochlear
structures (eigenvalue solution), and therefore cannot
compute the effects of coiling on the absolute amplitude
of the CP vibration. In our simplified macromechanics
model, we show how this limitation can be removed by
carrying out the analysis to O(3) (Manoussaki et al.
submitted).

In summary, the bending mechanism of the hair
bundles is very important to the understanding of the
stimulation of the inner and outer hair cells, which
opens the mechanotransduction channel in the hearing
process (Dallos et al. 1996; Robles & Ruggero 2001;
Zwislocki 2002). Our results show that the curvature of
the cochlear geometry affects cochlear micromechanics;
it greatly improves the apical shear gain (both
amplitude and phase) of the cochlear partition, which
is a useful index to quantify the bending efficiency of the
hair bundles.

The authors thank E. K. Dimitriadis and K. Iwasa for their
helpful comments. H.C. was supported by a NRC Senior
Research Associateship Award.
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von Békésy, G. 1960 Experiments in hearing. New York:
McGraw-Hill.
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