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ABSTRACT We calculate the size distribution of two-dimensional aggregates, for different simple dynamical growth models.
The resulting size distributions of these domains, at steady state, are shown to depend strongly on the mode of domain growth.
We then compare to the measured size-distribution of focal-adhesion domains. Using our calculation and the measured expo-
nential distribution of focal-adhesion domain lengths can be used to test the validity of recent models proposed to describe the
dynamics of these complexes in adhering cells.

INTRODUCTION

Recently there have been several theoretical models that

attempt to describe the dynamics of focal adhesion (FA)

complexes in cells (1–5). In all of these models, the actin

stress fibers exert a force on the proteins that make up the FA

domain (plaque). Depending on the model, this applied force

is assumed to create either a density or a stress gradient in the

FA domain that initiates its growth or shrinkage. By growth

and shrinkage, we mean the addition or subtraction of FA

proteins, respectively. In the first model (1–3) the density

gradients, and the consequent growth/shrinkage, are con-

fined to the ends of the elongated (linear) FA domain, while

in the second model (4) this process is spread out over the

entire FA area. In the last model (5), the growth/shrinkage is

found to be initiated where the (shear) stress is the highest,

thus concentrated at the border between actin stress fibers

and the FA domain. In this article, we show that different

modes of FA growth lead to different size-distributions, at

steady state, which can therefore be used to test their validity,

by comparing to recent experimental data (6,7).

We will calculate a few simple examples, while the dy-

namics of realistic models (1–5) are probably more compli-

cated. Note that in reality, the system of FA complexes changes

dynamically until, in some cases, a steady-state distribution

of FA sizes and forces is reached. We are addressing here

this saturated, steady-state regime by starting from a model

of the growth dynamics and then solving the resulting

Fokker-Planck equation (8). Similar models have arisen in

the description of other dynamical systems (9,10).

SIMPLE GROWTH MODELS

We model various kinds of growth of flat (two-dimensional)

aggregates that represent the focal adhesion domains (Fig.

1). The first geometry that we consider is a compact circular

domain (Fig. 1, a and b). By ‘‘compact,’’ we mean that the

density of the plaque proteins is constant and uniform

throughout the domain, so that the total number of proteins is

linearly related to the FA area.

For a circular domain that can grow only at the edges (Fig.

1 a), we have the dynamic equation for the domain area m,

@m

@t
¼ �koffr1 konnr; (1)

where kon and koff are the on- and off-rates, n is the

surrounding density of proteins, and r is the radius of the

domain, such that m} r2. We assume that the average density

Ænæ is constant (infinite reservoir). The on-rate kon depends

on the average applied force of the stress fibers per plaque

protein, and is taken to be constant for a given cell. This is

due to the observation that as the size of the FA grows, so does

the overall force there (11,12), so that the force per protein

(or force density) is roughly a constant. Inserting m } r2 into

Eq. 1, we get an equation of motion for the radius r,

@r

@t
¼ �koff=21 konn=2: (2)

The corresponding Fokker-Plank equation for the proba-

bility density function (PDF) is

@P

@t
¼ �1

2
ðkonn� koffÞ

@P

@r
1

1

2
D
@

2P

@r
2 : (3)

The noise term D accounts for the fluctuations in the

values of n, kon, and koff, which result in a spread of growth

rates. This noise may be thermal in origin and also due to

fluctuations in the force applied by the stress fibers due to

fluctuations in the activity of the pulling motors. Both

thermal and active noise sources contribute to the value of D.

We have assumed that the noise has no temporal or spatial

correlations. This is the simplest approximation possible, and

is reasonable if there are many noise sources that are inco-

herent with each other. This means that even if any indi-

vidual noise source does have some nontrivial correlations,

these are lost due to the combined effect of all the noise

sources. The noise sources that we think are dominant are:

fluctuations in the applied force by the actin stress fiber; fluc-

tuations in the local density of FA proteins; and variability of

Submitted May 5, 2006, and accepted for publication July 12, 2006.

Address reprint requests to N. S. Gov, Tel.: 972-8-934-3323; E-mail:

nirgov@wisemail.weizmann.ac.il

� 2006 by the Biophysical Society

0006-3495/06/10/2844/04 $2.00 doi: 10.1529/biophysj.106.088484

2844 Biophysical Journal Volume 91 October 2006 2844–2847



the underlying substrate. The fluctuations in the force applied

by the stress fibers depend on the fluctuations in the number

and activity of the myosin motors. If the process of myosin

attachment to the actin stress fibers is a random process,

its relative noise will decrease with increasing number of

motors. We therefore expect that the distribution becomes

narrower (wider) when the myosin activity is increased

(decreased).

The steady-state PDF we find from Eq. 3 is an exponential

in r,

PðrÞ ¼ Rne
�rðkoff�konnÞ=D

; (4)

where Rn is a normalization constant. Note that n that appears

in the expressions for the PDF is the average value Ænæ. For

the PDF to be nonzero and normalizable, we must have koff

. konn. This exponential distribution in the radius corre-

sponds to a subexponential distribution for the area m:

PðmÞ} expð� ffiffiffiffi
m

p Þ.
Next, we consider a circular domain that can grow at any

point in its interior (Fig. 1 b). In that case, Eq. 1 becomes

@m

@t
¼ �koffm1 konnm: (5)

The corresponding Fokker-Plank equation is

@P

@t
¼ �ðkonn� koffÞ

@ðmPÞ
@m

1
1

2
D
@

2
P

@m
2; (6)

and the resulting PDF is now a Gaussian in m,

PðmÞ ¼ Rne
�m

2ðkoff�konnÞ=D
; (7)

where we have again the condition koff . konn, for

normalization.

The second geometry that we consider is a compact linear

domain of constant width and variable length l. For linear

domains that grow/shrink at the two ends only (Fig. 1 c), we

have

@l

@t
¼ �koff 1 konn; (8)

which is similar to Eq. 2, and similarly gives an exponential

distribution for the length l,

PðlÞ ¼ Rne
�2lðkoff�konnÞ=D

: (9)

For growth at any point along the linear domain (Fig. 1 d),

we have

@l

@t
¼ �koff l1 konnl; (10)

which is similar to Eq. 5, and similarly gives a Gaussian

distribution of lengths (similar to Eq. 7): P(l) } exp(�l2).

The other possible options for the linear domain are a mix

of end/bulk on- and off-rates, and are:

End on; bulk off :
@l

@t
¼ �k9off l1 konn

0PðlÞ ¼ Rne
2lkonn=D

e
�l

2
k9off=D

;

End off; bulk on :
@l

@t
¼ �koff 1 k9onnl

0PðlÞ ¼ Rne
�2lkoff=D

e
l
2

k9onn=D
;

where the last case is clearly divergent for l / N.

For the circular domain, we also list the two options:

End on; bulk off :
@m

@t
¼ �k9offm1 konnr

0PðmÞ ¼ Rne
2
ffiffiffi
m

p
konn=D

e
�mk9off=D

;

End off; bulk on :
@m

@t
¼ �koffr1 k9onnm

0PðmÞ ¼ Rne
�2

ffiffiffi
m

p
koff=D

e
mk9onn=D

;

where again the second case is divergent, and is therefore not

physical.

COMPARISON WITH EXPERIMENTS

In the experiments it has been established that the area of a

focal adhesion domain is linearly proportional to the force

FIGURE 2 Measured force distribution of individual focal adhesion do-

mains (circles (6)), compared to Eq. 12 (solid line). Inset shows the distri-

bution of detachment forces (circles (7), solid line, Eq. 12).

FIGURE 1 Schematic growth mechanisms of focal adhesion domains.
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transmitted from the cell to the substrate at that site (11,12).

We can therefore use the measured force distribution as a mea-

sure of the distribution of FA domain sizes. The distribution

of the observed FA forces (Fig. 2, inset, (6)) is shown in Fig.

2, and has a clear exponential tail. A similar exponential

distribution of the overall detachment force of a cell to the

substrate was observed in Goffin et al. (7) (Fig. 2, inset).
For small focal adhesion domains there is an initial rise

and a peak in the distribution (Fig. 2). This may be because

for small domains the molecules can come off at any point,

i.e., the growing/shrinking ends of the domain have a finite

length lc. Within this end part of length lc the proteins can

detach anywhere, while they still attach only through the

domain edges (the end-on/bulk-off option listed above).

When a domain is longer than lc, the proteins continue to

detach from the same ends of length lc, while the main part of

the FA domain is protected from breakup. This is probably

due to the overlying stress fibers that protect the inner part of

the FA domain from breaking up (13).

Following the results listed above, this dynamics is there-

fore described by

@l

@t
¼ �k9off l1 konn l# lc

�k9off lc 1 konn l. lc
:

�
(11)

The resulting PDF is

PðlÞ ¼ Rne
2lkonn=D

e
�l

2
k9off=D

l#lc
R9ne

�2lðkoff�konnÞ=D
l. lc

:

�
(12)

A fit using this expression is shown as the solid line in Fig.

2. The parameters used for this fit are in terms of the forces

and not the FA lengths l, since this is the data we have

available at this time.

CONCLUSION

From our above analysis we conclude that the exponential

distribution, coupled with the clearly linear (highly elon-

gated) shapes of the FA domains (11), supports a model of

growth of these domains which is confined to their ends (13)

(Eq. 11). By ‘‘linear,’’ we mean that the FA domains grow/

shrink in length, while keeping their width roughly constant,

so that their area is linear in their length. This assumption

seems to apply for long FA (14), but not for small domains,

where the width is proportional to the length. This mode of

end-growth of the FA domains is also supported by the

observation of the dynamics of molecular adsorption in FA

(13). The microscopic picture of the growth of FAs that

emerges is the following: the stress fibers are attached to and

grow from the FA plaque proteins in one direction, leading to

a highly directional force. If the plaque proteins can join the

FA only from the surrounding membrane, then due to

the directionality of the force they may grow only at one of

the FA ends (1–3,5). The overlying stress fibers serve to give

the directionality of the FA molecules and may also serve as

a physical barrier to protein addition/loss from the center of

the FA domain. This will result in the ‘‘ends on/off’’ be-

havior of linear FA domains, as we observed in the previous

section.

When the tension force of the actin stress fiber is removed

abruptly over the entire area of the FA, by chemical treat-

ment or laser incision (15), the FA proteins disperse by

diffusion in all directions. Such a diffusion-induced disper-

sion of a high density aggregate will result in the observed

exponential decay with time of the overall FA area. Further-

more, when a FA already exists there can certainly be

proteins that attach/detach from it to the cytoplasm, over its

entire area. The dynamics that control the overall size of the

FA are nevertheless confined to its ends (for an elongated

(linear) domain), as we find from the observed exponential

size distribution.

The feedback interaction between the stress fibers and the

FA domains determines the arrangement of both with respect

to the overall cell contact area (16). This article proposes a

deterministic continuum model, whereby the size distribu-

tion of the individual FA domains is not treated. Neverthe-

less, the assumption made in that article that the FA domains

grow by aggregation of membrane-bound proteins is in

agreement with our result that boundary growth of elongated

domains fits the observed size-distribution. It also shows the

dominant role of the stress fibers in determining the arrange-

ment of the FA domains in the cell (16), which makes it likely

that the stochastic noise we treat comes from fluctuations in

these forces.

The dynamics of growth of the FA described by the

recently proposed models (6,7,11,13), are more complicated

than the simple cases we calculated here. For example, var-

ious molecular switches control the rate of growth/shrinkage

and change their state continuously throughout the length

of the FA domain (14). The growth may also change con-

tinuously along the length of the FA due to the stress profile

induced by the actin stress fibers (5). The growth/shrinkage

may therefore happen at a highly nonuniform rate, and needs

to be calculated using detailed simulations (1). The assump-

tion of constant force per unit area of FA may also break

down when the cell adheres to a highly flexible substrate (3),

and the on/off rates may therefore become size-dependent,

i.e., functions of the FA radius r or length l. The steady-state

distribution for these cases can be calculated as we did for the

simpler models. Our calculation here of dynamics that are

constant and confined to the ends, or uniform throughout the

domain, represents just the simple limiting cases. Neverthe-

less, our calculation may indicate that a comparison of the

steady-state FA size distribution that results from different

theoretical models, with the observed distribution (Fig. 2),

can be an additional useful test of the models’ validity.

Finding an experimental way to check these conclusions is

indeed a challenge. One possibility is to induce growth all

long the edges of the FA, which should result in a longer tail

distribution of the form PðmÞ} expð�
ffiffiffiffi
m

p
Þ (see Eqs. 1–4).
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This may be done by rapidly shearing the cell in all direc-

tions such that the FAs feel an isotropic average pulling force,

by placing the cell between microplates (17).
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