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2INFM udR Roma1, Dipartimento di Fisica, Università “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy

3Department of Pure Mathematics and Mathematical Statistics, Cambridge and Trinity College, Cambridge CB2 1TQ, UK
4Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Published online 7 March 2005
*Autho
Dipartim
Moro 5,

Received
Accepted
Although many species possess rudimentary communication systems, humans seem to be unique with

regard to making use of syntax and symbolic reference. Recent approaches to the evolution of language

formalize why syntax is selectively advantageous compared with isolated signal communication systems,

but do not explain how signals naturally combine. Even more recent work has shown that if a

communication system maximizes communicative efficiency while minimizing the cost of communication,

or if a communication system constrains ambiguity in a non-trivial way while a certain entropy is

maximized, signal frequencies will be distributed according to Zipf’s law. Here we show that such

communication principles give rise not only to signals that have many traits in common with the linking

words in real human languages, but also to a rudimentary sort of syntax and symbolic reference.
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1. INTRODUCTION
Word frequencies in human languages tend to obey Zipf’s

law (Zipf 1972), which states that for some bO0,

pf wfKb; (1.1)

where pf is the proportion of words whose frequency in a

given sample is f. Usually bz2 is found (Ferrer i Cancho

2005).

Zipf’s law has been shown to appear when simul-

taneously maximizing the communicative efficiency and

minimizing the cost of communication (Ferrer i Cancho &

Solé 2003). Alternatively, constraining the ambiguity of

communication in a non-trivial way while a certain

entropy is maximized will also lead to Zipf’s law, with a

wider range of exponents (Ferrer i Cancho 2005). With

Zipf’s law (or the communication principles leading to

that law) as the basic assumption, we explore its

consequences for a simple communication system.

Our aim is to show that a basic assumption (a form of

Zipf’s law) naturally leads to certain consequences, in

particular, a certain combinatorial property of words,

connectedness, that is a precondition for syntax; this is

described in detail below. To this end, we shall study a

highly simplified and abstracted linguistic model: both the

assumption and the consequences make sense in this

setting, without reference to the much more complicated

details of real languages, or more realistic models for

them. Our model will not, of course, be strictly realistic for

any particular language, or even for the early developing

human language to which we think our conclusions are

most relevant and about which very little is known. In

some sense, we wish to show that connectedness arises
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naturally from Zipf’s law, independently of the details of

the linguistic setting. To do this, we shall consider a

randommodel, within a class specified below. Once again,

no real language is formed in this random way, but this is

the point. As almost any model of the given form shows

connectedness, the absence of connectedness would need

further explanation, but given Zipf’s law, connectedness

does not, under a wide range of conditions.
2. THE MODEL
We assume a general communication framework and thus

define a set of signals, SZ{s1,.,si,.,sn}, and a set of

objects, RZ{r1,.,rj,.,rm}. A signal is a generic code that

is capable of carrying meaning. The general term signal is

used here to provide a high enough level of abstraction.

For instance, we want to abstract from the signal medium

(vocal, gestural, chemical) or the type of reference

involved (iconic, indexical or symbolic; Deacon 1997).

In order to exclude codes like syllables or sentences in

human language from the kind of signals intended here,

our signals should not be decomposable into simpler

units unless such units do not have referential power.

Human words can only be replaced by signals in a

metaphorical sense because human words imply symbolic

reference, whereas our signals are not necessarily

symbols. Objects here may be cognitive categories

(Damper & Harnad 2000; Harnad 2003) and therefore

be modelled by a discrete set.

We define a matrix of signal–object associations

AZ{aij} (1%i%n, 1%j%m) where aijZ1 if the i-th signal

and the j-th object are associated (the j-th object is a

‘possible meaning’ for the i-th signal) and aijZ0 other-

wise. We consider ‘binary’ associations only for simplicity.

The matrix A defines a bipartite graph Gn,m (Bollobás

1998) with edges corresponding to the ones in A. This

matrix A defines signal–object associations that can be of
q 2005 The Royal Society
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two types: referential and non-referential. By referential

we mean that the signal can refer to the object, as in the

link between the word ‘meat’ and the object ‘edible

organic matter’, or as in the link between the verb ‘eat’ and

the object ‘the action of eating’. By non-referential we

mean the remaining possible signal–object associations.

For instance, the syntactic association between a verb and

its argument would be realized in our model by signal–

object associations between the verb and the objects

representing the possible arguments. Thus, the verb ‘eat’

is associated not only to the object the ‘action of eating’

(referentially) but also to the object ‘edible organic matter’

(non-referentially).

Various theoretical approaches to syntax assume that a

connection between a pair of syntactically linked words

implies that the words are semantically compatible

(Chomsky 1965; Helbig 1992). Here we assume that a

connected pair of signals are connected to each other

through a common object, which, acting as a rudimen-

tary meaning, defines the semantic compatibility of the

pair. Therefore, signals having a common object may or

may not be synonyms (depending on whether the pair of

links is referential or not). We can also model forbidden

arguments. For instance, the object ‘umbrella’ cannot be

the object of the verb ‘eat’, so there would be no link

between this object and the verb ‘eat’. In a very simplified

manner, Gn,m contains information about argument

structure.

Objects are simple meanings. Words in human

language have complex meanings that may involve more

than one of our objects here. For instance, the word ‘eat’

in human language is associated with at least two objects in

our view: ‘the action of eating’ (referentially), and ‘edible

organic matter’ (non-referentially). Both objects are

needed to understand the meaning of the verb ‘eat’.

The matrix A should be seen as a primitive association

system from which different types of signal–object

associations may develop. Note that without the skeleton

provided by A, complex types of associations (synonymy

links, syntactic links) cannot emerge. A, in spite of being a

simplification, may be arranged in a way that may lead to a

simple form of language or in a way that cannot. Here we

study how and why Zipf’s law leads to the former case.

Let us write pk for the proportion of signals with k links.

We make the natural simplifying assumption that the

relative frequency of a signal is proportional to the number

of objects it is connected to, as in Ferrer i Cancho (2005).

Under this assumption, Zipf’s law (equation (1.1)) is

equivalent to

pkwkKb: (2.1)

In what follows, we shall assume equation (2.1). Our

model for Gn,m will be as follows: given the numbers n

and m of signals and objects, and for each k, the

proportion pk of signals connected to k objects, the

graph Gn,m is chosen uniformly at random from among

all bipartite graphs with these properties. Equivalently,

having decided the degree, d(si) (i.e. the number of

associated objects), of each signal appropriately, we join si

to a random set of d(si) objects, independently of the

other signals. We investigate properties that the resulting

graph has with high probability, noting that any such
Proc. R. Soc. B (2005)
property is a very natural consequence of Zipf’s law.

Indeed, as noted in the introduction, the model is not

complete or strictly realistic, and one cannot deduce that

such a property has developed in the real world only

because of Zipf’s law. However, Zipf’s law is a sufficient

explanation: given Zipf’s law, it would be more surprising

if the property did not hold than if it did.

Note that there is a transition in the model at bZ2,

owing to the rapid change in the number of edges as b is

varied about this value. More precisely, the average degree

of a signal is
Pm

kZ1 kpk. The infinite form of this sum

converges if, and only if, bO2; in this range the average

degree is asymptotically constant as m increases. In

contrast, for bZ2 the average degree grows logarithmi-

cally with m and, for b!2, as a power of m. In asymptotic

analysis we shall thus consider bZ2C3 for some small 3.

Given the signal–object graph Gn,m, we define a signal–

signal graph Gn whose vertices are the signals si, in which

two signals are joined if in Gn,m they are joined to one or

more common objects. Some links in Gn are synonymy

links because they stem from two referential links in Gn,m,

but the remaining links define syntactic links (e.g. verb–

argument links). We define G 0
n as the subgraph of Gn

formed by all signals in S and all the non-synonymy links

in Gn. What follows is true if the proportion of synonymy

links in Gn is small.

In our simplified model, a grammatical phrase can be

formed by choosing a pair of signals (u, v) in G 0
n and all the

signals in a path from u to v. Total freedom for forming

phrases only exists when there is a path between every pair

of vertices, that is, when the network is connected.

Connectedness is a stronger and more realistic precondi-

tion for syntax than just combinations of a few signals, as

in recent formal approaches to the origins of syntax

(Nowak & Krakauer 1999; Nowak et al. 2000). For

various reasons, our grammar is not a grammar in the

strict sense, but rather a protogrammar, from which full

human language can easily evolve. First, note that such a

grammar lacks word order (Sleator & Temperley 1991)

and link direction (Melčuk 1989). Second, such a

grammar does not imply (but allows) recursion (Hauser

et al. 2002). Handling recursion implies memory

resources (Lieberman 1991) that are not necessarily

available when connectedness is reached.

When bZ2C3, there is a high probability that G 0
n is

almost connected, in the sense that almost all signals lie in

a single component (the limiting proportion tends to one

as 3/0; see figure 1a,b). Almost connectedness is easy to

derive mathematically, although there is no space here for

the details. We shall work in Gn rather than G 0
n for

simplicity. All our results carry over to G 0
n if the proportion

of synonymy links is small; the asymptotic results (such as

that just stated) carry over for any fixed proportion of

synonymy links less than one.

There are two key requirements for almost connected-

ness. Firstly, the ‘expected neighbourhood expansion

factor’ f must be greater than one. Roughly speaking, f is

the average number of nodes (here signals) within distance

[C1 of a given node s, divided by the number within

distance [, for [ in a suitable range. If [ is neither too small

nor too large and t is a node at distance [ from s, then the

expected number of neighbours of t at distance [C1 from s

is essentially independent of [. Here, noting that one ‘step’



(a) (b)
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Figure 1. (a) Examples of Gn,m and (b) Gn for bZ2 and nZmZ100. White and black circles are signals and objects,
respectively. (c) First and second neighbours of the most connected signal (grey circle) in a. This and other highly connected
signals are the forerunners of linking words (e.g. prepositions and conjunctions) in human language. (d ) First and second
neighbours of other signals (grey circles) in a.
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in Gn corresponds to two in Gn,m, one can check that

f Z
n

m

X

k

ðkK1Þkpk:

For mZn this is greater than 1 for b!3.54, and in

particular for bz2. Given that f O1, standard methods

show that there will be a single ‘giant’ component, and

that all other signals are in ‘small’ components with only a

few vertices. In fact, for bZ2 this is true for m/n log n.

For bZ2C3, one can easily check that asymptotically c(3)n

signals are in small components, and that the rest of Gn is

connected. More precisely, this is true for m/n/3. Here,

c(3) is a constant depending on 3 and approaching zero as

3/0.

Connectedness or near connectedness also implies a

higher order association where signal–signal associations

emerge from signal–object associations. If si and rj are

linked, and rj and sk are also linked (isk), then there is a

signal–signal association between si and sk formed via rj in

only two steps. Signal–signal associations are the basis of a

rudimentary form of symbolic reference. Symbolic refer-

ence is about how a word not only evokes a certain

‘meaning’, but also how that word evokes other words

(Deacon 1997).

We will show that the degree distribution in syntactic

dependency networks (Ferrer i Cancho et al. 2003) easily

follows from assuming equation (2.1). In short, these

networks are formed by words as vertices, and two words

are linked if they have been syntactically combined in a

collection of sentences. The links in the sentence ‘John

eats apples’ consist of two syntactic dependency links, one

between ‘John’ and ‘eats’ and another between ‘eats’ and

‘apples’ (the former between the subject of the sentence
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and its verb and the latter between the verb and its object;

see Melčuk (1989) for a description of the syntactic

dependency formalism). These links would belong to the

syntactic dependency network if the sentence were one of

the sentences in the collection.

We define qk as the proportion of signals having

degree k in Gn, recalling that two signals are joined in Gn

if they are associated with at least one common object in

Gn,m. Let Z be the degree in Gn of a random signal si, so

qkZPr(ZZk). With bZ2C3 it is very unlikely that two

given signals are joined to two or more common objects,

so Z is essentially
X

rjwsi

dðrjÞK1;

where d(rj) is the degree in Gn,m (number of associated

signals) of an object rj, and the summation is over all

objects associated with si. Now, as the association of a

signal other than si to rj is independent of siwrj, the

terms d(rj)K1 in the summation behave like essentially

independent Poisson distributions, each with mean

lZ ðn=mÞ
P

k kpk, which tends to a constant as n,m/N
with n/m constant. The distribution of Z does not have a

very simple form, but its tail does: the sum of Poisson

distributions is again a Poisson distribution, and is very

unlikely to exceed its mean, here ld(si), by any given

factor when the mean is large. Thus, one can check that

as k/N (keeping n/m fixed) we have

qkwckKb; (2.2)

with c a positive constant. Thus, while the exact distri-

bution of Z is not a power law, Z does have a power-law tail,

with the same exponent b as the signal degrees and
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the signal frequency distribution (equation (1.1)).

Equation (2.2) is consistent with the analysis of real

syntactic dependency networks, where the proportion of

words having k syntactic links with other words is wkKg

with gz2.2 (Ferrer i Cancho et al. 2003). Note that g is in

turn close to the typical Zipf’s law exponent.

Syntactic theory regards certain function words, such

as prepositions and conjunctions, as linkers (Melčuk

1989); that is, words serving as ‘combining words’ for

forming complex sentences. The most connected signals

in Gn,m share many features with real linking words

(figure 1). Linkers in human language have (a) poor (or

absent) referential power (Givón 2002), (b) high fre-

quency (Baayen 2001), and (c) many connections with

referentially powerful words. (a) and (b) are satisfied by

the most connected words in Gn,m based only on two

basic axioms: (i) Zipf’s law in the distribution of the

number of connections per signal in Gn,m, and (ii) a

proportionality relationship between signal frequency of

use and number of connections in Gn,m. (c) requires a

further axiom: (iii) two vertices in G 0
n are linked if they

have at least one common object in Gn,m. High degree

vertices in G 0
n satisfy (a) since the uncertainty associated

with the interpretation of a signal grows with its number

of links in Gn,m (Ferrer i Cancho 2005). The most

connected links in Gn are also the most connected links in

G 0
n. Satisfying (b) follows trivially from (i) and (ii).

(c) follows from the skewed and heavy-tailed distributions

for qk, which is in turn a consequence of (i).
3. DISCUSSION
We have seen that, in our simplified model, Zipf’s law is a

sufficient condition for almost connectedness provided the

number of signals and objects are similar, and that Zipf’s

law with almost connectedness implies the existence of

linking words. Almost connectedness in signal–object

associations is a necessary precondition for full syntax

and for going beyond mere simple signal–object

associations.

The two-level organization of linguistic structure, with a

limited set of words created by combinations of mean-

ingless syllables at one level, and a limitless set of sentences

created by combiningwords at the other, is a critical feature

of language, sometimes termed ‘duality of patterning’

(Hockett 1960). Duality of patterning has not been fully

considered as requisite in recent models of the origins of

syntax (Nowak&Krakauer 1999;Nowak et al. 1999, 2000;

Nowak 2000). Here, the essential requirement of con-

nectedness is consistent with duality of patterning.We have

defined phrases as paths in G 0
n. Different paths in G 0

n

correspond to syntactically different phrases, whereas

different paths in Gn,m starting and ending at signals

correspond to semantically different phrases. Note that a

certain path in G 0
n corresponds to at least one path in Gn,m,

so, assuming the proportion of synonymy links is small, the

expressivity is given by the number of signal–signal paths in

Gn,m. When approximating semantically different phrases

by signal–signal paths in Gn,m, the number of phrases

formed by paths allowed to pass more than once through

the same vertex is, of course, infinite. Since paths repeating

vertices are to some extent redundant, perhaps the more

interesting case is that of paths passing at most once
Proc. R. Soc. B (2005)
through each vertex. In this case, it is easy to show that,

whenever there is a giant component, there is a constant

cO1 such that the expected number of these paths is at least

cn. To summarize, although our model is obviously much

simpler than present-day languages, it provides a basis for

the astronomically large number of sentences that human

speakers can produce and process.

While researchers are divided when considering

syntax (Nowak & Krakauer 1999; Nowak et al. 2000;

Hauser et al. 2002) or symbolic reference (Donald 1991,

1998; Deacon 1997) as the essence of human language,

we hypothesize that syntax and forms of reference higher

than mere signal–object associations are two sides of the

same coin, i.e. connectedness in signal–signal

associations. A communication system maximizing the

information transfer (i.e. minimizing the effort for the

hearer) by mapping every object to a distinctive signal

(Ferrer i Cancho & Solé 2003) implies that two signals

in Gn,m never share the same object, so Gn (and G 0
n) have

no links at all. Therefore, a perfect communication

system cannot be connected, or even almost connected

in any sense. Such a system cannot satisfy the simple

precondition for syntax and complex reference that

Zipf’s law provides. Many non-human species seem to

be close to a perfect communication system for two

reasons. One is practical: those species have difficulties

in dealing with signal ambiguity (Deacon 1997). The

other one is theoretical: when minimizing hearer and

speaker needs simultaneously, there seem to be only two

possible basic configurations: no communication and

perfect communication. Zipf’s law (with non-extremal

exponents; Ferrer i Cancho 2005), and therefore human

language, appears in a very narrow domain between

these two configurations, so non-human communication

is more likely to be in the perfect communication phase

than in the narrow Zipfian domain (Ferrer i Cancho &

Solé 2003). As far as we know, no non-human species

arranges its meaningful signals according to equation

(1.1) with bZ2.

Zipf ’s law provides connectedness, an essential

precondition for syntax and complex reference, for free.

Hence, as language developed, the transition to syntax and

complex types of reference may perhaps have been as

abrupt as the transition to Zipf’s law (Ferrer i Cancho &

Solé 2003). While some researchers consider Zipf’s law a

meaningless pattern in human language (Mandelbrot

1953; Miller & Chomsky 1963; Li 1992; Nowak et al.

2000), we have shown that Zipf’s law provides a simple

communication system with fundamental traits that do

not arise in perfect communication systems.
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