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Rapid Communication 

PIPl  Aquaporins Are Concentrated in Plasmalemmasomes of 
Ara bidopsis thaliana Meso p h y I I’ 
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l h e  PlPl subfamily of water channel proteins (aquaporins) con- 
stitute about 1 %  of the plasma membrane (PM) proteins from 
Arabidopsis thaliana leaves. lmmunogold electron microscopy has 
confirmed their localization at the PM of mesophyll cells. Very high 
labeling density at PM invaginations known as plasmalemmasomes 
was observed. Therefore, we suggest that these subcellular struc- 
tures are involved in water transport between the apoplast and the 
vacuole. 

~ 

Until recently, biophysical investigations into water 
movement in plants gave no indication of a specific or even 
a protein-mediated mechanism for water transport other 
than simple diffusion in response to osmotic gradients (see 
Steudle and Henzler, 1995, for review). Thus, the discovery 
of a class of intrinsic membrane proteins that facilitate the 
passive exchange of water across membranes has evoked 
great interest among plant physiologists. 

The first protein of this type, functionally characterized 
by heterologous expression in Xenopus laevis oocytes, was 
the erythrocyte protein CHIP28, subsequently named 
aquaporinl (Preston et al., 1992). In the meantime, four 
additional mammalian aquaporins have been identified, 
one of which is also capable of transporting small solutes 
such as glycerol and urea in addition to water (see Knep- 
per, 1994, for review; Raina et al., 1995). 

The first aquaporin in plants to be identified was y-TIP of 
Arabidopsis thaliana (Maurel et al., 1993). Subsequently, TIP 
homologs named PIPs were found to be present in the PM 
of A. thaliana (Daniels et al., 1994; Kammerloher et al., 
1994). On the basis of N- and C-terminal sequences, two 
subfamilies of PM aquaporins in A. thaliana, designated 
PIPl and PIP2, can be distinguished. At least five PIPl and 
six PIP2 genes are expressed in A. thaliana (Weig and 
Chrispeels, 1995). Homologous aquaporins from tobacco 
(Oppermann et al., 1994) and the common ice plant 
(Yamada et al., 1995) have been functionally characterized. 
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Thus, aquaporins are a feature common to the membranes 
of both plant and animal cells. 

Aquaporins in the PM of mammalian cells are clearly the 
cause of the high water permeabilities of erythrocytes and 
renal epithelia, but they are now known to play important 
roles in numerous secretory processes, in osmoperception, 
and in highly active, near-isoosmotic transport situations as 
well (Knepper, 1994; Raina et al., 1995). By contrast, the phys- 
iological role of aquaporins in plants is less well understood. 
The preferential expression of y-TIP and one member of PIPl 
(Ludevid et al., 1992; Kaldenhoff et al., 1995) in elongating 
rather than in meristematic cells, however, does suggest that 
they may be important for cell enlargement by promoting 
water uptake. In tlus report, we show that aquaporins in A. 
thaliana mesophyll are found to be concentrated in specific 
invaginating domains of the PM called plasmalemmasomes. 
By protruding deep into the vacuole, these structures may 
allow for a rapid exchange of water with the apoplast. 

MATERIALS A N D  METHODS 

Materials 

Arabidopsis thaliana ecotype Landsberg erecta were grown 
in soil. Leaves from rosette-stage plants were harvested 
and fixed for immunocytochemistry or used for PM prep- 
arations. Secondary anti-chicken IgY antibodies were ob- 
tained from B. Kaspers (Tierarztliche Institut, Universitat 
Miinchen, Germany; monoclonal, peroxidase-coupled), 
from Promega (alkaline phosphatase-coupled), or from 
Dianova (Hamburg, Germany; 12-nm gold-coupled rabbit 
anti-chicken IgY [IgG, IgH, IgL]). AI1 other reagents were of 
the highest purity grade available and were from Sigma, 
Merck (Darmstadt, Germany), or Boehringer Mannheim. 

Purification of P M  

PM from A. thaliana leaves was prepared by aqueous 
two-phase partitioning as previously described by Kam- 
merloher et al. (1994). Srotein concentrations were deter- 
mined according to Markwell et al. (1978) using BSA as a 
standard. 

Abbreviations: GST, glutathione-S-transferase; PIP, plasma 
membrane intrinsic protein; PM, plasma membrane; TIP, tonoplast 
intrinsic protein. 
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Recombinant Expression of a PIP1 -Specific Epitope

An epitope specific for the hydrophilic N terminus of the A.
thaliana PIP1 subfamily was expressed as a fusion protein to
GST, GST-PIPla/N42, using pGEX-3X as vector (Pharmacia)
(Kammerloher et al., 1994). After lysing isopropyl-thio-galac-
toside-induced bacteria in the presence of 1% Triton X-100 by
sonication, the recombinant protein was purified by affinity
chromatography according to Pharmacia. The protein con-
centration was determined as above.

Protein Separation, Immunoblot, and Quantification

Proteins were separated on 12% SDS polyacrylamide
gels. Denaturation was performed for 20 min at 56°C with
4% (w/v) SDS and 100 ITIM DTT. Polypeptides were elec-
trophoretically transferred to nitrocellulose and bound an-
tibodies were detected with alkaline phosphatase-coupled
secondary antibodies. Peroxidase-coupled antibodies were
used for chemiluminescence detection (ECL, Amersham).
Signals were densitometrically quantified using an Eagle
Eye camera system (Stratagene) and the WinCam 2.2 (Cy-
bertech, Berlin, Germany) program. A Triton X-114 sepa-
ration of leaf PM proteins was performed as described by
Kammerloher et al. (1994).

Immunoelectron Microscopy

Leaf segments were prefixed with 0.1% (w/v) parafor-
maldehyde, 0.05% (v/v) glutaraldehyde in 50 ITIM potas-
sium phosphate buffer, pH 7.0, at 4°C for 4 h, and then
postfixed in phosphate-buffered 0.01% (w/v) OsO4 at room
temperature for 2 h. The segments were washed and im-
mersed in aqueous 0.1% (w/v) uranyl acetate for 1 h at
room temperature. These fixation conditions were deter-
mined on the basis of a dot-blot screening procedure for
assessing antigen stability (Riederer, 1989). Dehydration,
embedding, and on-section immunogold staining were car-
ried out by standard procedures (Hoh et al., 1995). Affinity-
purified PIP1 antibodies (chicken IgG, 6 ng mL"1) were
presented to sections at a dilution of 1:1 to 1:5, and second-
ary colloidal gold-coupled rabbit anti-chicken IgY antibod-
ies were presented at a dilution of 1:20. Sections were
poststained with uranyl acetate and lead citrate before they
were observed with a Philips (Eindhoven, The Nether-
lands) CM 10 electron microscope at 80 kV.

RESULTS AND DISCUSSION

Affinity-purified antibodies against PIP1 aquaporins
(Kammerloher et al., 1994) specifically recognized proteins
at 26 kD in the PM of A. thaliana mesophyll (Fig. Ib). To
estimate the relative abundance of these aquaporins in the
PM, known amounts of a recombinant PIPl-specific
epitope, expressed as a fusion protein to GST, were elec-
trophoresed along with leaf PM proteins and subsequently
blotted for immunodetection (Fig. Ib). Densitometric eval-
uation of the blot indicated that PIP1 represents 1.4% of
total leaf PM proteins. This high abundance of PIP1 aqua-
porins was confirmed in independent experiments using a
chemiluminescence detection system as well. Similarly
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Figure 1. Abundance of PIP1 in leaf PM from A. thaliana. a, Silver
staining of leaf PM. Whole-leaf PM (4 jig, PM) and aqueous (W)
versus detergent phases (D) of Triton X-114-partitioned leaf PM are
shown, b, Immunoblot with affinity-purified PIP1 antibodies. On the
same gel as in a, 5- and 10-/ng leaf PM proteins (PM, 5 and 10) were
electrophoresed along with 25, 50, 75, and 100 ng of GST-PIP1/N42
(Standards 25, 50, 75, 100) for comparison. Although the molecular
mass of the latter protein (31 kD) was very similar to that of PIP1 (30
kD, indicated by lower arrows), the intrinsic membrane protein
electrophoresed with a higher mobility. The faint band at about 50
kD in the PM lane (right upper arrow) is a residual dimeric form of
PIP1 (Kammerloher et al., 1994). Molecular masses of markers are
indicated on the left (kD).

high values have been recorded for aquaporinl in total
renal cortex membranes and are presumed to be the reason
for the high water permeability of these cells (Nielsen et al.,
1993b). In accordance with the high proportion of PIP1
aquaporins, a strong silver-staining band was observed at
the expected position in an SDS polyacrylamide gel of leaf
PM proteins, with its integral membrane character being
supported by partitioning into a Triton X-114 detergent
phase (Fig. la).

Postembedding immunogold labeling confirmed the pres-
ence of PIP1 aquaporins at the PM of A. thaliana mesophyll
(Fig. 2). Labeling was restricted to the PM with virtually no
background in other compartments of the cell (Fig. 2a). The
density of labeling was quite low, except at convoluted in-
vaginations of the PM, where high concentrations of gold
particles were observed (Fig. 2b). These structures have been
described on numerous occasions in higher plant cells and
have been termed paramural bodies and, more frequently,
plasmalemmasomes (e.g. Marchant and Robards, 1968; Nishi-
gawa and Mori, 1977; Willie and Lucas, 1984). Plasmalemma-
somes represent one of two possibilities for locally increasing
the surface area of the PM. The other is a specialized form of
evaginations known as plasmatubules (Harris et al., 1982).
Since tubular profiles are occasionally seen in sectioned plas-
malemmasomes (e.g. Willie and Lucas, 1984), plasma tubules
and plasmalemmasomes are not necessarily mutually exclu-
sive structures and could simply reflect the turgor status of
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Figure 2. PIP1 immunocytochemistry. a, Specific but relatively low labeling density (indicated by arrowheads) of the PM in
A. thaliana mesophyll. X49,000. b, Highly convoluted plasmalemmasome showing intense gold labeling of vesicle
membrane. The entire structure protrudes inwardly into the vacuole lumen, bordered by the tonoplast. X45,000. c,
Tangential section showing high and specific labeling of a plasmalemmasome (arrow) and intravacuolar multivesicular
bodies (arrowheads). X33,000. Bars = 0.25 /xm.
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the cell in question. These structures have been discussed as 
artifacts of chemical fixation, but their preservation after cryo- 
fixation (Chaffey and Harris, 1985) and the specific dense 
labeling in immunocytochemical studies provide evidence of 
their genuine nature (Herman and Lamb, 1992; t h s  study). 

At those areas of Arabidopsis mesophyll cells where the 
cytoplasm is only a relatively thin layer, the plasmalemma- 
some protrudes some distance into the vacuole (Fig. 2b). As a 
result, PM and tonoplast come into close contact with one 
another, thus allowing for an accelerated exchange of water 
from the vacuole to the apoplast and vice versa. When such 
deeply protruding plasmalemmasomes are sectioned in a 
plane parallel to the PM, profiles that have been described as 
"intravacuolar multivesicular bodies" (Herman and Lamb, 
1992) are obtained. These, too, are highly labeled with PIPl 
antibodies (Fig. 2c). However, in the absence of seria1 section- 
ing data we cannot refute the claim of Herman and Lamb 
(1992) that such profiles represent intemalized plasmalemma- 
somes that are subsequently sequestered and degraded 
within the vacuole. 

Although plasmalemmasomes have been discussed as tran- 
sitory structures (Harris and Chaffey, 1985), we know little 
about their formation and fate beyond what was revealed by 
Herman and Lamb (1992). In this respect it is intriguing to 
note that aquaporins have been detected at high densities in 
multivesicular bodies in renal-collecting duct cells (Nielsen et 
al., 1993a). During vasopressin-regulated changes in water 
permeability, aquaporins apparently shuttle back and forth 
from these structures to the PM (Sabolic et al., 1995). 

Plasmalemmasomes are often seen in situations where high 
transport fluxes have been presumed, e.g. at the host-parasite 
interface in the dwarf mistletoe (Coetzee and Fineran, 1987), 
in  the scutellar epithelia of developing barley embryos (Har- 
ris et al., 1982), and in transfer cells of yomg pea leaves 
(Harris and Chaffey, 1985, and refs. therein). Analogous struc- 
tures termed charasomes, which are apparently involved in 
chloride transport, have also been recorded at the PM in the 
giant algae Charu corallina (Lucas et al., 1986). The high den- 
sity of PIPl aquaporins in plasmalemmasomes, as shown 
here, provides the first molecular clue to the role of these 
structures in plant transport processes. Clustering of aqua- 
porins may provide the means for achieving a rapid osmotic 
balance, and therefore, turgor maintenance in mesophyll 
cells. It is interesting that Hofte et al. (1991) found that a 
presumptive tonoplastic aquaporin (Phaseolus a-TIP) is 10- 
cated in multivesicular bodies in transgenic tobacco that ex- 
press Phaseolus a-TIP. Neither the mechanism responsible for 
sequestering PIPI at plasmalemmasomes is known, nor is the 
benefit of a high local aquaporin concentration instead of a 
generally increased expression at the plasma membrane 
apparent. 
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