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Modelling of orbital deformation using
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The purpose of this study was to develop a three-dimensional finite-element model (FEM) of
the human orbit, containing the globe, to predict orbital deformation in subjects following a
blunt injury. This study investigated the hypothesis that such deformation could be modelled
using finite-element techniques. One patient who had CT-scan examination to the
maxillofacial skeleton including the orbits, as part of her treatment, was selected for this
study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan
images. Simulations were performed with a computer using the finite-element software NISA
(EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with
30 m sK1 velocity. The FEM was then used to predict principal and shear stresses or strains
at each node position. Two types of orbital deformation were predicted during different
impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values
ranged from 213.4 to 363.3 MPa for the maximum principal stress, from K327.8 to
K653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the
maximum shear stress. This is the first finite-element study, which demonstrates different
and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite
element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of
orbital deformation.
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1. INTRODUCTION

The morphology of a bone is influenced by its
mechanical environment and loading history (Hylander
1977; Lanyon 1987; Al-Sukhun 2003). This also applies
to the orbit, and several workers have suggested that
the adaptive response of the primate orbit is reflected in
its morphology (Ravosa et al. 2000). The patterns of
stress and deformation occurred in the orbit may
influence the biomechanics of internal fixation of orbital
fractures especially when using implants, e.g. bio-
degradable, titanium miniplates and/or autogenous
bone grafts to reconstruct the orbital floor. Although
treatment of orbital fractures has a moderate success
rate, the long term clinical significance of orbital
deformation on implant treatment is still unknown.
The possibility that orbital deformation and the
resulting stresses may be a source of implant failure
cannot be excluded. While intra-orbital techniques, i.e.
strain gauges provide a ‘gold standard’ for measure-
ments of stresses or forces, they are complex and
unsuitable for clinical use. This problem, however, may
be overcome by modelling techniques, such as the
finite-element analysis (FEA).

Insights into orbital deformation or loading have
been gained from measurements of regional surface
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strain in living macaques (Ravosa et al. 2000). The
extent to which these observations can be extrapolated
to human beings is uncertain because of the conspic-
uous differences in morphology and function between
the species. Currently, the direct measurement of bone
strain, using electrical strain gauges, in living human
subjects is impractical. Photoelastic measurements
have also been made on physical models of other bony
structures such as the mandible (Ralph & Caputo 1975;
Mongini et al. 1979; Standlee et al. 1981), but this
technique is of limited quantitative value. As in the
majority of experimental stress methods, its main
disadvantage is that it is not appropriate for analysing
strain under in vivo conditions. However, the method is
non-destructive and enables the investigator to visual-
ize the distribution of surface strains.

The commonest approach has been to use math-
ematical modelling, where it is a much easier task to
specify the locations and orientations of putative
muscle tension vectors in three-dimensional space.
While few mathematical models were reported to
investigate bony structures, e.g. mandible and femur,
no attempts were made to build a mathematical model
to study the deformation of the orbit. In these models,
it has been assumed that the bone is a rigid structure,
and as such behaves according to static equilibrium
theory (Gysi 1921; Robinson 1946; Hylander 1975).
Mathematical models necessarily assume structural
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Table 1. Summary of material properties. (E, Young’s
modulus of elasticity; n, Poisson’s ratio.)

structure E (MPa) n

density
(kg mK2) source

cornea nonlinear — 1400 Uchio et al.
(2001)

sclera nonlinear — 1400 Uchio et al.
(2001)

ciliary body 11.0 0.40 1600 Power (2001)
fatty tissue 0.047 0.49 999 Power (2001)
vitreous 0.042 0.49 999 Power (2001)
aqueous 0.037 0.49 999 Power (2001)
lens — — 315 Power (2001)
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rigidity and concentricity in the sagittal view, factors
which complicate the analysis and limit their useful-
ness. Such restrictions encourage the development of
models which are more representative of non-rigid,
inhomogeneous structures, and which allow the
simulation of wide areas of muscle attachment
(Korioth & Versulis 1997; Al-Sukhun 2003). As an
alternative, indirect mathematical approach, the
finite-element modelling technique offers the advan-
tage of being able to model structures with intricate
shapes and indirectly quantify their complex mechan-
ical behaviour at any theoretical point. Since the
finite-element method uses the theories of elasticity
and static equilibrium, the effects of multiple external
forces acting on a system can be assessed as physical
events in terms of deformations, stresses or strains.
This study investigated the hypothesis that such
deformation could be modelled using finite-element
techniques.
2. MATERIAL AND METHODS

One patient who had CT-scan examination to the
maxillofacial skeleton including the orbits, as part of
her treatment, was selected for this study. The patient
gave her written consent to use the CT-scan images for
medical research purposes. A finite-element model
(FEM) of one of the orbits containing the globe was
constructed, based on CT-scan images. Simulations
were performed with a computer using the finite-
element software NISA (EMRC, Troy, USA).

Building a FEM can be divided into two stages—
geometric modelling and finite-element modelling.
2.1. Geometric modelling and material
properties

The purpose of the geometric modelling stage is to
represent geometry in terms of points (grids), lines,
surfaces (patches) and volumes (hyper-patches). The
geometry of the human orbit including the eye, fatty
tissues and extra-ocular muscles was constructed,
based on CT-scan images. CT was performed using a
Siemens Somatom CR CT scanner (Siemens, Erlangen,
Germany). Voltage was 125 kV, MAS 500, measuring
time 7 s, projections 720. Sagittal and coronal slices
perpendicular to the optic nerves of both eyes were
obtained using a T1-weighted spin-echo (SE) sequence
600/15/3 (TR/TE/excitations). Coronal T2-weighted
fat suppression sequences 1800/20/1/150 (TR/TE/
excitations/FA) of the blow-out fracture eye were
obtained. The slices were 2 mm thick, with a 0.2 mm
gap between slices.

The material properties of the finite-element model
of the orbital bone and graft were based on the
measured X-ray attenuation coefficients. These coeffi-
cients (Hounsfield values) were directly converted into
density values and then into elastic stiffness values on
the basis of data reported by Carter & Hayes (1977).
The material properties of the several components of
the eye are summarized in table 1 and taken from
studies by Power (2001) and Uchio et al. (2001, 2003).
The lens was modelled as a rigid body, and the
J. R. Soc. Interface (2006)
vitreous as a solid mass with hydrostatic pressure of
20 mm Hg (2.7 KPa). The cornea was loaded with the
intra-ocular pressure on the posterior surface and with
the atmospheric pressure on the anterior surface. The
loading produced by the eyelids was ignored
(Kobayashi et al. 1971; Uchio et al. 2003). The FEM
was loaded with multiple force vectors to simulate
muscle forces over wide areas of attachment as
described by Al-Sukhun et al. (in press; tables 2
and 3). Groups of parallel vectors simulated four
extra-ocular muscles (superior and inferior rectus
muscles, medial and lateral rectus muscles and
superior and inferior oblique muscles) assumed to be
directly attached to the bone. The resultant vector of
muscle force (Mir) for a particular muscle in isometric
contraction during a specific movement could be given
by the product

½Xmi$K �!½EMGmi�ZMir;

where Xmi is the cross-sectional area of muscle mi in
cm2, K is a constant for skeletal muscle (expressed in
N cmK2) and EMGmi is the ratio or scaled value of the
muscle contraction relative to its maximum response
for a specific task (Korioth & Versulis 1997; Al-Sukhun
2003; Al-Sukhun et al. in press). The product [Xmi$K ] is
referred to as the weighting factor given to the muscle
mi (table 2) and the value EMGmi as its scaling factor
(table 2). Upon multiplying the weighting factor of a
particular muscle by its scaling factor we obtained Mir.
The product of Mir and its corresponding unit vector
yielded the orthogonal vector force components. These
were subsequently proportioned between the nodes,
which formed the corresponding area of muscular
attachment (table 2). The mean values of the cross-
sectional-areas and the angulation of each muscle in the
sagittal and frontal plane were obtained using CT scan
imaging technique (Siemens Somatom DR 2, Siemens
GmbH, Munich, Germany). It was not possible to
obtain these values for the superior and inferior oblique
muscles. Therefore, it was decided to model the sup
oblique muscle through the trochlea, fastened between
the medial wall and roof of the orbit. The inferior
oblique muscle was attached between the orbital floor
and the sclera. Both were defined as 0.2 mm and
assigned a tensile strength of 20 MPa. The initial
approximation is supported by the high tensile strength



Table 2. Number and magnitudes of muscle loads used in the
FEM. (The number of nodes reflects the amount of vectors
applied to the orbit or eye ball for each corresponding muscle.
The x -, y - and z-coordinates represent the muscle loads (in
Newton) and their three-dimensional directions. All coordi-
nates are referenced to a global Cartesian coordinate system
where the x–y plane is the frontal plane, x–z represents the
horizontal plane and the y –z indicates the mid-sagittal
plane.)

muscle
muscle cross-
section (CM2) nodes x y z

superior
rectus

1.15 19 K0.06 0.18 0.06

inferior
rectus

1.06 23 0.23 0.09 0.49

medial
rectus

0.99 21 0.11 K0.21 K0.01

lateral
rectus

1.16 22 0.12 1.33 0.59

Table 3. Maximum stress values predicted by the FEM during
all simulated orbital trauma.

maximum
stress
(MPa)

direction of the missile with
a 30 m sK1 velocity

direct
blunt
injury

458
upward

458
down-
ward

458
right

458
left

maximum
principal

333.3 363.3 355.4 219.9 270.9

minimum
principal

K555.4 K653.1 K558.9 K327.8 K380.1

maximum
shear

421.1 444.3 410.2 290.8 210.3

Modelling of orbital deformation J. Al-Sukhun and others 257
reported for collagen and the large amount of collagen
in these structures (Power 2001; Uchio et al. 2001,
2003).
2.2. Finite element modelling

The geometric entities created in the previous step were
mapped with finite-elements and nodes. The complete
geometry is now defined as an assemblage of discrete
pieces called elements, which are connected together at
a finite number of points called nodes (figures 1 and 2).
The mapping was performed with the semi-automatic
option finite-element generation available in Display III
(NISA, EMRC, Troy, USA). The mesh volumes of the
bony orbit, vitreous and fatty tissues were subdivided
into brick-shaped (six sided with 24 degrees of freedom)
and wedge-shaped (five sided with 18 degrees of
freedom) solid linear elements. Triangular membrane
elements were used to model the cornea and sclera.
Triangular elements gave better computational stab-
ility compared to quadrilateral one. To simulate the
fracture line and the graft or floor interface, friction-less
elements were used to allow free motion at the fractured
bony sides.
J. R. Soc. Interface (2006)
To maintain a proper geometrical aspect ratio, thin
regions were subdivided into an extremely high
number of elements. When the solid parabolic brick
elements were used to model such a complex shape as
that of the orbit, it was noted that although a larger
amount of degrees of freedom would have given better
interpolated data, the mid-side nodes of the elements
also allowed for higher distortions to occur (Al-Sukhun
2003; Al-Sukhun et al. in press). Thus, by selecting a
higher number of less distorted solid linear brick
elements, the orbit was expected to be satisfactorily
modelled. The FEM was checked for node coincidence
and discontinuities (i.e. gaps between elements).

In order to establish an accurate FEM mathemat-
ically, more elements and nodes were used until the
calculated displacements at a point common to all the
meshes approached the exact solution (i.e. h-conver-
gence test; Huiskes & Hollister 1993; Al-Sukhun et al.
in press). The FEM was replicated to create 16 finite-
element models. In all cases, the geometrical, material
and boundary conditions were identical. The only
difference between these models was in the number of
degrees of freedom, with FEM-1 having the lowest and
FEM-16 the highest number of degrees of freedom. To
perform the convergence test, displacements were
calculated at a variety of locations on the orbit
following an impact of a blunt object, i.e. missile with
a 30 m sK1 velocity (figures 1 and 3).
2.3. Problem definition

It is apparent that a blunt injury can cause a large
range of ocular injuries. The most frequent objects
involved in blunt orbital trauma include fists, balls,
ends of hockey sticks and elbows. To simulate the
impact of a blunt injury to the orbit it was decided to
simulate a missile as a cylindrical rod, with a rounded
end. The diameter of one end was larger than the
orbital opening. Reviewing the literature, there was
no data collected after the event of foreign body
impact. Instead, some typical impact velocities were
conferred from industrial accidents (Power 2001;
Uchio et al. 2001). Thus a typical missile velocity of
30 m sK1 was used in this study. From considering the
clinical data, the range of missile weight in this
simulation was set at 0.5–1 kg. The impact was
initially directed at right angle to the orbital rim.
The simulation was executed five times, where the
direction of the missile impact was varied by 458—
upward, downward, right and left, respectively. The
FEM was then used to predict the stresses or strains
at each node position.
3. RESULTS

3.1. Verification of the FEM

Sixteen different finite-element models were developed
using the NISA computer software in order to perform
the convergence test (figures 1 and 3). The convergence
test for calculated displacements at nodes A, B and C
(figure 4) was plotted against the number of degrees of
freedom and this demonstrates that accurate results
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Figure 1. (a) Cross-sectional images of the scanned orbit, (b) antero-lateral view of the completed FEMmodel including the bony
orbit and the globe, and (c) cross-section of the meshed globe and its internal structures.
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Figure 2. Antero-lateral view of the completed mesh model of the orbit en-housing the globe. (a) Mesh 8: 16 400 elements, 22 500
nodes, 32 500 degrees of freedom, (b) mesh 16: 33 334 elements, 34 762 nodes, 49 886 degrees of freedom. Points A, B and C
correspond to locations where convergence was monitored. The orbit was subjected to a blunt injury of a 500 mg missile with a
30 m sK1 velocity oriented at different angles.
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Figure 3. Convergence plots. Displacements of points A, B
and C were plotted against the number of degrees of freedom
for the 16 orbital meshes. Points A, B and C correspond to
locations where convergence was monitored.
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were being calculated for the nodal displacement with
the most refined mesh. Differences in calculated
displacements were only 1–7% (comparing the results
for mesh 8 and mesh 16) whereas the degrees of freedom
increased by 50% (figure 1). This indicates that mesh 8
was providing accurate results, although only 34 500
degrees of freedom were needed to achieve the
convergence. The validity of the developed FEM was
also verified by measuring its distortion and stretch
values. The software was used to measure the distortion
by comparing the shapes of the ideal elements with
those of the actual elements (the ideal shape of a brick
element is a cube with quadrilateral faces). If an
element matched the ideal shape, its distortion equalled
one. As the shape of the element deviated from the
target shape, the distortion value decreased. Overall,
the distortion and stretch values of the finite-element
models exceeded 0.4, the recommended minimum
distortion index value defined by the manufacturer of
the software.
J. R. Soc. Interface (2006)
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Figure 4. Antero-lateral view of the FEM in its non-deformed (black) and deformed (red) states during various simulations.
Maximum displacements affected the medial wall and/or the postero-medial part of the orbital floor. The display of the deformed
state was magnified 10 times and the globe was omitted to make the distinction more evident.
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Figure 5. (a) Maximum principal stress bands on the orbit when subjected to a blunt injury of a missile with 30 m sK1 velocity
directed at right angle to the orbital rim. Colour numbers reflect stress magnitudes. To enhance the distribution patterns of
principal stresses on the cortical surface of the orbit, the stresses were displayed at lower ranges of magnitude. (b) Deformation
shown in the form of vector display of maximum principal stress. The highest values (blue and green arrows) affected the medial
wall and the postero-medial part of the orbital floor. The display of the deformed state was magnified 10 times and the globe was
omitted to make the distinction more evident.
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3.2. Orbital displacement

Each simulated missile impact (blunt injury) caused
the orbit to deform in a different way. Antero-lateral
views of the FEM are shown in figure 4. The missile
was simulated at right angle to the orbital rim
(MOR), 458 upward (MU), 458 downward (MD), 458
right (MR) and 458 left (ML). The non-deformed state
in each figure depicts the model with its structural
elements in their unloaded condition. The deformed
state is one in which the action of the missile displaced
the structural elements, and the model has reached
the state of static equilibrium. Displacement has been
J. R. Soc. Interface (2006)
magnified in the figures to make orbital deformation
more evident. Actual deformations were relatively
large; the maximum displacement for the MOR was
128.8 mm, for MR 85.4 mm, for ML 61.3, for MU
111.1 mm and for MD 111.9 mm. During MOR
and MD the orbit deformed in anti-clockwise manner,
and the inferior walls were displaced downward and
inwards indicating orbital rotation. During MR
and ML the right and left sides of the orbit deformed
turning anti-clockwise and clockwise, respectively.
During MU the medial and inferior walls were
displaced laterally and inferiorly, respectively, rather



maximum principal stress (MPa)

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17
nodes

MOR MD MU MR ML

maximum shear stress (MPa)

0
1
2
3
4
5
6
7
8
9

10

1 3 5 7 9 11 13 15 17
nodes

MOR MD MU MR ML

–16

–14

–12

–10

–8

–6

–4

–2

0
minimum principal stress (MPa)

1 3 5 7 9 11 13 15 17

nodes

MOR MD MU MR ML

A 1

8

10

9

11

18
17

16

15

4

7

13
12

P

Figure 6. Principal and maximum shear stress magnitudes at the orbital floor during various simulations. Stress values were
plotted at 18 nodes forming the cortical outline of the orbital floor. Nodes 2–9 were located on the anterior (A) aspect of the
orbital floor outline and nodes 11–18 on the posterior (P) side.
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than being rotated, indicating decreased orbital
rotation compared to MD and MOR.
3.3. Orbital stresses

Stress values ranged from 213.4 to 363.3 MPa for
the maximum principal stress, from K327.8 to
K653.1 MPa for the minimum principal stress, and
from 212.3 to 444.3 MPa for the maximum shear stress
(table 3). In all cases the maximum stress occurred in
the postero-medial part of the orbital floor (figures 4
and 5). The stress distributions are shown in the form of
contoured bands plots where each band represents a
different value.
3.4. Orbital floor stresses

Special attention was given to orbital floor stress
analysis due to its importance in the treatment of
orbital trauma. Stresses were quantified for MOR, ML,
MR, MU and ML. In all cases, MR and ML evoked the
lowest stress magnitudes (figure 6).

Maximum principal stress was higher on the
posterior aspect of the orbital region than on its
anterior side during all simulations except MU, which
evoked higher magnitudes of stress at the anterior
region of the floor. In all cases, the lowest values were
found at the most lateral locations.

Minimum principal stresses had peaks of intensity
at the anterior aspect of the orbital floor during MU,
MD and MOR. The magnitudes of maximum shear
J. R. Soc. Interface (2006)
stress were approximately symmetrically distributed
between the anterior and the posterior aspects of the
orbital floor region during all simulations except
when load was applied at right angle to the orbital
rim, which caused higher shear on the anterior orbital
rim.

The average, maximum and total force magni-
tudes for 36 nodes forming the cortical outline of the
postero-medial part of the orbital floor, during
various simulations, are shown in table 4. Although
slightly dissimilar in total magnitude, the orbital
forces were similar when load was applied at right
and left angulations. When load was applied at right
angle to the orbital rim, upward angulation and
downward angulation, the postero-medial region
experienced the highest average and total forces
overall.
4. DISCUSSION

Several three-dimensional finite-element modes of the
eyeball have been created (Power 2001; Uchio et al.
2001, 2003). In general, all the models have been
severely compromized by the oversimplification of
material properties and boundary conditions. However,
the most important deficiency in these models has
probably been the exclusion of biologically relevant
boundary conditions, such as the assignment of exper-
imentally derived muscular forces. Although the above
studies have demonstrated the biomechanical injuries of
the globe, these models were of eyeball only and ignored



Table 4. The average, maximum and total forces are given for
36 nodes forming the cortical outline of the postero-medial
part of the orbital floor.

orbital force
(N)

direction of the missile with
a 30 m sK1 velocity

direct
blunt
injury

458
upward

458
down-
ward

458
right

458
left

average 8.4 8.2 7.9 6.3 6.4
maximum 8.9 8.4 8.0 7.6 7.8
total 199.3 187.0 182.1 175.0 176.0
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other important structures such as the orbital bone and
fat. The number of elements in these studies was less
than 6632, which was small compared with the present
study (16 400). Another consistent error in all the finite-
element models mentioned here was the fact that they
did not apply the convergence theory, known as a t-test,
to validate their models and to decide whether the
refined mesh is mathematically acceptable. The best
available data on the orbital physical properties were
applied to the developed model.

It would have been ideal to determine the material
properties of the orbital bone used in the present study,
since the properties of bone have been shown to vary
significantly according to porosity and mineral content
(Currey 1988), as well as age, gender and race (Evans
1973). It was felt, however, that these factors would not
have affected the results significantly, since large
variations in material properties (up to 25%) would
have been necessary to induce significant changes in
the strain patterns (Power 2001; Al-Sukhun 2003;
Al-Sukhun et al. in press).

Finite element techniques currently used to deter-
mine trabecular stress are only able to analyse very
small regions of bone with a limited number of
trabeculae (Keyak et al. 1990) or a much larger region
of bone based on the assumption that it is a solid
with apparent material properties (Al-Sukhun 2003;
Al-Sukhun et al. in press). In this project, the
measurement of the physical properties involved the
use of CT to directly derive the mechanical properties
of bone (Keyak et al. 1990). Since a linear relationship
exists between the CT number and the apparent
density of bone, it is theoretically possible to assess
the density of bone from the images and to estimate its
elastic modulus using an equation proposed by Carter
& Hayes (1977). However, studies have demonstrated a
poor relationship between mechanically derived
material properties and those obtained by CT (Snyder
& Schneider 1991). An alternative approach using
ultrasound to determine the mechanical properties of
cortical and trabecular bone seems encouraging, since
acoustic material testing methods have proved reliable
(Ashman et al. 1984).

Ideally, clinical experiments with orbital trauma
would need to be performed to validate the FEM. At
the time of this report the only available data, in the
literature was published by Ahmad et al. (2003). They
have demonstrated that the mean force required to
J. R. Soc. Interface (2006)
cause orbital floor fracture ranged between 2.22 and
2.54 J. In this study, the simulation of a 500 g missile
with a velocity of 30 m sK1 produced a kinetic energy of
2.25 J and resulted in maximum principal stress
manifested mainly at the medial wall and the postero-
medial region of the orbital floor. Previous investi-
gations, based on results obtained from in vivo studies
on animals using strain gauges, have demonstrated the
elastic deformation of the mammalian orbit during
function (Ravosa et al. 2000). These studies concluded
that the orbital bone manifests two basic patterns of
deformation: (i) horizontal distortion, either medially
or laterally directed and (ii) rotational distortion, either
clockwise or counter clockwise. Similar forms of
deformation were noticed during various simulations.
However, comparisons between the orbital stresses
predicted by the human FEM of this study and those
obtained in macaques by Ravosa et al. (2000) were
difficult due to the lack of control of macaque orbital
loading and thus the absence of specific stresses.
Difficult experimental and anatomical conditions
further constrained the acquisition of data in macaques.
During all simulations, the FEM predicted bands of
maximum principal stress, which ran medially and
obliquely from the medial wall to the anterior and
postero-medial aspect of the orbital floor. This corre-
sponds to the well-known fact that human bone adapts
its shape and density (stiffness) according to the loading
environment, resulting in a larger bone cross-section at
the infraorbital rim. The posterior aspect of the orbital
floor was mostly affected with lower magnitudes of
principal stresses. This might be explained by the
cushioning effect of the eyeball and the underlying fatty
tissues, which provides an ideal stress-breaking mech-
anism to minimize orbital deformation. This highlights
the importance of restoring the fatty tissue during
orbital floor reconstruction following an orbital blow
out fracture. Our investigation confirms previous
reports of Waterhouse et al. (1999) namely, that the
buckling mechanism produces fractures in the postero-
medial aspect of the orbital floor and in contrast to the
hydraulic mechanism, medial wall involvement is
infrequent. According to the buckling theory direct
trauma to the orbit may cause transient deformation of
the infra-orbital rim. This is transmitted to the thinner
orbital floor causing disruption of the bone without
fracture of rim. The hydraulic theory, in contrast,
proposes that the hydraulic pressure from the globe is
transmitted to the walls of the orbit, resulting in
fracture of the orbital floor. Anatomically, the infra-
orbital rim is the thickest region in the orbit. The
maximum shear stresses predicted in this study by the
FEM for this region reached only half of the ultimate
shear strength measured experimentally for cortical
bone. The low stress value is probably related to the
relatively large cross-sectional area of cortical bone
when compared to the relatively small size of the
region, since an increase in the cross-sectional thickness
of a structure is advantageous to countering shearing
stresses (Al-Sukhun 2003; Al-Sukhun et al. in press).
The smallest cross-sectional surface of cortical bone in
the infra orbital rim region of the FEM yielded an area
of 65.5 mm2, which was close to the value of 58 mm2
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reported by Hylander (Robinson 1946). The relatively
thick cortical cross-section in both macaque and human
orbits apparently helped to decrease shear stresses.
Since these stresses did not reach the lowest values of
ultimate shear strength, the model corroborated
Waterhouse et al. (1999) and Ravosa et al. (2000)
assumptions that the infraorbital region was well suited
to withstand elevated stresses during powerful missile
impact.
5. CONCLUSION AND FUTURE
RECOMMENDATIONS

This study established that it is possible to build a
three-dimensional FEM to represent a complex struc-
ture such as the human orbit containing the globe. This
is the first study to provide data on extra-ocular
muscles magnitudes and directions. It is feasible to
simulate muscle-induced changes in the mechanical
behaviour of the orbit with FEA. Forces can be applied
to the model over wide areas at the probable sites of
muscle attachment.

We have for the first time, recorded the stresses and
forces exerted on the orbit required to produce a
fracture. However, extra efforts must be invested to
study the effect of changing the geometrical relation-
ship, material properties and boundary conditions on
stress or strain readings. The relationship between form
and function of the orbital system could be further
explored to include the effects of variations in muscle
action on the growth and development of the orbit.
Finite element modelling could also be used to deter-
mine the most convenient location, design and material
of the fracture fixation devices. In order, to specifically
test for ideal placements and types of these devices on
the orbit, the FEM could be used to simulate fractures,
the cuts bridged by fixation plates, and orbital stress
areas explored for different loading conditions and
craniofacial types. The repair of the orbital floor is still
a surgical challenge for the surgeon. It will be important
to explore various methods used currently in the
reconstruction procedure and whether an adequate
long term clinical outcome can be achieved.
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