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Abstract

Exclude experimental models of malignant transfor-

mationemploychemical andphysical carcinogensorge-

netic manipulations to study tumor progression. In this

work, different melanoma cell lines were established

after submitting a nontumorigenic melanocyte lineage

(melan-a) to sequential cycles of forced anchorage

impediment. The great majority of these cells underwent

anoikis when maintained in suspension. After one de-

adhesion cycle, phenotypic alterations were noticeable

in the few surviving cells, which becamemore numerous

and showed progressive alterations after each adhe-

sion impediment step. No significant differences in cell

surface expression of integrins were detected, but a

clear electrophoretic migration shift, compatible with an

altered glycosylation pattern, was observed for B1 chain

in transformed cell lines. In parallel, a progressive en-

richment of tri- and tetra-antennary N-glycans was

apparent, suggesting increased N-acetylglucosaminyl-

transferase V activity. Alterations both in proteoglycan

glycosylation pattern and core protein expression were

detected during the transformation process. In conclu-

sion, this model corroborates the role of adhesion state

as a promoting agent in transformation process and

demonstrates that cell adhesion disturbances may act

as carcinogenic stimuli, at least for a nontumorigenic

immortalized melanocyte lineage. These findings have

intriguing implications for in vivo carcinogenesis, sug-

gesting that anchorage independencemay precede, and

contribute to, neoplastic conversion.
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Introduction

The incidence of melanoma in most developed countries

has increased more quickly than any other cancer type over

the past 50 years [1]. Melanoma arises from the malignant

transformation of pigment-producing cells (melanocytes), and

this process results from complex interactions between genetic

and environmental factors. Melanocytic nevi (moles), formed

by benign clusters of melanocytes, have drawn special atten-

tion as potential precursor lesions, and ‘‘atypical nevi’’ are

a marker for an increased risk of melanoma [2]. In vivo, 20%

to 30% of human malignant melanomas are associated with

benign or dysplastic nevi in histologic contiguity [3,4]. Clark

et al. [5] proposed a five-stage model of melanoma progres-

sion from preneoplastic lesions (benign and dysplastic nevi) to

thin radial growth superficial melanoma, followed by an inva-

sive lesion and culminating in metastatic disease.

In humans, one of the first tissue alterations involved in

melanoma progression is the presence of melanocytes in the

dermis, topographically distant to basal keratinocytes. Keratino-

cytes in the ‘‘epidermal melanin unit’’ play a fundamental role in

controlling the proliferation and expression of adhesion mole-

cules in melanocytes, loss of cell–cell contact, and disruption

of tissue architecture. Such activities have recently been impli-

cated in genotypic and phenotypic changes in melanocytes [6].

The extracellular matrix (ECM) surrounding the cells is an-

other important element controlling cell proliferation, adhesion,

and migration. Changes in the expression or function of ad-

hesion molecules, such as integrins, Mel-CAM/MUC18, CD44,

intercellular adhesion molecule-1, cadherins, and cell surface
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proteoglycans (PGs), have all been documented in the

progression of primary melanomas [7,8]. In particular, the

switch from a low-risk radial to a high-risk vertical growth

primary melanoma is characterized by significant changes in

the expression of molecules involved in cell–cell and cell–

ECM contact, as well as of proteases [9].

Cell–ECM interactions have also been shown to deter-

mine the molecular progression of poorly metastatic mela-

noma cells, changing them to exhibit a highly aggressive

phenotype [10]. The acquisition of resistance to cell death

induced by substrate adhesion blockade (anoikis resistance)

is a hallmark of neoplastic transformation and is also a criti-

cal step during metastatic progression [11].

Most findings relating adhesion molecules and the trans-

formation process were obtained from primary skin cultures

or human melanoma lesions in different stages of progres-

sion. Until now, all experimental models of melanocyte

transformation utilize chemical or environmental carcino-

gens and genetic manipulations to study the progression of

this deadly disease. In this work, we describe an in vitro

murine model that focuses on cellular adhesion blockade as a

transforming factor and characterize some alterations

in adhesion molecule expression, which accompanies mela-

nocyte transformation.

Materials and Methods

Cell Lines and Culture

The nontumorigenic murine melanocyte lineage, melan-a

[12], a kind gift of Dr. Michel Rabinovitch (Department of

Parasitology, UNIFESP, São Paulo, Brazil), was cultured in

RPMI (pH 6.9; Gibco, Carlsbad, CA), supplemented with 5%

fetal calf serum (Gibco) and 200 nM 12-o-tetradecanoyl

phorbol-13-acetate (PMA; Tocris, Ellisville, MO) at 37jC in

a humidified atmosphere of 5% CO2 and 95% air. Melanoma

cell lines (4C3, 4C8, 4C11, Tm1, Tm5, and S11) derived from

melan-a cells after sequential cycles of substrate adhesion

impediment were cultured in the same conditions, without

PMA. Cell proliferation was determined using a standard

methyl thiazol tetrazolium (MTT) assay [13].

Anchorage-Independent Growth Assays

The nontumorigenic cell line melan-a (105 cells/ml) was

plated on 1% agarose and cultured for 96 hours in conditions

described above. Small spheroids were collected by de-

cantation and plated on standard culture plates, favoring cell

adhesion. Cells were allowed to proliferate to subconfluent

growth. The deadhesion (spheroid formation) cycle was re-

peated for four or five times; after the last deadhesion step,

spheroids were counted and plated by limiting dilution (0.5–

1 spheroid/well). Melan-a cells submitted to two and four

deadhesion cycles were named, respectively, 2C and 4C.

Tm1, Tm4, Tm5, S11, and 14 other melanoma cell lines were

obtained by cloning melan-a cells submitted to five dead-

hesion cycles. In a second melan-a deadhesion assay, 4C3,

4C8, 4C11, and five other melanoma cell lines were estab-

lished after four deadhesion steps.

Adhesion Assays

Briefly, 96-well microtiter plates were coated with 0.5 mg of

human plasma fibronectin (Sigma, St. Louis, MO) or human

placenta laminin (Calbiochem, San Diego, CA) in phosphate-

buffered saline (PBS), incubated at 37jC for 2 hours, and

blocked with 1% bovine serum albumin (BSA) for 1 hour after

washing. Cells (3 � 104) suspended in 100 ml of serum-free

RPMI were added to each coated well and incubated at

37jC for 30 minutes. Wells were washed three times with

cold PBS to remove unbounded cells. Viable adherent cells

were quantified using a standard MTT assay [13].

Immunofluorescence Microscopy

Different cell lines were cultured on glass coverslips until

subconfluence and fixed in 1% paraformaldehyde in PBS.

After washing with PBS, 50 mM glycine (pH 7.4) was added

for 1 hour, and coverslips were blocked with 1% BSA. Cells

were incubated for 1 hour with rabbit anti-fibronectin polyclonal

antibody (Calbiochem), washed with 1% BSA, and incu-

bated with an fluorescein isothiocyanate (FITC)–conjugated

anti-rabbit antibody (KPL, Gaithersburg, MD) for 45 minutes.

Slides were mounted and observed in a fluorescence micro-

scope (Nikon Inc., Melville, NY).

Analysis of Surface Molecule Expression by Flow Cytometry

Expressions of integrins (av,a5,a6, b1, and b3 subunits) and

leukoagglutinin from Phaseolus vulgaris (L-PHA)–positive

glycoconjugates were quantified by flow cytometry. The cells

were detached with trypsin, washed and suspended in PBS

(1 � 106 cells/100 ml), and incubated with primary antibodies

or FITC-conjugated L-PHA (Sigma; for L-PHA–positive gly-

coconjugates) on ice for 1 hour. All antibodies were diluted

in PBS containing 0.5% BSA. The cells were then washed

twice, suspended in 100 ml of appropriate FITC-conjugated

anti-IgG on ice for 45 minutes, washed twice, and suspended

in PBS. Negative controls were incubated only with sec-

ondary antibody. At least 10,000 cells were analyzed by Cell-

QUEST program using FACSCalibur (Becton Dickinson

Immunocytometry Systems, Franklin Lakes, NJ).

Western Blot Analysis and Lectin Blotting

Cells were washed twice with PBS and lysed in a buffer

containing 1% Triton, 150 mM NaCl, 50 mM Tris HCl (pH 7.4),

5 mM EDTA, and protease and phosphatase inhibitors

(0.5 mM phenylmethylsulfonyl fluoride, 10 mg/ml leupeptin,

10 mg/ml aprotinin, and 1 mM sodium orthovanadate) on

ice for 15 minutes. The lysates were pelleted by centrifugation

for 15 minutes at 4jC, and protein concentration was deter-

mined using the Bradford reagent (Bio-Rad, Hercules, CA).

Equal amounts of protein (80 mg of total protein) from each

sample were resolved by reduced 7.5% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)

gels and blotted onto polyvinylidine fluoride membranes

(Amersham, Piscatway, NJ). Membranes were blocked with

5% dried milk in PBS for 1 hour at room temperature be-

fore exposure to primary antibodies to b1 integrin (rabbit

polyclonal serum; a kind gift from Dr. K. Yamada, National

Institute for Dental Research, Bethesda, MD) for 2 hours at
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room temperature. Membranes were washed in 5% dried

milk containing PBS and incubated with horseradish peroxi-

dase (HPR) –conjugated anti-rabbit IgG (Sigma). After

extensive washing with PBS, proteins were visualized by

incubating the membrane with the substrate for peroxidase,

diaminobenzidine (DAB; Sigma). For lectin blotting, after in-

cubating the membrane with blocking reagent (Boehringer

Mannheim, Mannheim), 1 mg/ml biotinylated L-PHA (Sigma)

in blocking solution was added for 2 hours, followed by incu-

bation with streptavidin HPR (R&D Systems, Minneapolis,

MN) for another 1 hour at room temperature. The blots were

washed and developed with DAB.

Tumorigenicity Assays

Cells were harvested after trypsin treatment of subcon-

fluent monolayers, counted, and then suspended in PBS.

Melan-a cells (2 � 107 cells) and its derived clones (1 �
106 cells) were injected subcutaneously in the flank of syn-

geneic 6- to 8-week-old C57Bl/6 female mice. Animals were

kept under 12-hour daylight cycles, without food restriction,

and checked daily for tumor development. Each experimental

group consisted of at least five animals. Subcutaneous

masses and axillary lymph nodes were excised and submit-

ted to histologic analysis after paraffin embedding and he-

matoxylin and eosin (H&E) staining.

PG and Glycosaminoglycan (GAG) Analysis

Cell cultures were radiolabeled with 150 mCi of carrier-free
35[S]sulfate (IPEN, São Paulo, Brazil) for 18 hours, essen-

tially as previously described [14]. The medium was sepa-

rated, and the cell layer and ECM were removed with 7 M urea

in 12.5 mM Tris–HCl (pH 8.0). Each experiment was carried

out in triplicate. For PG analysis, protease inhibitors were

added to a final concentration of 100 mM a-aminocaproic

acid, 6.5 mM benzamidine HCl, 5.5 mM iodoacetamide, and

0.1 mM phenylmethylsulfonyl fluoride. Total protein con-

tent was determined using the Bradford reagent and BSA

as standard. For GAG analysis, 50 mM Tris–HCl buffer

(pH 8.0), containing 0.15 M NaCl and 2 mg/ml maxatase

(Biocon, Rio de Janeiro, Brazil), was added. The mixture

was incubated at 50jC overnight and then at 100jC for

10 minutes to inactivate the protease. PG and sulfated

glycosaminoglycan (SGAG)–free chains were analyzed by

agarose gel electrophoresis in 50 mM 1,3-diaminopropane

acetate buffer (pH 9.0), according to Nader et al. [15]. Elec-

trophoresis was run for about 1 hour at 100 V, and com-

pounds were precipitated in the gel with 0.1% CETAVLON

(N-cetyl-N,N,N-trimethylammonium bromide) for at least

2 hours. The gel was dried and stained with 0.1% toluidine

blue in 1% acetic acid and 50% ethanol. SGAG identifica-

tion was based on the migration of the compounds, compared

to standards, after exposure to X-ray film and degradation

by specific enzymes [16]. Gel slices were cut and counted

in scintillation liquid for the quantification of [35S]sulfate-

radiolabeled SGAG. Relative contents of disaccharides in

chondroitin sulfate (CS) and dermatan sulfate (DS) were

determined after incubation of SGAG (25,000 cpm) with

chondroitinases AC (Tris–acetate 50 mM, pH 8.0) and ABC

(ethylene diamine acetate buffer, EDA 0.05 M, pH 8.0)

(Seikagaku, Tokyo, Japan). The relative amounts of disac-

charides in heparan sulfate (HS) were determined after di-

gestion of heparitinases I and II (0.05 M EDA, pH 7.0) [17,18].

Incubation mixtures were applied to descending paper chro-

matography [isobutyric acid: 1.25 M NH4OH (5/3, vol/vol)].

Sulfated disaccharides were localized after exposure of the

chromatogram to an X-ray film, cut, and counted in scintil-

lation liquid.

Reverse Transcription Polymerase Chain

Reaction (RT-PCR)

Total RNA were extracted from cultures with Trizol (Invi-

trogen, Carlsbad, CA), according to the manufacturer’s in-

structions. One microgram of RNA was reverse-transcribed

to cDNA with Superscript III (Invitrogen), according to the

manufacturer’s recommendations. PCR amplification was

performed using the following primers: decorin (forward: 5V-

gggtttggacaaagtgccctgg-3V; reverse: 5V-gcctggtgcatcaac-

cttgg-3V; 512 bp), syndecan-4 (forward: 5V-tgctgctcctcggaggc-

ttc-3V; reverse: 5V-ccttgggctctgaggggaca-3V; 282 bp), versican

(forward: 5V-caaacccatgcctcaacggagg-3V; reverse: 5V-ccttca-

gcagcatcccatgtgcgt-3V; 300 bp), perlecan (forward: 5V-gcccg-

tgcacgctgagattga-3V; reverse: 5V-ggggcagaccctggatctaag-3V;

812 bp), heparanase (forward: 5V-ctcgagatgctgctgcgctcgaag-

cctgcg-3V; reverse: 5V-ccatggtcaagtgcaagcagcaactttggc-3V;

1261 bp), and b-actin (forward: 5V-cttcgagcaggagatggcc-3V;

reverse: 5V-ggtgcacgatggaggggccg-3V; 439 bp). Except for

heparanase, the annealing temperature used in PCR am-

plification was 60jC, with different cycles. PCR reactions were

performed in 25-ml reaction mixtures containing 75 mM Tris–

HCl (pH 9.0), 2 mM MgCl2, 50 mM KCl, 20 mM (NH4)2SO4,

0.4 mM of each deoxynucleotide triphosphate, 0.4 mM of each

primer, 1 U of BioTools DNA Polymerase—Recombinant

from Thermus thermophilus (BioTools, Madrid, Spain), and

1 ml of cDNA in different dilutions. After the initial denaturing

step for 5 minutes at 94jC, thermal cycling consisting of

35 cycles of 30 seconds, denaturing at 94jC, 30 seconds of

annealing at 60jC, and 1 minute of extension at 72jC was

carried out, followed by a final extension of 10 minutes at

72jC. For heparanase PCR, the reaction was performed

using Master Mix Kit (Promega Biosciences Inc., Madison

WI), 0.4 mM of each primer, 2 ml of cDNA, and 200 mM be-

taine. After a denaturing step at 94jC for 5 minutes, the fol-

lowing cycles were carried out: 5 cycles of 1 minute at 94jC,

1 minute at 60jC, and 2 minutes at 72jC; 20 cycles of 1 minute

at 94jC, 1 minute at 55jC, and 2 minutes at 72jC; 10 cycles of

1 minute at 94jC, 1 minute at 50jC, and 2 minutes at 72jC;

and a final extension step of 7 minutes at 72jC. PCR fragment

amplification was confirmed by agarose gel staining with

ethidium bromide.

Data Analysis

All experiments were repeated for at least two to three

times with similar results. One-way analysis of variance

(ANOVA) tests were used for most experiments, except where
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otherwise indicated. Statistical analysis was performed using

GraphPad Prism 3.03 software (GraphPad, San Diego, CA).

Results

A New Model for Studying Melanocyte Transformation

A nontumorigenic murine melanocyte lineage, melan-a

[12], was submitted to stressful conditions by blocking adhe-

sion to substrate, as described above and as depicted in

Figure 1. As expected for a nontumorigenic immortalized cell

line, the great majority of these cells underwent apoptosis

induced by adhesion blockade (anoikis). After cultivating

melan-a cells in agarose-coated plates for 96 hours, only

103 small spheroids per 106 plated cells were observed. Each

spheroid is probably derived from a single cell, thus suggest-

ing that only 0.1% of the initial cell number was able to resist

anoikis (Table 1).

Anoikis-resistant melan-a cells were cultured in adherent

conditions and submitted to new deadhesion cycles. Sur-

viving melan-a cells submitted to two, three, and four dead-

hesion cycles were kept in adherent conditions and designated

2C, 3C, and 4C, respectively. Distinct lineages (4C3, 4C8,

4C11, S11, Tm1, Tm4, Tm5, and others) were obtained by

limiting dilution after a new deadhesion cycle of 4C cells

(0.5 spheroid/well) (Figure 1).

Altered morphology was observed in all melan-a–derived

cell lines (including 1C to 4C cells), which demonstrated

stable phenotypic characteristics and melanin production

(data not shown). Although melan-a cells require PMA as a

growth factor, all these lineages showed PMA-independent

growth, as described for human melanoma cell lines [19].

Furthermore, cell lines obtained after submitting melan-a cells

to adhesion impediment cycles showed increased spheroid

formation and shorter doubling times compared to the original

melan-a cells (Table 1). Immunofluorescence analysis using

a specific antibody showed that melan-a–derived sublines

Tm1 and Tm5 did not assemble fibronectin on the ECM, un-

like melan-a cells (Figure 2A). Curiously, tested cell lines ob-

tained after four or five deadhesion steps and after limiting

dilution (4C11, Tm1 and Tm5) showed higher adhesiveness

both to fibronectin (Figure 2B) and laminin (Figure 2C).

Considering several phenotypic characteristics asso-

ciated with neoplastic transformation that were observed in

melan-a–derived cell lines, in vivo tumorigenic capacity was

tested. Surprisingly, all lineages obtained after four dead-

hesion cycles were able to grow as tumors when injected

subcutaneously in syngeneic mice (Figure 2D), with different

latency times for tumor appearance (Table 1). In the first

melan-a detachment assay, we obtained 16 different cell

lines; 12 were injected in the subcutaneous tissue and

every one of them resulted in palpable tumors (from 5 to

20 mm in diameter) in all injected animals (groups of three to

five animals). Subcutaneous tumors derived from seven

cell lines (Tm1, Tm4, Tm5, S10, S11, a1, and a3) were sub-

mitted to histologic analysis, and all showed cytologic and

histologic characteristics of malignant cells. All cell lines, ex-

cept Tm1 and a1, showed a melanotic appearance at mi-

croscopy. In the second assay, eight cell lines were obtained.

Four of them (4C1, 4C3, 4C8, and 4C11) were injected into

syngeneic mice, and all resulted in subcutaneous tumors

when injected subcutaneouly.

When 106 cells were transplanted subcutaneouly into

animals, the amelanotic Tm1 and melanotic Tm5 cell lines

showed very short latency times for tumor appearance (up

to 10 days) compared to 4C3, 4C8, and 4C11 (at least

30 days). Spontaneous lymph node metastases were iden-

tified in animals injected subcutaneouly with 106 Tm1, Tm4,

Table 1. Some Phenotypic Alterations of Melan-A –Derived Lineages.

Cell Lines Spheroid

Formation (%)*

Melanin

Production

Latency

In Vivoy (days)

Doubling Time

In Vitro (hours)

Melan-a 0.1 + Nontumorigenic 22

2C ND + Nontumorigenic 22

4C ND + Nontumorigenic 20

4C3 ND � >33 ND

4C11 ND � >33 ND

S11 10 + <14 ND

Tm1 25 � <10 18

Tm5 32 + <9 14

ND, not done.

*Number of spheroids formed after plating 106 cells in suspension.
yTumorigenicity of cells injected subcutaneously in the flanks of C57Bl/6 mice

(1 million cells per flank).

Figure 1. Experimental model of melanocyte transformation induced by adhesion impediment. Schematic representation of the experimental protocol that resulted

in melan-a transformation. After detachment from the substrate, surviving cells showed altered morphology and PMA-independent growth, even after one

deadhesion cycle (1C).
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and Tm5 melanoma cells (Figure 2E), but not with 4C3, 4C8,

or 4C11. Tm1, Tm4, and Tm5 showed in vivo characteristics

of an aggressive phenotype, whereas 4C3, 4C8, and 4C11

were considered indolent melanoma lineages.

Conversely, direct cloning of melan-a cells (not submitted

to the deadhesion protocol) did not render tumorigenic line-

ages (data not shown). Melan-a cells have never been

shown to be tumorigenic, even when a great number of cells

(2 � 107 cells/animal) were transplanted subcutaneouly into

mice and observed for at least 80 days.

Melanoma Cells Derived from Melan-A Showed Significant

Alterations in Glycoconjugates

Because malignant phenotype was acquired after repeti-

tive cycles of adhesion blockade, adhesion molecule expres-

sion was investigated. Integrins are an important family of

adhesion molecules involved both in cell–cell and cell–ECM

interactions, and alterations in their expression and/or pro-

cessing are frequent in several types of malignancies [20].

Surface expression of b1, b3, a5, a6, and av integrin chains

was determined by flow cytometry using specific antibodies,

Figure 2. Morphologic and functional characteristics of melan-a–derived cell lines. (A) Phase-contrast microscopy (upper panels) and indirect immuno-

fluorescence depicting fibronectin deposition on ECM by melan-a, Tm1, and Tm5 cells, using a specific polyclonal antibody against fibronectin (lower panels).

Adherent cell number, as measured by an MTT protocol, after plating cells for 30 minutes in fibronectin-coated (B) or laminin-coated (C) wells. Paired t test was

used for statistical comparisons between melan-a cells and derived lineages (*P < .05, **P V .01). Histologic analysis of tumor masses (D) and axillary lymph nodes

(E) obtained from syngeneic mice injected with 106 cells, 14 days after injection. The large arrow indicates axillary lymph node, and the small arrow shows

infiltrating melanoma cells. H&E staining, �40.
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and no substantial differences were found in their surface

expression levels (data not shown). Although we could not

detect differences on b1 integrin surface expression, Western

blot analysis revealed that melan-a–derived melanomas

(Tm1 and Tm5) have a b1-chain with a different migration

pattern on SDS-PAGE when compared to melan-a cells

(Figure 3D), suggesting a posttranslational processing of b1

integrins. The same altered electrophoresis mobility was

observed for the b1 integrin chain of a well-known murine

melanoma cell line B16F10.

As previously shown by our group and others [21], a

similar shift of b1 integrin chain migration pattern is observed

in several tumor types and is commonly related to aberrant

glycosylation resulting from N-acetylglucosaminyltrans-

ferase V (GnT-V) enzymatic activity. Tri-antennary or tetra-

antennary oligosaccharides formed by this enzyme activity

are recognized by L-PHA, and, as seen in Figure 3, A and B,

melan-a–derived melanomas show a higher expression of

L-PHA–positive surface glycoconjugates compared to their

parental cell line. Interestingly, cell lineages obtained after

submitting melan-a to two or four deadhesion cycles (2C and

4C cell lines) already demonstrate a slightly higher L-PHA–

binding glycoconjugate expression compared to melan-a.

The total glycoprotein profile, shown by lectin blotting on

Figure 3C, detailed qualitative and quantitative alterations

observed after melan-a transformation.

Another important class of glycoconjugates comprises

ECM and surface PGs, which have complex structures,

with a protein core bearing at least one GAG chain. GAGs

are involved in cell growth, cell migration, and cell–cell and

cell–matrix interactions—phenomena that are essential for

tumor development. Initial analysis revealed important

modifications in electrophoretic PG profiles, both from cell

surface and culture supernatant extracts (data not shown).

These results led us to investigate the GAG composition of

these glycoconjugates.

Melanoma Cells Present an Altered GAG Profile

Compared to That of Melan-A Melanocytes

We analyzed GAG chains from cells and culture super-

natants from melan-a, Tm1, Tm5, and S11 cells (Figure 4A).

Melan-a has a tendency to accumulate PGs bearing HS on

Figure 3. Melan-a transformation is accompanied by an increase in tri-antennary and tetra-antennary oligosaccharides and by modification in �1 integrin chain.

(A) Cell surface tri-antennary and tetra-antennary oligosaccharide expression on melan-a (ma), 2C, 4C, 4C3, 4C11, Tm1, and Tm5 cell surfaces analyzed by flow

cytometry using biotin –L-PHA lectin and FITC–streptavidin. (B) Proportion of L-PHA–positive cells (same experiment as in A) (C). Glycoproteins from cell

extracts containing tri-antennary and tetra-antennary N-glycans, as shown by lectin blotting using L-PHA lectin. Analysis by flow cytometry of tri-antennary and

tetra-antennary oligosaccharide expression, as recognized by L-PHA lectin (D). �1 integrin expression on melan-a (ma), Tm5, and B16F10 cells visualized by

Western blot analysis, using a specific polyclonal antibody.
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the cell surface and/or ECM, whereas tumorigenic mela-

noma cell lines tend to express both HS and CS/DS PGs.

There is a clear difference in the electrophoretic migration

of CS synthesized by melan-a and its derived melanoma

cell lines. A band shift toward standard DS suggested an

increase in the amounts of iduronic acid–containing disac-

charides in the galactosaminoglycans of tumorigenic sub-

lines. The amount of [35S]GAG in relation to total protein

content was determined for HS and CS/DS, showing a sig-

nificant decrease of HS chains in cell extracts (Figure 4B) and

supernatants (Figure 4C) from tumorigenic cell lines, com-

pared to those from melan-a cells. Such decrease in the

incorporation of sulfate into HS could reflect a decrease

in synthesis (sulfation) and/or an increase of chain degrada-

tion. In our model, this HS reduction can be explained by a

progressive increase in heparanase expression along the

melan-a transformation process, as depicted in Figure 4D.

Heparanase is involved in the degradation of both cell sur-

face and ECM HS chains [22], and elevated expression of this

enzyme has been associated with tumor development and

metastasis [23–25] In addition, HS disaccharide composition

was very similar in melan-a and in its derived sublines, except

for the Tm1 melanoma cell line. HS from Tm1 showed a de-

crease in the disaccharide bearing 2-O-sulfate in the uronic

acid residue in relation to parental melanocytes (Table 2).

The sulfated disaccharide composition for both secreted

and cellular CS/DS from each cell type was determined after

digestion with chondroitinases AC and ABC (Table 3). There

is a clear difference in the ratio of glucuronic acid– and

iduronic acid–containing disaccharides obtained by the

degradation of galactosaminoglycans when comparing

parental melanocyte lineage and its derived tumorigenic

melanoma cell line. Melan-a cells had mainly galactosami-

noglycan chains enriched in glucuronic acid–containing

disaccharides, whereas in tumorigenic counterparts, an im-

portant increase in the relative amounts of iduronic acid–

containing disaccharides was observed. Furthermore, the CS/

DS chains of the tumorigenic cells also showed 6-sulfated

disaccharides, which were not detected in the parental

cell line.

Figure 4.Melanoma cell lines show a band shift of CS toward DS and decreased levels of HS. (A) GAGs from cellular extracts and culture supernatants of melan-a

(ma) and derived melanoma cell lines (Tm1, Tm5, S11). (B and C) [35S]sulfate incorporation in CS/DS and HS chains. Total amount of [35S] incorporated in each

SGAG was determined by cutting radioactive bands from gel slides, counting in scintillation liquid, and normalizing for the protein content (cpm/�g protein) of cell

extracts (B) and culture supernatants (C). (D) Heparanase mRNA expression (Hep) in melan-a (ma), melan-a maintained in suspension for 24 hours (D24 h), and

Tm1 and Tm5 melanoma cells. CS, chondroitin sulfate; DS, dermatan sulfate; HS, heparan sulfate.

Table 2. Relative Proportion of Heparan [35S]Sulfate Disaccharides Yielded

by Degradation with Heparitinases I and II.

HS Supernatants Cell Extracts

ma Tm1 Tm5 S11 ma Tm1 Tm5 S11

DUA-GlcNAc,6S 11 10 10 11 9 9 8 10

DUA-GlcNS 41 37 34 36 33 33 25 31

DUA-GlcNS,6S 29 43 41 35 36 44 44 35

DUA,2S-GlcNS,6S 19 11 15 18 22 14 23 24

The radioactivity of the disaccharides was measured after the separation (by

paper chromatography) of compounds incubated with both heparitinases I

and II. The types of uronic acid were not taken into account.

ma, melan-a; Tm1, Tm5, and S11, tumorigenic melanoma cell lines;DUA-GlcNS,

O-(4-deoxy-hex-4-enopyranosyluronic acid)-(1 – 4)-2-sulfamino-D-glucose;

DUA-GlcNAc,6S, O-(4-deoxy-hex-4-enopyranosyluronic acid)-(1–4)-2-acetamido-

D-glucose 6-sulfate; DUA-GlcNS,6S, O-(4-deoxy-hex-4 enopyranosyluronic

acid)-(1 – 4)-2-sulfamino-D-glucose 6-sulfate; DUA,2S-GlcNS,6S, O-(4-deoxy-

hex-4-enopyranosyluronic acid 2-sulfate)-(1 –4)-2-sulfamino-D-glucose.
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Melanocyte Transformation Is Accompanied by Alterations

in Decorin, Versican, and Perlecan Expressions

To better characterize PG expression alterations that

occur during melanocyte transformation induced by cycles

of substrate adhesion blockade, we analyzed protein core

expression by semiquantitative RT-PCR (Figure 5). We also

analyzed melan-a cells submitted to two and four deadhesion

cycles (2C and 4C cell lines) and two other melanoma cell

lines (4C3 and 4C8) for protein core transcripts. Perlecan,

versican, and decorin (but not syndecan- 4) protein core

expressions were altered in melanoma cell lines, compared

to those in melan-a and 2C cells. Interestingly, nontumori-

genic 2C and 4C cell lines, submitted to two and four dead-

hesion cycles, already showed some of these modifications,

suggesting that these PGs are associated with melanocyte

transformation in our model.

Discussion

Acquisition of anchorage-independent growth is a hallmark

of neoplastic transformation, but this property is not consid-

ered to be carcinogenic per se. In this work, we show that

repetitive adhesion blockade events are sufficient to induce

malignant transformation in nontumorigenic immortalized

melanocytes (melan-a). Although we cannot exclude clonal

selection as the principal mechanism responsible for tumori-

genic conversion, several results indicate that adhesion

impediment may trigger the carcinogenic process. All tumori-

genic cell lines derived from melan-a have faster doubling

times than their parental lineage (Table 1), but even after

80 in vitro passages, melan-a cells were never tumorigenic

in vivo (data not shown). No negative influence of melan-a

over its derived subline proliferation rate could be demon-

strated either in vitro (not shown) or in vivo [26]. In addition,

cell clones obtained after limiting the dilution of melan-a cells

Table 3. Relative Proportion of Chondroitin [35S]Sulfate/Dermatan [35S]Sul-

fate Disaccharides Yielded by Degradation with Chondroitinases AC and ABC.

CS/DS Supernatants Cell Extracts

ma Tm1 Tm5 S11 ma Tm1 Tm5 S11

DIdoA-GalNAc,4S 0 23 30 20 22 9 26 30

DGlcA-GalNAc,4S 100 57 46 57 78 76 50 57

DGlcA-GalNAc,6S 0 20 24 23 0 15 24 13

The radioactivity of the disaccharides was measured after separation by

paper chromatography. Chondroitinase AC exclusively yields glucuronic

acid –containing disaccharides, whereas chondroitinase ABC yields both

glucuronic acid – and iduronic acid – containing disaccharides. The relative

amount of DIdoA-4S was obtained by the difference between degradation

product yields after the action of both chondroitinases.

ma, melan-a; Tm1, Tm5, and S11, tumorigenic melanoma cell lines; DIdoA-

GalNAc,4S,O-(4-deoxy-hex-4-enopyranosyluronic acid)-(1–3)-2-acetamido-D-

galactose 4-sulfate; DGlcA-GalNAc,4S, O-(4-deoxy-hex-4-enopyranosyluronic

acid)-(1 – 3)-2-acetamido-D-galactose 4-sulfate; DGlcA-GalNAc,6S, O-(4-

deoxy-hex-4-enopyranosyluronic acid)-(1–3)-2-acetamido-D-galactose 6-sulfate.

Figure 5. The expression of perlecan, versican, and decorin, but not syndecan-4, becomes altered during melan-a transformation. cDNA obtained from RT was

diluted and amplified by semiquantitative PCR for syndecan-4 (A), perlecan (B), versican (C), and decorin (D), with resulting products visualized on agarose gel.

Ethidium bromide staining intensity was analyzed for each gene and for an internal control (�-actin). Numbers on the y axis represent the mean ratio between

protein core/�-actin expression for each cell type, determined for four different cDNA dilutions. Amplified products from one initial cDNA dilution are depicted below

each panel for syndecan-4 (1:16), perlecan (1:16), versican (1:8), decorin (1:2), and �-actin (same dilution as that of the respective protein core). ma, melan-a; D,

melan-a submitted to adhesion blockade for 24 hours. ANOVA tests were used for statistical analysis.
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were not tumorigenic in vivo, suggesting that transformed

cells are not initially present in the parental cell line (not

shown) and that repeated adhesion blockade is important to

induce malignant phenotype. Epigenetic modifications are

the most probable candidates to explain the myriad of

morphologic and molecular alterations observed after re-

peated deadhesion cycles, and preliminary results from

ongoing experiments in our laboratory indicate that such is

the case, indeed.

Stressful conditions resulting from cell–cell and cell–

substrate adhesion modifications have previously been

associated with malignant transformation. Rubin [27] has

consistently shown that high-density cultures yield tumori-

genic clones, which he attributes to clonal selection, without

excluding a direct effect of adhesion alterations in the carci-

nogenic process. Another group has shown that the forced

anchorage-independent growth of a nontumorigenic, immor-

talized epithelial cell line resulted in the acquisition of an

anoikis-resistant phenotype and in tumorigenesis [28]. As

demonstrated by Zhu et al. [29], selected anoikis-resistant

melanoma cells showed increased metastatic potential and

multiple alterations in their phenotypic properties. Diaz-

Montero and McIntyre [30] obtained anoikis resistance osteo-

sarcoma sublines through modifications of culture conditions,

attributing this phenotype to epigenetic events. Ongoing re-

search in our laboratory has shown that adhesion alterations

can also induce malignant transformation in the fibroblast

cell line NIH 3T3, implying adhesion loss as a crucial factor

for carcinogenesis in different cell types.

Interestingly, the proportion of spheroid formation for each

cell line (melan-a and derived lineages; Table 1) resembles

the percentage of soft agar cell growth from different phases

of melanocyte transformation [31], where melan-a corre-

sponds to dysplastic lesions and Tm melanoma cells corre-

spond to invasive melanoma. These results reinforce the

idea that the cell lines utilized in this work truly represent a

continuum along the transformation process.

Integrins, which are the most important class of adhesion

molecules related to ECM interactions, have been shown in

most cellular types to impart survival signals on adhesion to

substrate and surface clustering [32,33]. However, Lewis

et al. [34] showed that loss of integrin-mediated cell adhesion

may abrogate cell death in cells submitted to DNA damage,

through p19Arf and p53 signaling. In melan-a–derived cell

lines, no modification of b1, b3, a5, a6, and av integrin ex-

pression was detected (not shown). Nevertheless, an elec-

trophoretic migration shift was observed for b1 integrin

chain (Figure 3D), which has been demonstrated by sev-

eral groups, including ours, to be related to an aberrant

N-glycosylation pattern [35,36]. This alteration, caused by

GnT-V overexpression, is associated with acquisition of

migratory phenotype and tumor progression [37]. The forced

expression of GnT-V results in decreased fibronectin attach-

ment of colon carcinoma cells [38] possibly caused by

aberrant b1 integrin chain glycosylation [35], but this same,

the glycosylation pattern was associated with increased

fibronectin adhesion (Figure 2B) in the melanoma cell lines

presented here.

Although GnT-V expression was not investigated, a

marked increase of its products (GlcNAcb1,6Mana1,6–

branched surface molecules) was demonstrated for all

melan-a–derived cell lines in a progressive manner during

the transformation process (Figure 3, A and B). A qualita-

tive alteration in the N-glycosylation protein profile was

demonstrated for melanoma cells derived from melan-a

(Figure 3C). The above studies and our findings suggest

that GnT-V activity is causally associated with malignant

transformation because melan-a cells submitted to sequen-

tial deadhesion cycles (but not yet tumorigenic) already

show augmented levels of tri-antennary and tetra-antennary

N-glycan products.

Even though it is quite clear that several tumors accumu-

late glycoproteins bearing b1–6–branched N-linked oligo-

saccharides recognized by L-PHA, the precise function of this

altered pattern of glycosylation in glycoprotein function

remains elusive. An interesting hypothesis considering

GnT-V as a transforming enzyme was proposed by Dennis

et al. [39], who had initially shown that its forced expres-

sion in a nontumorigenic cell line could convert those cells

capable of forming tumors in nude mice [40]. Based on more

recent studies, Morgan et al. [41] proposed that growth

factor and cytokine receptors, which are also modified by

GnT-V, exist as lattices on the cell surface. Maintenance of

these lattices would depend on extracellular glycan-binding

proteins, such as galectins. Complexes of glycoproteins and

lectins would render cells more sensitive to growth factors,

whose interaction with their cognate receptors usually lead

to receptor dimerization/oligomerization. If correct, the pre-

diction is that L-PHA binding correlates with autonomous

growth. Integrins [35,42,43] and cadherins [44,45] are also

substrates of GnT-V. Similarly to integrins, no differences

in cadherin expression were detected by serial analysis of

gene expression [46], RT-PCR, or Western blot analysis

(data not shown). The higher adhesiveness of tumorigenic

cell lines (4C11 and Tm5), both to fibronectin and laminin

(Figure 2, B and C), could be attributed to this aberrant

glycosylation pattern present in b1 integrin chains. However,

the true impact of this pattern of glycosylation in this model

warrants further investigation.

PGs, another class of surface molecules, are also in-

volved in neoplastic transformation in several cell types. HS

and CS have been particularly implicated in tumor formation,

including melanoma, because of their capacity to bind and

modulate a large number of molecules that are important for

tumor development, such as basic fibroblast growth factor

and vascular endothelial growth factor [47]. HS may either

promote or inhibit tumor progression, depending on heparan

fragments generated on digestion [48]. In our model, the ex-

pression of HS was significantly decreased after transfor-

mation, although no structural modifications were discernible

(Figure 4; Table 2). In parallel, an increased expression of

heparanase was demonstrated not only in melan-a–derived

melanoma cell lines, but also in melan-a maintained in sus-

pension for 24 hours, indicating that heparanase may con-

tribute to early changes involved in melan-a transformation.

Using a different approach for the detection of heparanase
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in different melanoma cell lines, an increase in enzymatic

activity was related to a higher metastatic phenotype [49].

However, CS/DS levels were similar in both nontumorigenic

and tumorigenic cell lines, but their disaccharide composition

was clearly different from the parental cell lineage (Figure 4;

Table 3). It is clear that transformation leads to an increase in

the relative amounts of a-L-iduronic acid, suggesting a pos-

sible upregulation of the b-D-glucuronic acid C-5-epimerase.

Furthermore, during transformation, the glucuronic acid–

containing disaccharides show the presence of N-acetylga-

lactosamine-6-O-sulfate, contrasting with the parental line

that bears only N-acetylgalactosamine-4-O-sulfate, indicat-

ing that malignant transformation leads to the expression

of N-acetylgalactosamine 6-O-sulfotransferase, as previ-

ously observed in brain tumors [50].

In addition, the protein core expression levels of some

PG subclasses were determined by semiquantitative RT-

PCR. As shown in Figure 5, perlecan levels increase during

transformation, decorin and versican levels decrease, and

syndecan-4 level does not change. Among extracellular

PGs, decorin has emerged as an inhibitor of tumor progres-

sion, whereas perlecan seems to be a promoter of this pro-

cess [51,52]. Perlecan apparently supports the growth

and invasion of tumor cells through its ability to store angio-

genic factors [53]. This last observation also corroborates

our hypothesis that melan-a–derived melanoma cell lines

were not selected by multiple cycles of adhesion blockade

because perlecan increased during the transformation pro-

cess even in the absence of a selective pressure related

to angiogenesis.

Our model of melanocyte carcinogenesis allows the iden-

tification of morphologic and molecular alterations that

precede full malignant transformation and reinforce micro-

environmental role as a transforming factor, particularly the

loss of cell–substrate adhesion.
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