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The Cambrian ‘explosion’ is widely regarded as one of the fulcrum points in the history of life, yet its
origins and causes remain deeply controversial. New data from the fossil record, especially of Burgess
Shale-type Lagerstätten, indicate, however, that the assembly of bodyplans is not only largely a
Cambrian phenomenon, but can already be documented in fair detail. This speaks against a much
more ancient origin of the metazoans, and current work is doing much to reconcile the apparent
discrepancies between the fossil record, including the Ediacaran assemblages of latest Neoproter-
ozoic age and molecular ‘clocks’. Hypotheses to explain the Cambrian ‘explosion’ continue to be
generated, but the recurrent confusion of cause and effect suggests that the wrong sort of question is
being asked. Here I propose that despite its step-like function this evolutionary event is the inevitable
consequence of Earth and biospheric change.
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The reasons for the enduring interest in Darwin lie not
only in our admiration of his genius, but also, I would
suggest, his honesty. Few investigators were—or come
to think of it, are—as ready to flag the glaring
difficulties with a hypothesis. Yet in Darwin’s case his
not infrequent raising of ‘manifest objections to my
theory’ were as often as not pointers to major, and yet
unsolved, problems in evolution. In this context, a
potentially crippling example to the acceptance of his
theory, was what at the time was understood as the
mysterious and abrupt appearance of skeletal remains.
This, of course, is one part of the event we now
colloquially refer to as the Cambrian ‘explosion’. To be
sure, the existence of ancient rocks devoid of evidence
for life had been appreciated since at least the time of
William Buckland (1784–1856), but it was Darwin
who demanded a particular explanation. Were Darwin
to emerge today from Westminster Abbey no doubt he
would be gratified by the progress made. New insights
into metazoan phylogenies, radiometric dating and
exceptionally preserved fossils have greatly extended,
and occasionally refined, our thinking. Progress, there-
fore, is palpable, but in briefly reviewing this demand-
ingly large area I will suggest that much remains
conjectural, some areas of received wisdom may
require re-examination, and most significantly a
comprehensive explanation for the Cambrian
‘explosion’ eludes us, but not for reasons we might
imagine.

This event has conjured up a wide range of opinions,
but at the risk of parody they can be divided into two
camps. The ‘ancient school’ argues that animals
evolved long before the Cambrian and that
tribution of 14 to a Discussion Meeting Issue ‘Major steps in
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the ‘explosion’ is simply an artefact, engendered by
the breaching of taphonomic thresholds, such as the
onset of biomineralization and/or a sudden increase in
body size. The alternative ‘realist school’, to which
I largely subscribe, proposes that while the fossil record
is far from perfect and is inevitably skewed in significant
ways, none is sufficient to destroy a strong historical
signal.
1. A DEEP AND CRYPTIC ORIGIN FOR ANIMALS?
Until recently the ‘ancient school’, looking to animals
evolving at least one billion years ago (Gyr), was very
much in the ascendancy. Such confidence was very
largely based on divergence dates derived from
molecular ‘clocks’ (e.g. Wray et al. 1996; Blair &
Hedges 2005). Although the range of estimates is
startlingly large, comfortably exceeding the duration of
the entire Phanerozoic, a date for metazoan appear-
ances well before 1 Gyr has become widely accepted in
some quarters. Darwin’s dilemma had apparently been
solved; animals have a deep history and their appear-
ance is indeed taphonomically controlled. There are,
however, immediate difficulties. The absence of an
obvious metazoan fossil record in these ancient
sediments implies a cryptic and microscopic fauna. In
this context it is not surprising that modern-day
analogues, notably either larvae or meiofauna were
suggested as possible guides to the most ancient
metazoans. Such candidates, however, presupposed
both ancestral states and courses of evolution that for
good reasons remain very doubtful. For example,
extant pelagic larvae showing maximal indirect
development (i.e. a catastrophic metamorphosis, with
the adult rudiment represented by stem (or ‘set-aside’
cells)) have been a particular focus of attention. This
hypothesis supposes that the ‘invention’ of the ‘set-
aside cells’ was subsequently utilized to allow
q 2006 The Royal Society
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the abrupt evolution of macroscopic adult forms which
initiated not the appearance of animals but their fossil
record. It seems more likely, however, that such larval
types are not only highly derived but are almost
certainly polyphyletic. In addition, as already pointed
out (see Conway Morris 2000a,b), the functional
context of such hypothetical Precambrian larvae,
especially in terms of their ‘set-aside’ cells, remain
unresolved. Moreover, at least one proponent of this
‘planktonic-first’ hypothesis has now abandoned it, and
for a cogent list of reasons (Peterson et al. 2005).
Correspondingly, in the case of the meiofauna not only
did the list of potential Proterozoic candidates include
groups such as the aplacophorans (Fortey et al. 1996)
that given their size (see Giere 1993) would certainly
leave discernible traces, but also more importantly no
convincing functional argument exists that can explain
how animals evolving at genuine meiofaunal dimen-
sions would require the anatomical array of organs that
is otherwise the expected complement of the macro-
scopic scale (Budd & Jensen 2000; Conway Morris
2000a).

Since then the evidence for a deep origination of
animals has been steadily eroded. The reasons are
complex and can only be touched upon very briefly. In
essence, the operation of the molecular clock method
has proved to be far more complex than initially
anticipated, with many confounding factors that
militate against simple extrapolations (Welch et al.
2005). Nevertheless, it has remained generally the case
that divergence times based on molecular clocks
significantly predate the first known appearances in
the fossil record (e.g. Donoghue & Smith 2004).
Nevertheless, in the immediate context of early animal
evolution the divergence between molecular clocks and
the fossil record is now considerably reduced (e.g.
Peterson et al. 2005; Peterson & Butterfield 2005).
A narrowing of the differences, however, does not mean
reconciliation, and it is clear that this story is
unfinished. For whatever reasons, the tensions between
estimated divergence times and the known fossil record
seem, in terms of constructive dialogue, to be a
particular hallmark of a number of studies of plant
evolution (e.g. Janssen & Bremer 2004; Rydin et al.
2004; Bell & Donoghue 2005; Lavin et al. 2005;
Magallon & Sanderson 2005). Moreover, a satisfactory
agreement between estimated molecular and actual
fossil dates has been achieved in a number of instances,
notably in a number of mammalian studies (e.g.
Arnason et al. 2000; Adkins et al. 2001; Huchon et al.
2002; Dooley et al. 2004; Tuinen & Hadley 2004).
Finally, repeated attempts have been made to find
general principles that might permit rescaling of clocks.
Some of these have met with mixed success, but the
proposed scaling between metabolic rates, body size,
and speed of clocks (Gillooly et al. 2005) is particularly
relevant not only because some previously major
discrepancies between fossils and molecular data were
resolved, but because the principles of scaling speak to
general principles that permeate all areas of biology
(e.g. West & Brown 2005).

What of the fossils themselves? To the first approxi-
mation palaeontologists—perhaps naively—remain
confident that the fossil record of their respective
Phil. Trans. R. Soc. B (2006)
groups is reliable (see the great majority of chapters in
Donoghue & Smith 2004), and in their view it is the
molecular clocks that require scrutiny. This is not to deny
that claims for significantly deeper divergence times are a
vital spur against palaeontological complacency, not least
in either revising search strategies or reinterpreting
previously problematic fossils. Nevertheless some exist-
ing claims for such divergence times, if accepted, will
necessitate radical reappraisals of evolutionary history.
Heckman et al. (2001), for example, have argued for
the appearance of land plants hundreds of millions of
years before the first fossil appearance in the Late
Ordovician–Early Silurian. It appears that other mole-
cular data are not only inconsistent with this estimate, but
broadly in line with the fossil record (Sanderson 2003).
Such agreement seems sensible simply because the
transition to land involved key characters, such as the
evolution of sporopollenin, cuticular hydrocarbons and
tracheids. All of these display an enhanced fossilization
potential, but have apparently few if any counterparts in
even Cambrian sediments. Even if land plants were
coeval with Burgess Shale-type faunas, and for a
questionable record of bryophytes from the Lower–
Mid-Cambrian Kaili Lagerstätte of Guizhou, South
China (see Yang et al. 2004), this would leave
unexplained the lag in diversification until the earliest
convincing records from the Late Ordovician, an interval
of ca 50 Myr. Similar arguments may be applied to the
estimated divergence times of birds (and mammals)
where a good fossil record is very difficult, if not
impossible, to reconcile with molecular data (e.g.
Fountaine et al. 2005). Naturally such examples are
always predicated against the future possibility of
discovering new exceptionally preserved fossils and the
revision of phylogenies, yet at least in the case of the
Cretaceous birds new finds (e.g. Zhang et al. 2003a)
reinforce earlier conclusions that the radiation of the
‘modern’ birds was very largely a latest Cretaceous (e.g.
Clarke et al. 2005) or Early Tertiary affair, and in any
event a genuinely explosive event (e.g. Poe & Chubb
2004).

What then of the palaeontological record of the
earliest metazoans in the context of molecular clocks? As
already noted, the evidence for deep origins is
increasingly questionable, and correspondingly the
divergence in estimates of origination has been con-
siderably reduced. Nevertheless, it still exists. Peterson
& Butterfield (2005), for example, offer an interesting
synthesis that ties together geological, molecular and
palaeontological data. Yet their analysis begs several
questions. Consider, for example, the notable develop-
ment of acritarch ornamentation. This is certainly in
striking contrast to the simple morphology of most
earlier acritarchs, and may have arisen as a response to
metazoan predation, especially by a mesoplankton. It
remains the case, however, that the functional link
between fluid flow around acritarchs and capture
remains to be explored, as does the discovery of faecal
pellets containing such acritarchs. Peterson & Butterfield
(2005) estimates of metazoan diversification still
significantly predate the bulk of the Ediacaran record,
which as noted below has many problematic aspects.
To date the links between these assemblages and the
proposed synthesis of Peterson & Butterfield (2005) are
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somewhat tenuous. Nor is the typical Ediacaran
taphonomy particularly conducive to preserving the
delicate grazers and other metazoans that are posited to
have existed. Nevertheless, what we presently know
may not be too encouraging. Superbly preserved algae
from the latest Neoproterozoic Miaohe-type biotas
(e.g. Xiao et al. 2002; Yuan et al. 2002; Zhao et al.
2004) are accompanied by questionable sponges,
which in any event are very widely assumed to be the
most basal metazoans, but to date no more complex
metazoans.

There is one further line of evidence that has been
widely cited in support of deep divergence times for the
metazoans, in the form of putative trace fossils (e.g.
Seilacher et al. 1998; Rasmussen et al. 2002). In the
case of the material from the Stirling Range Formation
of southwestern Australia (Rasmussen et al. 2002), an
earlier age of ca 1.2 Gyr was subsequently extended to
at least 1.8 Gyr (Rasmussen et al. 2004). Nor is this the
only reason to be sceptical. As noted elsewhere
(Conway Morris 2003), despite the attention that
greets many of the new announcements, their occur-
rences are distinctly puzzling. Such putative traces are
extremely sporadic, which show within the limits of a
relative simplicity a considerable range of mor-
phologies, and they span a huge age range. One
solution, of course, is that the ‘worm’ that ostensibly
made these sedimentary markings evolved indepen-
dently several times, and conceivably from different
protistan ancestors. Nevertheless, this still fails to
explain why such an evolutionary invention failed to
radiate into a vacant ecosystem.
2. THE EDIACARAN ASSEMBLAGES: A
CONTINUING CONUNDRUM
The earliest macroscopic fossils, which may represent
metazoans, post-date all glacial units (tillites), which
evidently represent major, possibly global, glaciations.
Present estimates suggest there were three such glacial
episodes (e.g. Halverson et al. 2005), and it is the latest
of these (generally referred to as the Gaskiers, after the
tillite sequence in southeast Newfoundland) which
predates the first definitive Ediacarans (Narbonne &
Gehling 2003). In fact, discoidal fossils from inter-
tillite units in northwest Canada (Twitya Formation)
are known (Hofman et al. 1990), are widely accepted as
the earliest fossil metazoans, but they are just as likely
to be microbial in origin (D. Grazhdankin 2005,
personal communication). In addition, the tillite
above these discs appears to correlate with the second
of the glacial episodes (referred to as the Marinoan; see
Halverson et al. 2005), and therefore significantly
predates the Gaskiers, perhaps by about 40 Myr.

In any event, the post-tillite Ediacaran interval is
justly famous for its more or less soft-bodied assem-
blages, but in terms of both phylogenetic placement
and functional biology they have proved to be
remarkably recalcitrant (see Narbonne 2005). Discus-
sion has broadly divided into two schools. The first
regards them as largely metazoans, whereas the
alternative group, initiated by A. Seilacher (1989),
argues for a unique body construction, effectively
mattress-like, possibly syncitial, and by implication
Phil. Trans. R. Soc. B (2006)
some sort of giant protistan. This intriguing hypothesis
is enshrined in the concept of Vendobionta. As is often
the case, neither side is likely to have a monopoly on the
truth, but the continuing intractability in the interpret-
ations suggests that any hypothesis on the table will
continue to beg as many questions as it answers. The
likelihood that we are dealing with assemblages
markedly different from those found in the Phanerozoic
is reinforced by Grazhdankin’s (2004) seminal syn-
thesis. In addition to identifying three principal
ecotypes he made two cardinal observations. First, so
far as the constraints of stratigraphic correlation and
radiometric dating allow, it appears that the assem-
blages show negligible evolutionary change over
protracted geological intervals. Second, and equally
intriguingly, there is no evidence that diversity was
much influenced by latitudinal gradients. Given the
near-universality of such gradients (Hillebrand 2004),
this is curious. The fact, however, that the species
richness in recent microbial communities also shows
little control by latitudinal gradients (Finlay & Fenchel
2004) may represent a significant analogue, hinting
that the ecology of the Ediacarans has important
similarities.

Are there any metazoans within the Ediacaran
assemblages? While unlikely, it is possible to argue
that everything is some sort of vendobiont, and the
recurrent modular architecture remains a striking
feature (e.g. Narbonne 2004). Against this extreme
view is the apparently reasonable evidence for sponges
(e.g. Gehling & Rigby 1996), although the record of
co-eval spicules is at least in some cases more
circumspect (e.g. Zhou et al. 1998). Cnidarians are
also an expected component of these assemblages, but
Grazhdankin (2000) addresses some continuing diffi-
culties of interpretation. Nevertheless, there are
candidate cnidarians. Perhaps the most convincing
are in the form of conulariids (van Iten et al. 2005), as
well as some of the frond-like forms that also occur as
Ediacaran ‘survivors’ in the Cambrian (Conway Morris
1993). Another apparently reliable metazoan is the
quasi-mollusc Kimberella, which is associated with
tracks and apparent feeding traces in the form of
scratch arrays (e.g. Fedonkin 2003, fig. 14–16). The
roster of putative metazoans is considerably longer, but
the placement of such well-known taxa as Dickinsonia
(e.g. Dzik & Ivantsov 2002), Spriggina and Parvancor-
ina is problematic, although the last genus has an
interesting resemblance to certain Cambrian arthro-
pods (Zhang et al. 2003b). These difficulties of
placement are exemplified by Yorgia (e.g. Ivantsov
1999). This intriguing organism shows a complex
bodyplan, albeit asymmetrical about the left–right axis.
Evidently, it had the ability to move across the seabed,
where it left behind a series of resting impressions
(Ivantsov 1999; Ivantsov & Malakhovskaya 2002;
Fedonkin 2003). How it moved, and the reason for a
succession of imprints—feeding, and if so by absorp-
tion through the ventral surface?—are open questions.
How best to treat Yorgia and presumed relatives? The
first possibility is to dispatch them to the vendobiont
camp (see below), but this perhaps raises more
questions than it answers. If taken to be metazoans,
we can as a second possibility unhelpfully dismiss them
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as ‘failed experiments’, enigmatic offshoots within the
animals. A third possibility is that these are not only
animals but have a level of organization seemingly more
complex than cnidarians and conceivably fall within the
stem-group triploblasts. The difficulties with this
proposal are self-evident in as much as the little we
can infer about the diploblast–triploblast transition,
and the apparently basal position of the acoels (e.g.
Baguna & Ruitort 2004; Cook et al. 2004), have no
obvious connection to these Ediacaran taxa. On the
other hand, both this historical transition and the
nature of the primitive triploblasts are speculative.
Extant forms are highly derived, and may be relatively
uninformative in this regard. Could the common
ancestor of all triploblasts be represented by animals
similar to Dickinsonia and Yorgia?

What of the vendobionts? Recent work, including
evidence for an infaunal habitat (e.g. Grazhdankin &
Seilacher 2002), and even the possibility that the tissue
(or syncitial equivalent) could grow through the
sediment (see Crimes & Fedonkin 1996), combined
with earlier observations on the organisms’ pro-
nounced modularity, sac-like construction and relative
simplicity, suggests that they may have been giant
protistans (see Seilacher et al. 2003). This too leads to
some interesting conjectures. Where within the pro-
tistans (or as some have even argued the fungi; see
Peterson et al. 2003) should the vendobionts be placed?
To what extent can they be regarded as analogous to
metazoans, attaining a multicellular grade indepen-
dently? What was their embryology and developmental
biology? The well-defined symmetries and metamerism
may also have arisen independently, but it is also
possible that some of the homeotic genes known in
metazoans may derive from a common ancestor.

The interpretation of Ediacaran assemblages con-
stitutes one of the major challenges to palaeontology. It
is, perhaps, worth concluding this section with a couple
of apparently anomalous reports. Ediacaran assem-
blages are notable for discoidal fossils, which have
variously been interpreted as medusoids, holdfasts and
microbial colonies. In at least one case, that of the
strikingly concentric Kullingia, the disc is now re-
interpreted as a series of annular scratches imposed by
a tethered benthic object that presumably was some
sort of tubicolous organism (Jensen et al. 2002).
A somewhat different example is a striking array of
fractal-like branching structures, preserved in carbon-
ate (Xiao et al. 2005). While these have a certain
similarity to other fractally constructed Ediacaran
organisms, an alternative possibility is that these are
of diagenetic structure, possibly mediated by microbial
activity.

Such Ediacaran material, irrespective of its con-
troversial nature, is macroscopic. There is, however,
another important new avenue to our understanding of
Ediacaran assemblages. This is in the form of embryos,
remarkably preserved and recovered in quite extraordi-
nary abundance, from the Doushantuo Formation in
the Weng’an area of Guizhou, South China. Although
earlier dated as ca 600 Myr (Barford et al. 2002), the
most recent results suggest an age only about 10 Myr
before the Precambrian–Cambrian boundary (see
Condon et al. 2005). Even though these embryo fossils
Phil. Trans. R. Soc. B (2006)
are, therefore, exactly contemporaneous with typical
Ediacaran assemblages, their interpretations are not
free of difficulties. For example, the most convincing
examples are only found up to the ca 64-cell stage. Yet
the diagenetic environment of what must have been
very early phosphatization seems otherwise to be
similar to those examples of Cambrian embryos (e.g.
Bengtson & Yue 1997; Dong et al. 2004, 2005), but in
the latter case far more complete ontogenies are
known. One possibility, therefore, is that the develop-
mental pathway diverged radically from that found in at
least directly developing Cambrian embryos (see
Conway Morris 2004). Associated with the Doush-
antuo embryos is a cylindrical organism, possibly a
cnidarian (e.g. Yuan et al. 2002; Chen 2004, fig. 117),
which conceivably might have produced some of these
embryos. Other alternatives, including vendobionts or
other early metazoans are possible, but in the
associated strata no direct evidence exists for these
groups. In addition to what are almost universally
accepted as embryos, there are, however, other forms
whose status is more controversial. Some phosphatic
spheres, for example, have been interpreted as showing
such embryological features as gastrulation and blas-
topores (e.g. Chen et al. 2002a; Chen 2004), but it
seems more likely these structures are diagenetic. This
may also apply to supposed minute bilaterians where
phosphatic crusts are interpreted as ostensible cell
layers (Chen et al. 2004; Chen 2004). Here too a
diagenetic interpretation seems preferable, and it is
difficult to accept the detailed reconstructions offered
in terms of cellular sheets and internal organs. Never-
theless, it remains the case that these complex histories
of phosphate precipitation are not fully understood.
3. OPENING THE DOOR INTO THE CAMBRIAN
The Cambrian fossil record has seen highly significant
advances, notably in the study of Burgess Shale-type
and Orsten faunas, but the context of the various
discoveries requires continuous reappraisal in the light
of on-going developments in the molecular phylogenies
that address metazoan relationships. This latter field,
however, remains fluid, with many unresolved issues.
For example, despite strong evidence for the concepts
of Ecdysozoa (Aguindaldo et al. 1997) and Lopho-
trochozoa (Rosa et al. 1999), respective voices favour-
ing both the older concept of the Coelomata (Almeida
et al. 2003; Wolf et al. 2004; Philip et al. 2005; see also
Telford 2004) and the directly related theme concern-
ing the expulsion of the Nematoda from the Ecdysozoa
(Blair et al. 2002) have been raised. In either case,
however, the counter-arguments appear more persua-
sive (e.g. Haase et al. 2001; Anderson et al. 2004;
Copley et al. 2004; Philippe et al. 2005; Roy & Gilbert
2005).

Here, I will touch briefly on a few potentially key
issues, fully aware that new data may necessitate
radical revision of existing frameworks. In this
context, palaeontological evidence is problematic,
because some widely differing interpretations of fossil
material lead to disparate phylogenies. The yunnan-
ozoans, a case in point, are discussed below. In
addition, while there has been some success in
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accommodating hitherto problematic fossils in a
phylogenetic framework, a number of fossil taxa still
remain enigmatic. A number of examples could be
given. One is the eldoniid/rotadiscid/parapsonemid
group, discoidal fossils which range from the Lower
Cambrian to Middle Devonian (e.g. Clarke 1900;
Chen et al. 1995b). It has long been realized that this
group has some similarities to the echinoderms, but
our present understanding of the latter’s phylogeny
(see below) still leaves the eldoniids (and relatives) in
limbo. Equally, enigmatic are the chancelloriids.
These are sponge-like organisms, but they build
their skeletal elements in a coeloscleritophoran
mode, that is as hollow spicules which are typically
connected to other parts of the body by a restricted
aperture. The presence of an obvious integument
(Bengtson & Hou 2001) also argues against a
poriferan affinity (but see Butterfield & Nicholas
1996), while Randell et al. (2005) make an interesting
argument for a place in the cnidarians.

Correspondingly, among extant faunas there are a
number of still-enigmatic groups. Most famous are the
chaetognaths, whose phylogenetic position has proved
recalcitrant, although a place in the basal protostomes
is most likely (Helfenbein et al. 2004; Papillon et al.
2004). Very useful as this is, it tells us nothing about the
origins of their distinctive and notably conservative
bodyplan. Can the fossils assist? There is a convincing
fossil record from the Lower Cambrian Chengjiang
Lagerstätte (Chen & Huang 2002; Chen et al. 2002b,
fig. 8-1.3, pl. 17, fig. 6; Chen 2004, fig. 347, 348;
Vannier et al. 2005; and also the Burgess Shale;
D. Collins 2000, personal communication), and the
case for the Cambrian to Ordovician protoconodonts
being equivalent to the grasping spines is also strong
(e.g. Szaniawski 2002). The suggestion, however, by
Szaniawski (2005) that the Burgess Shale animal Oesia
disjuncta is a chaetognath is untenable (Conway
Morris, in preparation).

In §5, brief remarks are made on the possible early
history of the lophotrochozoans. While the fossil record
appears to be highly informative, nevertheless interest-
ing questions remain. For example, while not enigmatic
in terms of being a lophotrochozoan (see Anderson et al.
2004), how the distinctive bodyplan of the nemerteans
arose is conjectural. Similar remarks apply to the
sipunculans, and in this case probable fossils from the
Chengjiang Lagerstätte (Huang et al. 2004a) are not
otherwise especially informative. In the case of the
echiurans, once treated as a separate phylum, it is clear
that they nest within the Annelida (e.g. Bleidorn et al.
2003), although the fossil record is almost mute.
A somewhat different category of enigmatic metazoans
are the quasi-flatworm or even quasi-protistan groups.
Notable examples include the myxozoans, mesozoans,
symbions and xenoturbellans. The latter, for example,
are evidently deuterostomes (see Israelsson & Budd
2005), and while their being primitive seems less likely,
how they arrived at what may be a highly derived
position is conjectural. Similar remarks apply to the
other groups just listed, and while their overall
phylogenetic positions are reasonably clear, again the
details of their phylogenetic history and the functional
reasons for massive simplification await elucidation.
Phil. Trans. R. Soc. B (2006)
4. THE MOST PRIMITIVE METAZOANS
The earliest radiations of the sponges and coelenterates
(i.e. cnidarians and ctenophores) can only be briefly

touched upon. The record of sponges in the Cambrian
is rich and diverse (e.g. Rigby & Collins 2004), and

they appear to have been of particular importance in
deep-sea habitats (e.g. Steiner et al. 1993). Their

phylogeny remains largely dependant on molecular
data (e.g. Borchiellini et al. 2004; Nichols 2005), but

palaeontology yields important insights. Botting &
Butterfield (2005), for example, identify the genus

Eiffelia as a stem-group hexactinellid but with import-
ant links to calcareans. As already noted, the status of

the sponge-like chancelloriids, however, remains more

enigmatic, with the principal competing hypotheses
arguing for retention within the poriferans (Butterfield &

Nicholas 1996; Botting & Butterfield 2005) as against
a possible cnidarian affinity (Randell et al. 2005).

Despite their primitive status the record of Cambrian
cnidarians is relatively sporadic, but includes possible

sea-pens (Conway Morris 1993), probable octocorals
(e.g. Ausich & Babcock 1998), anemone-like creatures,

such as Xianguangia from the Chengjiang Lagerstätte
(e.g. Chen 2004, fig. 246) as well as early corals (e.g.

Jell 1984; Debrenne et al. 1987; Lafuste et al. 1991;
Sorauf & Savarese 1995). No convincing scyphozoans

(or cubozoans) are yet documented, although the
newly proposed class of staurozoans may have as fossil

representatives the conulariids (Marques & Collins
2004). This extinct group had generally been placed in

the scyphozoans, but is known to have an Ediacaran
(see above) and Cambrian record (e.g. Conway Morris &

Chen 1992). They are also of considerable interest
because of a spectacularly documented ontogenetic

series from the Lower Cambrian of China that includes

embryonic stages (Yue & Bengtson 1999).
Despite their reputation for delicacy, the fossil

record of ctenophores is quite impressive (Conway
Morris & Collins 1996; Chen 2004, fig. 254–256). The

number of comb-rows is surprisingly variable. Some
Chengjiang taxa have the eight (or in one case

apparently four) comb-rows which characterize all
extant ctenophores, whereas the Burgess Shale taxa

have what appears to be multiples of eight. With one
possible exception all these Cambrian ctenophores

apparently lacked feeding tentacles. All of these
ctenophores at least approximate to the extant fauna

in being more or less globular, probably in life largely
gelatinous and it has been assumed pelagic. This may

be premature when one considers what is perhaps the
most interesting taxon, that is Trigoides. In this animal,

from the Chengjiang Lagerstätte (Chen et al. 2002b,
pl. 21, fig. 3), the comb-plates seem to be attached to

plate-like structures. The origin of ctenophores is

presently completely unknown, but one possibility
would be to envisage a benthic ancestry, whereby the

ciliated comb-rows acted to generate feeding currents.
Trigoides might be instructive in this regard, because

one implication of this suggestion would be that the
extant ctenophores are much more derived than

generally thought, highly adapted to a pelagic existence
and dependant on the ciliary rows for effective

locomotion.
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5. THE TRIPLOBLAST STORY
The possibility that certain Ediacaran taxa might
represent stem-group triploblasts was alluded to
above, but otherwise the available Cambrian record
appears to shed no obvious light on either the
diploblast–triploblast transition or the earliest history
of the triploblasts. It is just as likely, however, that the
fossils have already been collected, but have not yet
been recognized for what they represent. With respect
to the three triploblast superphyla, that is the
ecdysozoans, lophotrochozoans and deuterostomes
(the order in which they will be dealt with here),
there does appear, however, to have been some
progress.

Within the ecdysozoans there have been impressive
advances in the documentation of an extensive range of
arthropods (e.g. Zhang et al. 2000; Chen et al. 2001;
Chen 2004; Hou et al. 2004; Liu et al. 2004) and
priapulids (e.g. Chen 2004; Huang et al. 2004b,c). To
date, however, the fossil record throws no useful light
on the origin of the nematodes. The welter of
Cambrian arthropods has been placed in a number of
phylogenetic schemes (e.g. Budd 2002; see also
Maxmen et al. 2005), which in certain cases seek to
make also functional and ecological sense (e.g. Budd
1998). It is widely proposed that lobopodians are
among the most primitive arthropods, and it is possible
that they in turn derived from an early priapulid,
conceivably a palaeoscolecidan. Direct evidence of
such a transition appears not to be available, but it is
consistent with molecular evidence pointing towards a
basal position for the priapulids (Mallatt et al. 2004).
The priapulids include forms with various sorts of
armature, including button-like sclerites whose
functional significance is largely unexplored. A number
of phylogenies have been proposed (e.g. Huang et al.
2004c), and in addition it is worth noting that some
worms identified as phoronids (Eophoronis, see Chen
2004, fig. 331, 332; and Iotuba, see Chen & Zhou 1997,
fig. 49, 50) may well be synonymous, and are similar to
the priapulid Louisella.

Interpretation of the lophotrochozoans continues to
excite debate at a number of levels. While the
suggestion, based on molecular data, that annelids
and molluscs were related was broadly in line with
existing thinking, this emphatically was not the case
with the brachiopods whose placement in this super-
clade was greeted with suspicion by some organismal
biologists. So far as stem-groups are concerned,
potentially key groups include the halkieriids and
wiwaxiids. The former, as the articulated Halkieria
evangelista (Conway Morris & Peel 1995), was argued
to be instructive with respect to several lophotro-
chozoan phyla, including the annelids, brachiopods
and molluscs. Vinther & Nielsen (2005), however,
preferred to shoe-horn the halkieriids back into the
molluscs, but in setting this essentialist agenda failed to
grasp the evolutionary importance of stem groups and
the nature of transitional organ systems. First, it is not
in dispute, as had already been pointed out, that
molluscs may well have arisen from something fairly
similar to halkeriids, that is in the form of a slug-like
animal with a coating of dorsal spines or plates. The
difficulty, however, is that the secretion of the spicules
Phil. Trans. R. Soc. B (2006)
in what are presumably the primitive aplacophorans

and polyplacophorans bears no particular resemblance
to the assumed mode of growth of the complex

halkieriid sclerites. To be sure, one can envisage a

hypothetical transition between halkieriid sclerite and
molluscan spicule, but such a transformation is

unsupported by any evidence. A key part of Vinther &
Nielsen’s (2005) argument, however, was to compare

halkieriids to a number of multi-plated chiton-like
animals from the Palaeozoic (e.g. Hoare & Mapes

1995; Vendrasco et al. 2004). Yet this is doubtful in

many respects. First, these Devonian–Carboniferous
animals are substantially younger than the last-known

halkieriids (Porter 2004), and the reasonably good
record of Lower Palaeozoic chitons (e.g. Pojeta et al.
2003, 2005) suggests no obvious link between these

multi-plated chitons and the halkieriids. Second, the
comparisons made by Vinther & Nielsen (2005)

between the hollows spicules/spines of various molluscs
and the complex canal system of the halkieriid sclerites

is seriously misleading. Even in the Carboniferous
multiplated chiton Diadeloplax the canal system of the

lateral spines (see Hoare & Mapes 1995, fig. 7 J-R) is

completely unlike the halkieriid arrangement, and no
convincing homology exists. Third, in at least this

genus the porous microstructure of the spines is the
same as the plates, raising the possibility that these

marginal structures are better interpreted as derived

shells.
Halkieriids have also attracted attention on account

of the hypothesis that the prominent shells at either end
of the body are precursors of the dorsal and ventral

valves of the brachiopods (Conway Morris & Peel
1995). It has long been known that a number of

otherwise enigmatic tommotiids, a diverse group of

phosphatic shelly fossils from the Lower Cambrian,
have shell structures that are strikingly brachiopod-like

(e.g. Conway Morris & Chen 1990). In addition, in the
case of forms such as Micrina and Tannuolina, there are

two distinct morphs referred to as the sellate and mitral

sclerites. These, it has been argued (Holmer et al. 2002;
Williams & Holmer 2002), might have a comparable

location to the shells of H. evangelista, and as such
would be interpreted as stem group brachiopods. On

the basis of some associated ontogenetically merged
material Li & Xiao (2004) argued, however, for a

multiplated configuration. Such fused sclerites are,

however, extremely rare and a teratological alternative
may be worth exploring. Although otherwise markedly

different, the apistoconchs, originally nicknamed pseu-
dobrachiopods and assumed to be bivalved animals

despite the incongruence of fit between either shell

(Bengtson et al. 1990, pp. 171–181), may have also
occupied halkieriid-like positions (Parkhaev 1998). In

contrast to the tommotiids, however, apistoconchs
evidently had a calcareous shell, as possibly did the

Burgess Shale taxon Oikozetetes which was tentatively

reconstructed as a halkieriid animal (Conway Morris
1994). There are a number of other Lower Cambrian

shells, of various shapes, which are assigned with
different degrees of confidence to halkieriid-like

animals. It is likely that there was a plexus of armoured
slug-like animals in the Cambrian that gave rise to
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a number of groups, including the brachiopods and
molluscs.

What of the annelids? Apart from the Burgess Shale
(Conway Morris 1979), the record is very sporadic.
Perhaps surprisingly, no definite example is known
from the richly fossiliferous Chengjiang deposits, and a
possible annelid briefly described by Chen et al. (1996)
is a very questionable assignation. The somewhat
enigmatic Myoscolex, from the Emu Bay Shale of
Kangaroo Island, South Australia, was also interpreted
as a polychaete by Dzik (2004), but this too appears to
be a forced comparison and although not free of its
difficulties a comparison to the anomalocaridids is
more persuasive (Briggs & Nedin 1997). Reasonably,
Eibye-Jacobsen (2005) regarded all the Burgess Shale
polychaetes as stem-group annelids, but he excluded
Wiwaxia. His arguments revolved around the supposed
lack of segmentation, absence of parapodia and
equivalence of the sclerites to chaetae. In a way
analogous to the disputed phylogenetic position of the
halkieriids, much depends on character determination
and expectations of a stem-group. Thus, not only did
Butterfield (1990) convincingly demonstrate a micro-
structure in wiwaxiid sclerites similar to that of annelid
chaetae, but Eibye-Jacobsen’s (2005) mention of other
setal-like structures is not immediately relevant
because of the proposed homology of ventral and
dorsal wiwaxiid sclerites to the neurochaetae and
notochaetae of polychaetes. Neither is the absence of
parapodia germane, because these (especially in the
neuropodia) are posited as crucial to the emergence of
walking gait in the first polychaetes as against the
crawling mode of wiwaxiids. The wiwaxiids show clear
segmental repetition of the dorsal and ventral sclerites
(Conway Morris 1985, e.g. fig. 61 and 137–140) and
here too the shift to a complete metameric segmenta-
tion is plausibly linked to a more active stepping
locomotion requiring precise co-ordination of move-
ment. I have also argued for an evolutionary relation-
ship between wiwaxiids and halkieriids, principally on
the basis of overall sclerite similarity and their
arrangement in comparable zones across the body
(Conway Morris & Peel 1995). Clearly, these hypoth-
eses require further testing, and may be critically
dependant on recovery of new articulated material and
further study of sclerite microstructure, especially the
extent to which the wiwaxiid sclerites are hollow.

Deuterostome phylogeny has particular interest
both on account of the disparity of forms, and also
questions surrounding the early evolution of ver-
tebrates. The sister-group relationship between the
echinoderms and hemichordates is largely accepted,
but the phylogeny of the chordates and their near-
relatives the cephalochordates and tunicates remains
more confused. With respect to the hemichordates, on
the basis of unpublished observations on the Burgess
Shale material (E. Boulter 2004, personal communi-
cation), it seems more likely that the balanoglossids
(rather than the rhabdopleurids and extinct graptolites)
are primitive, but whether they arose from the stem-
group echinoderms or vice versa is conjectural. There
is, moreover, a quite general problem, by no means
restricted to this case, in as much as the evolutionary
transformations involved stem-group bodyplans that
Phil. Trans. R. Soc. B (2006)
often had little resemblance to any crown-group
representative. A recurrent stumbling block in the
zoological literature has been the effectively arbitrary
invention of ‘ur-phyla’, representing a supposedly
convenient amalgam of character states. These are
fictions, but if taken seriously make the interpretation
of the actual fossils a yet more daunting task.

The early history of the echinoderms may, however,
be somewhat closer to resolution. Arguments hinge
around the vetulocystids (Shu et al. 2004) and a series
of decidedly enigmatic echinoderms that include the
cinctans, stylophorans and solutes. So far as the
stylophorans, which are divided into cornutes and
mitrates, are concerned, the focus of debate has been
Jefferies’ arguments that there was a threefold loss of
the diagnostic calcitic stereom, to give rise respectively
to the tunicates, cephalochordates and chordates
(Jefferies 1986, 1997). The range of observational
detail that Jefferies has obtained concerning these
strange organisms is impressive, but the wider con-
clusions, e.g. identification of nervous systems, noto-
chord, etc., have, for the most part, been greeted with
considerable reservation (see Clausen & Smith 2005),
indeed in places with incredulity. One solution is to
regard them as highly derived echinoderms, with the
stylophorans, for example, being related to the crinoids
(e.g. David et al. 2000). This, however, poses many
problems and is also somewhat inconsistent in terms of
stratigraphy. Their possible place as stem-group
echinoderms may, however, receive some support
from the vetulocystids, given they also have a bipartite
body, with a swollen anterior section bearing probably
gut openings and gill, and a tail-like structure that was
possibly segmented. In this respect, the sequence of
vetulocystids, stylophorans (as cornutes), cinctans and
solutes suggests that the order of acquisition in this
stem group may have been: acquisition of mesodermal
skeleton (stereom), change of function of the segmen-
ted tail from propulsion to first attachment and then
ultimate loss, development of an ambulacral feeding
tract (first attached, then as free arm) and by
implication the water vascular system with hydropore,
complete loss of gill slits and subsequently pentameral
symmetry (Shu et al. 2004, fig. 4; similar conclusions
are arrived at by Smith 2005). The last feature has
attracted much comment, but given the strikingly
asymmetric nature of the stem-group, the choice of a
fivefold symmetry may reflect the transition to sessility
and the replacement of a central nervous system with a
diffuse nerve net.

The origin of the vertebrates is now known to be
substantially earlier than thought, and to date three
fishes (Haikouichthys, Myllokunmingia and Zhongjia-
nichthys) have been reported (Shu et al. 1999, 2003a;
Shu 2003). The proposed synonymy of the first two
taxa (Hou et al. 2002) seems unlikely, because although
Myllokunmingia is known only from a single specimen,
the anterior, and especially the gills, is very different in
arrangement from Haikouichthys where there is a
striking array of branchial supports (Shu et al.
2003a). The interpretation of the supposed gill areas
in a single specimen of Haikouichthys (Hou et al. 2002)
is also not free from difficulties. While the anterior set
with well-defined branchial supports is clearly identical
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to those in other specimens of Haikouichthys, the more
posterior set of ‘arches’ are difficult to interpret in this
functional context and may be myotomal. The
description of forwardly pointing fin rays in this latter
taxon was also greeted with scepticism, including
arguments that they were an imposed cleavage fabric
(Hou et al. 2002). Our earlier observations have,
nevertheless, been confirmed with the additional
information that this fin extended as a fold around
the posterior of the body with the fin rays also changing
direction towards the tail (Zhang & Hou 2004).

The Cambrian fossil record of the related tunicates
and cephalochordates does, however, continue to pose
a number of questions. For example, two types of
tunicate have been recorded, both from the Chengjiang
Lagerstätte but otherwise distinctly different (Shu et al.
2001a; Chen et al. 2003). Thus, Cheungkongella is
strikingly similar to extant stylid tunicates, but critics
(e.g. Chen 2004) have drawn attention to the otherwise
enigmatic Phlogites (see Chen et al. 2002b; Chen 2004),
which has a somewhat similar body form, but is also
equipped with prominent tentacles, a feature unknown
in tunicates. My own view, having examined the only
known specimen of Cheungkongella closely, is that the
similarity to Phlogites is most likely superficial.
Shankouclava (see Chen 2004, fig. 512–514) is not
quite as well preserved, and the putative branchial
basket is somewhat difficult to resolve, and I regard its
status as a tunicate as more provisional. Unfortunately,
but unsurprisingly, the question of whether these
putative tunicates include a ‘tadpole’ larva in their life
cycle is conjectural.

Cathaymyrus has been described on the basis of a
single specimen (Shu et al. 1996a), but it may be our best
candidate for a Cambrian cephalochordate. More
fragmentary cephalochordate material is known (Shu
Degan 2004, personal communication and personal
observation), and so far as can be told Cathaymyrus is not
particularly similar to the extant amphioxus animal. The
Burgess Shale Pikaia has also attracted considerable
attention. Its chordate credentials rest on what are
interpreted as myotomal segmentation and a prominent
rod-like structure, presumably the notochord. This
animal shows, however, several distinctive features
(especially in the head region). It may be better
interpreted, therefore, as an independent development
of a chordate-like anatomy, albeit from a common
ancestor whose descendants include amphioxus and the
fish. Nor may this be the only possible example. Cladistic
methodology routinely embeds the conodonts not only
within the chordates, but also within crown-ward of the
agnathans (Donoghue et al. 2000). Yet the conodonts
show a number of distinctive features. These include
simple V-shaped myomeres (as in amphioxus), and a
feeding apparatus which has no clear homologies in
structural arrangement to the vertebrate jaw. In addition,
it is also questioned whether the microstructural
similarities of conodont element histology are genuine
homologies with some tissues of vertebrate teeth (e.g.
Kemp 2002a,b). It seems that in a way analogous
to Pikaia, conodonts could be another parallel develop-
ment to a vertebrate-like form, again arising from
a cephalochordate-like ancestor. Given the earliest
conodonts are Mid-Cambrian, this development of
Phil. Trans. R. Soc. B (2006)
teeth would be another example of convergence (see
also Smith & Johanson 2003), significantly pre-dating
that of the vertebrates.

From this perspective, it is not obvious that
amphioxus need be directly implicated in vertebrate
ancestry and its apparent proximity may be more a
result of the extinction of other lineages. This is not to
deny its major genomic relevance, most famously in
terms of the single set of Hox genes, but this genetic
architecture (e.g. Holland et al. 2004) may in itself be
more primitive. It does, however, suggest that attempts
to establish direct phylogenetic and functional links in
terms of key features, such as myomeres, notochord
construction, hyper-pharyngometry, sensory systems
and possibly body asymmetries, may be difficult to
achieve. Similarly, despite the major investment into
tunicate genomics, it seems possible that this group is
very specialized and genomically it shows various
peculiarities (e.g. Edvardsen et al. 2004; Gissi et al.
2004; Ikuta et al. 2004; Seo et al. 2004). One
consequence of this may be the widespread assumption
that the ‘tadpole’ larva is instructive with respect to
vertebrate origins. This claim may be wide of the mark.
Indeed, it is yet another attempt to place a phylogenetic
burden on the metaphorical shoulders of larval forms,
a burden they were never intended to bear.

Clearly, deuterostome phylogeny will remain an
active area of debate for many years. This applies also
to particular fossil taxa, notably the vetulicolians and
yunnanozoans. The former were initially described as
arthropods, and this possibility was reiterated as one
phylogenetic solution to a discovery of what appears a
new example from the Middle Cambrian of Utah
(Briggs et al. 2005). If accepted, this would point to
some radical re-thinking of arthropod phylogeny. Just
how radical is apparent from the fact that such a
scheme would also have to accommodate other
members of the vetulicolians, such as Didazoon and
Xidazoon, and almost certainly Banffia (Shu et al.
2001b). The absence, in particular, for any evidence of
any appendages, jointed or lobopodian, is perhaps
surprising and at present the arthropod-like features
most clearly expressed in the abdomen may be better
interpreted as convergent. The alternative scheme of
interpreting vetulicolians as primitive deuterostomes
does, therefore, seem to have more merit. In particular
the perforations along either lateral margin, and
associated structures which show their most complex
development in Vetulicolia, seem to represent gill
openings. The bipartite body may also provide a link
with the vetulicystids, as well as to the chordates via the
somato-visceral hypothesis of Romer (see Shu et al.
2001b, 2003b for further explanation).

Yunnanozoans were first identified, albeit as a highly
enigmatic group, more than 15 years ago (Hou et al.
1991), and although now generally accepted as
deuterostomes (e.g. Chen et al. 1995a; Shu et al.
1996b, 1999, 2003b; Mallatt & Chen 2003; Chen
2004) have attracted major controversy in terms of
their position and so importance. One possibility is that
they are allied to the hemichordates (Shu et al. 1996b),
but the alternative hypothesis that they are effectively
pre-vertebrates (Mallatt & Chen 2003) has also
attracted support. In commenting on the strengths of
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this latter view, Briggs & Fortey (2005) noted that in
the cladistic analysis of Mallatt & Chen (2003) no less
than 40 characters supported a chordate affinity. All
depends, of course, on the usefulness and reliability of
these characters. For example, although eyes have been
identified (e.g. Mallatt & Chen 2003; Chen 2004), and
reconstructions accordingly equipped, the illustrated
specimens indicate at best vague structures, sometimes
only seen on one side of the head. In the Chengjiang
Lagerstätte, however, unequivocal eyes are routinely
preserved and often prominent, as in the fish
Haikouichthys (see Shu et al. 2003a). In the many
exquisitely preserved specimens of Haikouella jianshan-
ensis (Shu et al. 2003b), no eyes were identified. Similar
remarks apply to such features as supposed mouth,
tentacles and teeth. The structure identified as a
notochord has neither the preservation nor functional
position to be convincing, while the putative myomeres
are very unlikely to be constructed in the diagnostic
cone-in-cone structure of vertebrate muscle blocks. In
all yunnanozoans, the segmental boundaries are at best
gently arcuate, having neither a V let alone a W shape.
In addition, the anterior-most segment of the trunk
series, which has the same style of preservation, has an
approximately triangular shape, which again is very
difficult to reconcile with a myomere. Finally, the
surface of this trunk region was evidently cuticular, to
judge from its sometimes wrinkled texture. This is
consistent with a relationship to the vetulicolians (Shu
et al. 2001b), but has no counterpart in unequivocal
chordate material from Chengjiang (Shu et al. 1999,
2003a). Extraordinarily, a relatively enormous tripar-
tite brain has been identified (Mallatt & Chen 2003,
fig. 5; Chen 2004), even though it is at least an order of
magnitude larger than any equivalent structure in
animals of broadly comparable organizational com-
plexity. In conclusion, although rare, even unique,
specimens may fortuitously display structures
‘expected’ in a primitive chordate, larger suites of
material repeatedly throw severe doubt on many of
these interpretations.

It is evident, therefore, that many of these fossils will
continue to attract controversial interpretations. In
addition, there are a number of enigmatic forms whose
position in early metazoan phylogeny is still conjec-
tural. These include the eldoniids (and rotadiscids),
nectocaridids, odontogriphids, amiskwiids and vetus-
tovermids. This is not to say we lack some existing
proposals. As noted above, eldoniids and their relatives
have some intriguing similarities to the holothurians,
but seem to be at variance with our current models of
echinoderm phylogeny. New material of odontogri-
phids and possibly nectocaridids has been collected by
the Royal Ontario Museum expeditions to the Burgess
Shale locality ( J. Caron & D. Collins 2005, personal
communication), and their reinterpretation is eagerly
awaited. The amiskwiids are particularly intriguing,
and although reported from the Chengjiang Lager-
stätte (e.g. Chen et al. 2002b, pl. 27, pp. 174–175,
fig. 7) our principal evidence still comes from the
Burgess Shale (Conway Morris 1977). Although
Butterfield (2003) attempted to smuggle Amiskwia
back into the chaetognaths, his argument that the
taphonomic environment was unconducive to
Phil. Trans. R. Soc. B (2006)
the preservation of the diagnostic grasping spines is
negated by just this sort of preservation in the
chaetognaths from Chengjiang (and also the Burgess
Shale; see above). While rejecting any close similarity
between Amiskwia and nemerteans (Conway Morris
1977), this possibility might still bear further investi-
gation. The nemerteans were also proposed as a
possible home (among many others) for the vetusto-
vermids (Chen et al. 2005), but in describing what is
obviously the synonymous Petalilium (not Petalium as
spelt in Chen et al. 2005), the authors of this
description (Chen et al. 2002b, pl. 21, fig. 1 and 2)
suggested this animal was some sort of arthropod.
Indeed, this animal may have more significant simi-
larities to some primitive arthropods, notably Keryg-
machela (see Budd 1999). Many of these ideas are still
provisional and will require major, even radical,
change, but the discovery and description of new
material clearly suggests that in a few years a number of
existing hypotheses will have been confirmed, or
entirely dismissed.
6. CONCLUSIONS
In this review I have most touched on current
controversies in animal phylogeny, as well as trying to
describe an outline of evolutionary events in post-
glacial (‘snow-ball’) times. There are, of course,
numerous ancillary questions which can only be
touched upon. Among the most significant are the
proposed roles of developmental genes, both in
explaining transformation into new bodyplans and
providing a guide to the likely organization in primitive
animals, now long extinct. The growing realization,
however, of major redeployment and co-option of
genes, as well as evidence that closely related forms may
employ surprisingly different developmental pathways
to produce phenotypically very similar structures
suggests that the attempt to define genetic archetypes
may not be straightforward. Put simply, genomic
systems are probably highly dynamic, that is they
evolve. This is not to deny there will be phylogenetic
footprints, but to infer various organ systems, e.g. eye,
heart, mesoderm, on the basis of inferred gene
possession in Neoproterozoic and Cambrian animals
may be more conjectural an exercise than expected.
Possibly ‘unexpected’ configurations of anatomy in
fossil material may be helpful in this regard.

My main conclusion is that the Cambrian
‘explosion’ is a real event. This does not mean,
however, Darwin’s dilemma is quite the problem it
may at first appear. It does seem most likely that for the
vast bulk of the Precambrian there were no animals, for
reasons reviewed above. One alternative, which I
consider unlikely but still needs to be entertained, is
that animals are very ancient indeed, perhaps evolving
in excess of 2 Gyr ago, but existed as extremely
scattered and sparse populations, unable to expand
because of environmental constraints. In one sense, if
metazoans were the ‘sleeping beauty’ of such a world, it
is more or less academic when and where they
appeared. It does, however, suggest a line of investi-
gation to see whether they are convincing
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environmental signatures which might be associated
with the extremely problematic claims for very early
animals.

Taking, however, the first view as correct, the next
step is to suggest that the latest Neoproterozoic
advanced eukaryotic assemblages did include animals,
but also a number of protistan groups, some of which
possibly rivalled the organismal complexity of these
primitive animals. This, of course, raises intriguing
questions concerning protistan evolution. The Edi-
acaran animals are for the most part problematical, but
properly understood they will provide historical
evidence as to the initiation of the Cambrian
‘explosion’, an initiation which may only predate the
Cambrian faunas by ca 15 Myr. The massive burst of
diversification we see in the Cambrian itself is a real
event, and is brought home forcibly from three
perspectives. First, there is what we might call
‘phylogenetic telescoping’, whereby primitive and
advanced groups co-existed. If, for example, our ideas
on deuterostome evolution are in any way accurate then
vetulicolians, vetulicystids, yunnanozoans, echino-
derms, cephalochordates and fishes are all effectively
contemporaneous. Second, the essentialist view
adopted by some zoologists, whereby Cambrian fossils
are either familiar, e.g. mollusc, or weird, i.e. to be
ignored for all intents and purposes, is not likely to be
helpful. Rather this medley of forms, often admittedly
puzzling and controversial, surely gives us our best clue
as to not only how certain bodyplans were actually
constructed, but what the functional and ecological
contexts might have been. Third, what are now seen as
widely disparate groups arose from a plexus of forms
which in the Lower and Middle Cambrian showed little
difference among themselves. The halkieriids suggest,
for example, that groups as diverse as annelids,
brachiopods, molluscs and possibly other lophotro-
chozoans evolved from a group whose differences were
at that time little more than generic. The implications
for this in terms of the debate of supposedly
macroevolutionary processes operating in the origin
of ‘phyla’ should be obvious.

Does this course of events create a problem for
Darwinism, even for evolution? I do not think so. In
particular, the search for any sort of trigger may be to
misunderstand the problem. Rather than invoking an
almost endless litany of possibilities, among which
some of the more popular include the invention of a
Hox gene, eyes, cell signalling, extracellular matrix,
nerve cells, armour, guts and so on, it may be more
useful to regard this event as the natural and inevitable
result of the continuing evolution of a planetary
system that shows cumulative and irreversible bio-
geochemical changes. As and when the conditions are
appropriate, the opportunism and flexibility of the
evolutionary process will exert itself. This is hardly
surprising given both adaptive advantage and the fact
that much of the molecular architecture necessary for
complex organisms had evolved much earlier. In the
context of thresholds that had to be passed, it is
tempting to consider, as indeed many have already,
either rising levels of atmospheric oxygen (e.g.
Canfield & Teske 1996) or falling surface tempera-
tures (e.g. Schwartzman 1999). However, given that
Phil. Trans. R. Soc. B (2006)
much of evolution is conducted in terms of organismal

interactions, it may be the resilience or more probably

the vulnerability of Precambrian microbial systems

that will be informative.

Once the first animal appeared, and recall that on

the metaphorical ‘day one’ this was just another

protistan experiment, then the ecological ball auto-

matically began to roll. The complex ecologies which

rapidly developed were subject to both continuing

expansion and feedback, and as others have argued that

in essence was the Cambrian ‘explosion’, the reverbera-

tions of which continue until the present day. The final

point of which to speculate is to whether what

transpired on this planet had parallels on other Earth-

like planets. That is, however, another question.
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the opportunity to participate. I am also very grateful to
Sandra Last for helping to prepare the text under pressure of
time, as well as the constructive comments of a reviewer. My
work depends on the expertise of numerous scientists, and I
wish especially to thank Graham Budd, Nick Butterfield,
John Peel and Degan Shu for discussions. This work has been
supported by the Royal Society and St John’s College,
Cambridge. This is Cambridge Earth Sciences publication
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animals more the 1 billion years ago: trace fossil evidence

from India. Science 282, 80–83. (doi:10.1126/science.282.

5386.80)

Seilacher, A., Grazhdankin, D. & Legouta, A. 2003

Ediacaran biota: the dawn of animal life in the shadow

of giant protists. Paleontol. Res. Jpn 7, 43–54. (doi:10.

2517/prpsj.7.43)

Seo, H. C. et al. 2004 Hox cluster disintegration with

persistent anteroposterior order of expression in Oiko-

pleura dioica. Nature 431, 67–71. (doi:10.1038/

nature02709)

Shu, D.-G. 2003 A paleontological perspective. Chin. Sci.

Bull. 48, 725–735. (doi:10.1360/03wd0026)

Shu, D.-G., Conway Morris, S. & Zhang, X.-L. 1996a A

Pikaia-like chordate from the Lower Cambrian of China.

Nature 384, 157–158. (doi:10.1038/384157a0)

Shu, D.-G., Zhang, X. & Chen, L. 1996b Reinterpretation of

Yunnanozoon as the earliest known hemichordate. Nature

380, 428–430. (doi:10.1038/380428a0)

Shu, D.-G. et al. 1999 Lower Cambrian vertebrates from

south China. Nature 402, 42–46. (doi:10.1038/46965)

Shu, D.-G., Chen, L., Han, J. & Zhang, X.-L. 2001a An

Early Cambrian tunicate from China. Nature 411,

472–473. (doi:10.1038/35078069)

Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang,

X.-L., Zhang, Z.-F., Liu, H.-Q., Li, Y. & Liu, J.-N. 2001b

Primitive deuterostomes from the Chengjiang Lagerstätte

(Lower Cambrian, China). Nature 414, 419–424. (doi:10.

1038/35106514)

Shu, D.-G. et al. 2003a Head and backbone of the Early

Cambrian vertebrate Haikouichthys. Nature 421, 526–529.

(doi:10.1038/nature01264)

Shu, D.-G., Conway Morris, S., Zhang, Z.-F., Liu, J.-N.,

Han, J., Chen, L., Zhang, X.-L., Yasui, K. & Li, Y. 2003b

A new species of yunnanozoan with implications for

deuterostome evolution. Science 299, 1380–1384. (doi:10.

1126/science.1079846)

Shu, D.-G., Conway Morris, S., Han, J., Zhang, Z.-F. & Liu,

J.-N. 2004 Ancestral echinoderms from the Chengjiang

deposits of China. Nature 430, 422–428. (doi:10.1038/

nature02648)

Smith, A. B. 2005 The pre-radial history of echinoderms.

Geol. J. 40, 255–280. (doi:10.1002/gj.1018)

Smith, M. M. & Johanson, Z. 2003 Separate evolutionary

origins of teeth from evidence in fossil jawed ver-

tebrates. Science 299, 1235–1236. (doi:10.1126/science.

1079623)

Sorauf, J. E. & Savarese, M. 1995 A Lower Cambrian coral

from South Australia. Palaeontology 38, 757–770.

Steiner, M., Mehl, D., Reitner, J. & Erdtmann, B.-D. 1993

Oldest entirely preserved sponges and other fossils from

the Lowermost Cambrian and a new facies reconstruction

of the Yangtze platform (China). Berl. Geowiss. Abh. (E) 9,

293–329.

Szaniawski, H. 2002 New evidence for the protoconodont

origin of chaetognaths. Acta Palaeontol. Pol. 47, 405–419.

Szaniawski, H. 2005 Cambrian chaetognaths recognized in

Burgess Shale fossils. Acta Palaeontol. Pol. 50, 1–8.

Telford, M. J. 2004 Animal phylogeny: back to the

Coelomata? Curr. Biol. 14, R274–R276. (doi:10.1016/

j.cub.2004.03.022)

Tuinen, van M. & Hadley, E. A. 2004 Calibration and error in

placental molecular clocks: a conservative approach using

the cetartiodactyl fossil record. J. Hered. 95, 200–208.

(doi:10.1093/jhered/esh045)

http://dx.doi.org/doi:10.1093/icb/43.1.127
http://dx.doi.org/doi:10.1666/0094-8373(2005)031%5B0036:TAMOEA%5D2.0.CO;2
http://dx.doi.org/doi:10.1666/0094-8373(2005)031%5B0036:TAMOEA%5D2.0.CO;2
http://dx.doi.org/doi:10.1093/molbev/msi102
http://dx.doi.org/doi:10.1093/molbev/msi111
http://dx.doi.org/doi:10.1666/0022-3360(2005)079%5B1021:MPITOT%5D2.0.CO;2
http://dx.doi.org/doi:10.1666/0022-3360(2005)079%5B1021:MPITOT%5D2.0.CO;2
http://dx.doi.org/doi:10.1666/0022-3360(2005)079%5B0987:NCFTEC%5D2.0.CO;2
http://dx.doi.org/doi:10.1666/0022-3360(2005)079%5B0987:NCFTEC%5D2.0.CO;2
http://dx.doi.org/doi:10.1126/science.1070166
http://dx.doi.org/doi:10.1016/j.precamres.2004.05.008
http://dx.doi.org/doi:10.1016/j.precamres.2004.05.008
http://dx.doi.org/doi:10.1038/21631
http://dx.doi.org/doi:10.1038/21631
http://dx.doi.org/doi:10.1073/pnas.0409891102
http://dx.doi.org/doi:10.1073/pnas.0409891102
http://dx.doi.org/doi:10.1073/pnas.0407588101
http://dx.doi.org/doi:10.1126/science.282.5386.80
http://dx.doi.org/doi:10.1126/science.282.5386.80
http://dx.doi.org/doi:10.2517/prpsj.7.43
http://dx.doi.org/doi:10.2517/prpsj.7.43
http://dx.doi.org/doi:10.1038/nature02709
http://dx.doi.org/doi:10.1038/nature02709
http://dx.doi.org/doi:10.1360/03wd0026
http://dx.doi.org/doi:10.1038/384157a0
http://dx.doi.org/doi:10.1038/380428a0
http://dx.doi.org/doi:10.1038/46965
http://dx.doi.org/doi:10.1038/35078069
http://dx.doi.org/doi:10.1038/35106514
http://dx.doi.org/doi:10.1038/35106514
http://dx.doi.org/doi:10.1038/nature01264
http://dx.doi.org/doi:10.1126/science.1079846
http://dx.doi.org/doi:10.1126/science.1079846
http://dx.doi.org/doi:10.1038/nature02648
http://dx.doi.org/doi:10.1038/nature02648
http://dx.doi.org/doi:10.1002/gj.1018
http://dx.doi.org/doi:10.1126/science.1079623
http://dx.doi.org/doi:10.1126/science.1079623
http://dx.doi.org/doi:10.1016/j.cub.2004.03.022
http://dx.doi.org/doi:10.1016/j.cub.2004.03.022
http://dx.doi.org/doi:10.1093/jhered/esh045


The realities of the Cambrian ‘explosion’ S. Conway Morris 1083
van Iten, H., Leme, J. M., Rodrigues, S. C. & Simoes, M. G.

2005 Reinterpretation of a conulariid-like fossil from the

Vendian of Russia. Palaeontology 48, 619–622. (doi:10.

1111/j.1475-4983.2005.00471.x)

Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X. & Casanova,
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