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Abstract. Vascular morphogenesis is a vital process for
embryonic development, normal physiologic conditions
(e.g. wound healing) and pathological processes (e.g. ath-
erosclerosis, cancer). Genetic studies of vascular anom-
alies have led to identification of critical genes involved
in vascular morphogenesis. A susceptibility gene, VG5Q
(formally named AGGF1), was cloned for Klippel-Tre-
naunay syndrome (KTS). AGGF1 encodes a potent an-
giogenic factor, and KTS-associated mutations enhance
angiogenic activity of AGGF1, defining ‘increased an-
giogenesis’ as one molecular mechanism for the patho-
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genesis of KTS. Similar studies have identified other
genes involved in vascular anomalies as important genes
for vascular morphogenesis, including TIE2, VEGFR-3,
RASA1, KRIT1, MGC4607, PDCD10, glomulin, FOXC2,
NEMO, SOX18, ENG, ACVRLK1, MADH4, NDP, TIMP3,
Notch3, COL3A1 and PTEN. Future studies of vascular
anomaly genes will provide insights into the molecular
mechanisms for vascular morphogenesis, and may lead 
to the development of therapeutic strategies for treating
these and other angiogenesis-related diseases, including
coronary artery disease and cancer. 

Key words. Blood vessels; vasculogenesis; angiogenesis; vascular anomalies and malformations; Klippel-Trenaunay
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Introduction

Blood vessels are intricate networks of tubes that transport
blood throughout the entire body. A closed blood vascular
system efficiently carries nutrients, gases, wastes, hor-
mones, metabolites, as well as immune cells, to and from
distant actively metabolizing tissues. Blood vessel for-
mation is a vital and dynamic physiological process for
normal tissue growth, such as embryonic development,
wound healing, placenta formation after fertilization 
and menstrual cycle. When the formation of blood ves-
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sels is unregulated or misregulated, numerous malignant,
ischemic, inflammatory, infectious and immune disor-
ders evolve. Diseases associated with pathogenic blood
vessel formation can be characterized or caused by ex-
cessive or abnormal blood vessel formation, such as 
vascular malformations, cancer and age-related macular
degeneration, or by insufficient new blood vessel forma-
tion or vessel regression such as ischemia in heart and
brain, hypertension and neurodegeneration [1]. Under-
standing of blood vessel formation and its regulation at
the cellular, molecular and genetic levels will provide 
information critical for the prognosis and therapy of 
these diseases. On the other hand, genetic and molecular
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studies of diseases associated with abnormal blood vessel 
formation will provide fundamental understanding of
vascular morphogenesis, development and growth. Here,
we review advances in molecular genetic studies of 
a congenital vascular disorder, Klippel-Trenaunay syn-
drome (KTS), which led to the molecular cloning of 
a novel angiogenic factor VG5Q. VG5Q stands for the 
vascular 

2
gene on chromosome 5Q, and it is the first 

angiogenic factor gene identified by a human genetic 
approach. We also update the molecular genetics of other
vascular disorders. Please note that upon recent recom-
mendation by the International Gene Nomenclature
Committee, we have changed the official name for VG5Q
to AGGF1 (angio 

2
genic factor with G patch and FHA do-

mains 1).

Blood and lymphatic vessels 

The vascular system consists of blood vessels and lym-
phatic vessels (lymphatics). The blood vascular system
consists of arteries, capillaries and veins. Walls of the 
circulatory vessels (blood or lymphatic) are composed
mainly of endothelial cells (ECs) surrounded by basement
membrane and mural cells [pericytes and vascular smooth
muscle cells (SMCs)] that are embedded in an extracellu-
lar matrix (ECM). They differ in the blood pressure they
hold and the thickness of the vascular SMC layer.

Arteries
Arteries are strong, elastic and/or muscular vessels. Large
arteries branch progressively into thinner small arteries
and arterioles. The wall of a large artery consists of three
layers of tunics, the intima, media and adventitia. Tunica
intima is composed of ECs resting on a connective tissue
membrane which is rich in elastic and collagen fibers. 
Tunica media has a thick layer of SMCs and elastic con-
nective tissue. Smooth muscle fibers encircle the tube.
The outer layer, tunica adventitia, consists of fibroblasts
with irregularly arranged elastic and collagenous fibers.
This layer attaches the artery to the surrounding tissues,
which can be muscle, adipose or other types. Arterioles
have also three layers but have a decreased ratio of mural
cells. The wall of a pre-capillary arteriole consists of only
ECs and SMCs surrounded by a small amount of elastic
connective tissue. The SMCs in the walls of arteries and
arterioles are innervated by the sympathetic branches 
of the autonomic nervous system (ANS). Vasomotor im-
pulses cause SMCs to contract by reducing the diameter
of the vessels. If these impulses are inhibited, SMCs 
relax and the diameter of the vessels increases, which is
known as vasodilation. Changes in the diameters of ar-
teries and arterioles greatly influence blood flow and
pressure. 

Capillaries
Capillaries are the most abundant blood vessel in the
body. They form connections between the arterioles and
the smallest venules. Capillaries consist of a single layer
of ECs surrounded by basement membrane and a layer of
pericytes embedded within the EC basement membrane.
Because of their wall structure, they are the main site of
exchange of gases, nutrients and metabolic by-products
between blood and the tissue fluid surrounding the body
cells. Endothelial cell-cell junctions play a role in the per-
meability of the capillary walls that varies from tissue to
tissue depending upon the permeability requirements of
perfused organs [2]. 

Veins
Venules continue from the capillaries and merge to form
veins. The walls of most veins are similar to those of 
arteries in that they are composed of three distinct layers,
the intima, media and adventitia. Because the middle layer
is poorly developed, veins have thinner walls that contain
fewer SMCs and less elastic tissue than arteries. Many
veins, particularly those in the arms and legs, have flap-
like valves. Valves are open as long as the blood flow is
toward the heart and closed if it is in the opposite direc-
tion. Veins also function as blood reservoirs that can be
drawn upon in time of need. If a hemorrhage with a drop
in blood pressure occurs, the muscular walls of the veins
are stimulated by the sympathetic nervous system. The
venous constriction augments cardiac preload, helping to
raise the blood pressure, and ensures a normal blood flow.

Lymphatics
The lymphatic system consists of lymphatic capillaries
and lymphatic vessels that carry lymph and participate in
the nutritional processes of organs. Interstitial or extra-
cellular fluid is formed by leakage of blood plasma
through minute pores of the capillaries. There is a contin-
ual interchange of fluids of the blood and tissue spaces
with a free interchange of nutrients and other dissolved
substances. Most of the tissue fluid returns to the circula-
tory system by means of capillaries, which feed into
larger veins. However, large protein molecules, as well as
white blood cells, dead cells, bacterial debris, infected
substances, and larger particulate matter, pass through the
porous walls of the lymphatic capillaries and, thus, enter
the lymphatic circulatory system with the remainder of
the tissue fluid. The interstitial fluid entering the capillar-
ies is called lymph. The lymphatic capillary wall consists
of a single layer of ECs, lymphothelium. D2-40, podo-
planin, prox-1 and LYVE-1 are the new markers specific
to the lymphothelium [3, 4]. Lymphatic capillaries merge
to form lymphatic vessels or lymphatics. They are similar
to veins in structure and also have valves. Lymphatic 
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vessels merge to form larger lymphatic trunks and finally
lymphatic ducts.

Vasculogenesis, angiogenesis, vessel maturation 
and lymphangiogenesis

During embryogenesis, blood vessels are formed via two
processes: vasculogenesis and angiogenesis. Vasculogen-
esis is defined as the process in which mesoderm cells are
induced to differentiate into hemangioblasts and ECs,
which then assemble into a primitive tubular network
called the primary capillary plexus [5, 6]. Hemangioblasts
are the common progenitors of ECs and hematopoietic
cells. These two cell lines carry common markers and
share similar signaling pathways. Several signaling pro-
teins, including VEGFR-1, VEGFR-2, SCL/tal-1, Cbfa2/
Runx1/AML1, GATA-2, CD31 (PECAM) and CD34, are
induced during vasculogenesis and hematopoiesis [7].
Then, angioblasts and other endothelial progenitors differ-
entiate into arterial and venous ECs that form a capillary
plexus. The Notch pathway was found to promote arterial
fate by repressing venous differentiation [8–10]. One of
the ephrin family transmembrane ligands, Eph-B2, marks
future arterial but not venous endothelium cells, while
one of the receptors for ephrin-B2, i.e. Eph-B4, marks 
venous endothelium, at the earliest stages of capillary
plexus formation [11–13].
The primary capillary plexus later undergoes a remodel-
ing and sprouting process called angiogenesis, and is
transformed into a complex network. Further nonsprout-
ing development accompanied by recruitment of smooth
muscle cells and changes in size and mural structure
leads to the formation of arteries, capillaries and veins,
each with their own function and characteristics. Sprout-
ing angiogenesis initiates with vasodilation, which is 
presumably stimulated by hypoxia, and it then involves an
increase in the permeability of the ECs, allowing extrava-
sation of plasma proteins that lay down a provisional scaf-
fold for migrating ECs [14, 15]. To migrate, ECs need to
loosen the cell-cell junctions [2] and to relieve surround-
ing cells and matrix support by proteolytic degradations.
Proliferating ECs migrate to distant sites and a lumen 
is formed. Nonsprouting angiogenesis takes place by in-
tussusceptions in which ECs proliferate within a vessel, 
resulting in splits in the lumen or by fusion and splitting
of capillaries [16]. 
The maturation of nascent vessels involves stabilization
of the vessels by recruiting surrounding cells (pericytes
and vascular SMCs) and generating an ECM. The vascu-
lar network continues to develop and mature by growth,
branching, remodeling and pruning of its different seg-
ments in response to the demands of specific tissues and
organs. Another step of vessel maturation is tissue- and
organ-specific specialization of wall and network struc-

ture. This procedure involves arterio-venous determina-
tion, homotypic and heterotypic junction formation, and
EC differentiation to form organ-specific capillary struc-
tures [17].
Lymphangiogenesis refers to the formation of lymphatic
vessels. Although angiogenesis plays a critical role in the
progression of tumors, lymphangiogenesis may be even
more important to metastatic spread. Embryonic lym-
phatic vessels originate from blood vessels. Lymphatic
ECs originate from the cardinal vein during embryonic
development [17].

Protein factors regulating vasculogenesis,
angiogenesis, vessel maturation 
and lymphangiogenesis

A number of protein factors that play an important role 
in the regulation of vasculogenesis, angiogenesis and 
vascular maturation have been identified by biochemical
approaches or transgenic/knockout mouse studies. 

1) The best known class of angiogenic growth factors 
is the vascular endothelial growth factors (VEGFs),
including VEGF-A, VEGF-B, VEGF-C and VEGF-D.
VEGF-A is one of the most important angiogenic 
factors, and is required for the earliest stages of vas-
culogenesis. VEGF-A knockout mice fail to develop
blood islands, ECs and major vessels [18]. The con-
centration of VEGF-A in cells is strictly regulated 
as the deletion of one single copy of the gene causes
embryonic lethality in mice.
VEGF-A carries out its biological functions by binding
to its receptors, VEGFR-1 and VEGFR-2. VEGFR-2 is
an early embryonic marker for the formation of vas-
culature. Mouse embryos lacking VEGFR-2 die in
utero as a result of an early defect in the development
of hematopoietic and endothelial cells [19]. VEGFR-
1 plays a role later. Mice lacking VEGFR-1 produce
angioblasts, but cannot assemble angioblasts into func-
tional blood vessels [20]. VEGF-B was recently shown
to be capable of promoting angiogenesis through its 
receptor VEGFR-1 and the activation of Akt and eNOS-
related pathways [21]. VEGF-C is a lymphatic-spe-
cific growth factor, and VEGF-D is involved in both
angiogenesis and lymphangiogenesis, discussed in de-
tail below.

2) Receptor tyrosine kinases Tie-1 and Tie-2, and Tie-2
ligands angiopoietin-1 (Ang-1) and angiopoietin-2
(Ang-2) are another class of molecules important for
blood vessel formation. Ang-1, its receptor Tie2 and
Ang-2 (the natural antagonist for Tie2) do not seem to
be essential for vasculogenesis but instead important
for angiogenesis [22–27]. Disruption of the Tie2 gene,
Ang-1 or transgenic overexpression of Ang-2 all lead
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to embryonic lethality as a result of defects in angio-
genesis. Ang-1 stabilizes vessel walls and makes them
less leaky by promoting interactions between ECs and
the surrounding cells and ECM [27]. In the absence of
VEGF, Ang2 acts as an antagonist of Ang1 and desta-
bilizes vessels, leading to vessel regression. In the
presence of VEGF, Ang2 facilitates vascular sprouting
[17]. Tie-1 promotes EC survival possibly through ac-
tivation of phosphatidylinositol-3-kinase (PI3K) and
Akt [7]. The ligand for Tie-1 has not yet been identi-
fied.

3) Integrins and their ligands form another class of reg-
ulatory proteins which are critical for EC survival and
vascular development. They mediate cell-cell interac-
tions and cell-ECM adhesion [7]. 

4) Other important angiogenic factors include fibroblast
growth factor-2 (basic FGF, bFGF, FGF-2), platelet-
derived growth factor (PDGF) and transforming
growth factor-beta.

5) Angiogenesis is dependent on a delicate balance be-
tween activators and inhibitors during vessel forma-
tion. In addition to angiogenic growth factors (de-
scribed above) that strongly promote angiogenesis,
there are antiangiogenic factors that block angiogene-
sis. Examples include thrombospondin-1 (TSP-1),
metalloproteinase inhibitors (TIMPs), angiostatin and
endostatin [17, 28–33].

6) The VEGF-C/VEGF-D/VEGFR-3 signaling pathway
plays a central role in control of lymphangiogenesis
[34]. LYVE-1 (lymphatic vessel endothelial hyaluro-
nan receptor) and VEGFR-3 mark lymphatic vessels
in the embryo and adult [35]. The homeobox gene
Prox-1 regulates lymphatic sprouting and budding
[36]. The Syk-SLP76 pathway triggers separation of
embryonic lymphatic and blood vessels [37]. Ang2 is
thought to be involved in the maturation and pattern-
ing of lymph vessels. It was also shown that neuropilin
2 (NRP2) is required for formation of small lymphatic
vessels and capillaries [38]. For an overview of the
molecular mechanisms involved in lymphangiogene-
sis, see [39] and [40].

Vascular anomalies

The processes of vessel formation and vascular morpho-
genesis are precisely regulated, and disruption of these
processes or developmental errors affecting them leads
to a heterogeneous group of vascular anomalies, includ-
ing KTS (discussed later). 
Vascular anomalies are broadly classified into vascular tu-
mors and vascular malformations [41-43]. Vascular tumors
include hemangiomas of infancy, tufted angiomas, Ka-
posiform hemangioendotheliomas, infantile hemangio-
endotheliomas and spindle cell hemangioendotheliomas.

Vascular malformations include telangiectasia, capillary,
venous, arterial and lymphatic malformations, and com-
bined or mixed vascular malformations, such as Klippel-
Trenaunay, Parkes Weber and Servelle Martorell syn-
dromes.
Hemangiomas are benign vascular tumors of infants, and
are in fact the most common tumor of infancy, occurring
in 1.1–2.6% of newborns. For infants at 1 year of age, the
prevalence rate is as high as 10–12%. Hemangiomas of
infancy usually are not present at birth, become visible
within 1–4 weeks of neonatal life, and grow rapidly (pro-
liferative) up to 18 months of age and then begin to
regress (involute). Hemangiomas have endothelial hyper-
plasia. They can be superficial, deep or both. 
Vascular malformations are usually, but not always, obvi-
ous at birth, grow proportionally with the patient and
rarely, if ever, regress. They have a single layer of en-
dothelium. Except for some lymphatic lesions, they do
not respond to steroids. Vascular malformations can be
subcategorized according to the channel type and rheol-
ogy as either slow-flow or fast-flow [44]. They can be 
single-channel (arterial, venous, capillary or lymphatic) 
or combined-channel (arteriovenous, capillary-lymphatic,
capillary-venous, capillary-lymphatic-venous or lym-
phatic-venous) malformations. The combined vascular
malformations are often associated with bony and/or soft
tissue overgrowth (hypertrophy). KTS is an extensive
combined malformation comprising capillary, lymphatic
and venous malformations associated with overgrowth of
the affected extremity.

Clinical features of KTS

KTS (MIM 149000) [45–48] is defined as a congenital
vascular disorder comprised of (i) capillary malforma-
tions, (ii) venous malformations or extensive distribution
and early onset of the varicose veins, and (iii) hypertro-
phy of the affected tissues. Lymphatic malformations also
occur in some KTS patients (11% of cases). The presence
of two of the three cardinal features is sufficient to make
a KTS diagnosis [47]. Figure 1 shows some features with
which the KTS patients typically present. Vascular mal-
formations in KTS are the slow-flow type. Significant 
arteriovenous fistulae do not occur in KTS [49]. 
Capillary malformations (CMs, also known as portwine
stains) are the most common cutaneous vascular malfor-
mation in KTS, and occur in 98% of KTS patients [47].
CMs are red to purplish in color and can be present on
any part of the body. They consist of an increased number
of abnormal ectatic capillaries in the papillary dermis.
The walls of the capillaries are thin, and the ECs are flat
[44]. Capillary malformations in KTS can be accompa-
nied by lymphatic and venous malformations. Lymphatic
malformations occur in 11% of KTS patients, and 10%
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may degenerate into lymphedema [47]. Lymphatic mal-
formations are a defect of cutaneous and subcutaneous
lymphatic vessels. A lymphatic malformation is com-
posed of dilated lymphatic vessels filled with clear pro-
teinaceous fluid, and not connected to normal lymphatic
vessels [44].
Varicose veins occur in 72% of patients with KTS [47].
Persistence of the embryonic lateral vein is very common
in KTS (56%) [47]. Deep vein anomalies include aneury-
ismal dilation, duplication, hypoplasia, aplasia, and ex-
ternal compression of veins by fibrous bands or anom-
alous vessels [50–54]. Visceral vascular malformations
can involve the liver, kidney, bladder, rectum and lower
gastrointestinal (GI) tract, retroperitoneum, pericardium,
spine and lung. They can cause severe bleeding. 
Limb hypertrophy occurs in 67% of the KTS patients, 
of whom 88% involve the lower extremities [47]. The 
hypertrophy can involve girth and/or length. Hypertrophy
also can occur in the thorax, pelvis, abdomen, head and
neck. Macrodactyly can occur.

Genetics of KTS

Most KTS cases are sporadic. However, capillary malfor-
mations and varicose veins have been reported among fam-
ily members of the KTS patients [49, 55–57]. In addition,
there have been three reported chromosomal abnormalities
in three different KTS patients, two balanced transloca-
tions t(5;11)(q13.3;p15.1) and t(8;14)(q22.3;q13), and an
extra supernumerary ring chromosome 18 [58–60]. Trans-
location t(8;14)(q22.3;q13) and the ring chromosome 18
were shown to arise de novo. These findings suggest that
genetic factors contribute to the pathogenesis of KTS.

The finding of three different cytogenetic defects asso-
ciated with KTS may suggest that KTS is genetically 
heterogeneous, and several different genes may be in-
volved in different cases of KTS. 
Due to the sporadic nature of KTS, it is technically chal-
lenging to identify or clone a gene for KTS using the
large family-based positional cloning approach. Thus, we
focused on translocation t(5;11)(q13.3;p15.1) (fig. 2A)
for identifying a gene for KTS [58]. Our hypothesis was
that translocation t(5;11) alters the structure or expres-
sion of a gene at one of the two chromosomal breakpoints
during the formation of the translocation, which then
leads to the development of KTS. No genes were identi-
fied in a 100-kb area of the chromosome 11p15.1 break-
point; however, the chromosome 5q13.3 breakpoint was
found to be located in the promoter region of a novel gene,
which we named as VG5Q (vascular or vasculogenesis

2
gene on 

2
5
2
q; now renamed AGFF1, angio

2
genic factor 

with G-patch and FHA domains 1) [61]. The 5q13.3 break-
point is 1644 bp upstream from the start codon (fig. 2B)
and was shown to increase the expression of AGGF1 by
threefold [61]. 
A case-control association study was then carried out
with 130 KTS patients and 200 matched controls. A mu-
tation in AGGF1, E133K, was identified in 5 of 130 KTS
patients, but not in 200 normal controls [61]. The clinical
features of the five gene carriers are shown in table 1. A
statistically significant association between mutation
E133K and the risk to the development of KTS was estab-
lished (P = 0.009). Mutation E133K was later shown to
increase the angiogenic activity of AGGF1 [61]. These 
results demonstrate that mutation E133K of AGGF1 is a
functional mutation that acts by a gain-of-function mech-
anism (increased angiogenesis). These results establish

Figure 1. Klippel-Trenaunay syndrome (KTS). (A) Extensive combined capillary (port-wine satin)-lymphatico-venousomal formation 
of the right lower extremity. These may be flat, or elevated as in this case. (B) Capillary malformation (portwine stain) and varicose veins.
(C) Hypertrophic right arm and trunk together with capillary and venous malformations. Subcutaneous hypertrophy also is present (arrow).



Figure 2. (A) Translocation, t(5;11)(q13.3;p15.1), associated with KTS. Breakages occur on one of the chromosomes 5 and 11 at the bands
q13.3 (red) and p15.1 (blue), respectively. Broken pieces are exchanged between chromosomes involved, resulting in the formation of two
abnormal chromosomes, derivative chromosomes 5 and 11 (Chr, chromosome; Der, derivative). (B) AGGF1 at the 5q13.3 breakpoint. The
5q13.3 breakpoint is 1644 bp upstream from the start codon (ATG) of AGGF1. AGGF1 contains 14 exons. (C) AGGF1 protein structure.
There are four putative functional domains; coiled-coil, OCRE (octamer repeat), FHA (Forkhead-associated) and G-patch domains.

Table 1. Clinical findings of KTS patients with AGGF1 mutation E133K.

Patient ID CM VM LM Hypertrophy Others

QW576 + + N/A left leg; girth hemorrhage in right knee
QW731 + + + right foot; soft tissue hypertrophy –
QW1251 + + + right leg; girth and length café au lait spots
QW1441 + + N/A right leg; length –
QW1592 + + N/A right leg; girth and length –

CM, capillary malformations; VM, vascular malformations; LM, lymphatic malformations; N/A, data not available.
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AGGF1 as the first susceptibility gene that confers a risk
for development of KTS. 
Translocation t(8;14)(q22.3;q13) arose de novo [59],
which suggests that another pathogenic gene for KTS
may be located on chromosome 8q22.3 or 14q13. The
breakpoint on chromosome 8q22.3 has been defined to a
<5-cM interval flanked by markers AFMA082TG9 and
GATA25E10, and the 14q13 breakpoint within a 1-cM re-
gion between sequence-tagged sites (STSs) WI-6583 and
D14S989 [59]. The specific vascular gene at either 8q22.3
or 14q13 is expected to be identified in the near future.
The KTS-associated de novo mosaic supernumerary ring
chromosome 18 implicates a potential vascular and/or
overgrowth gene located on the chromosome 18 [60]. The
ring chromosome 18 r(18) was mostly derived from the
short arm of chromosome 18, and its size is estimated to be
approximately 10 cM. Further analyses of the genes on the
r(18) may lead to the identification of a new KTS gene.

AGGF1 is a novel angiogenic factor

The full-length AGGF1 complementary DNA (cDNA)
encodes a novel protein with 714 amino acids with a high
level of expression in ECs, vascular smooth muscle cells
(VSMCs) and osteoblasts (MG-63) [61]. Strong AGGF1
protein expression was detected in blood vessels embed-
ded in various tissues, including the heart, kidney, tail and
limb. AGGF1 protein contains a coiled-coil motif (amino
acids 19–85), a forkhead-associated domain (FHA, amino
acids 435–508) and a G-patch domain (amino acids
619–663) (fig. 2C). The coiled-coil motif may be involved
in protein-protein interactions. The roles of the FHA do-
main and G-patch domain in AGGF1 are not clear. The
FHA domain may be involved in phospho-dependent pro-
tein-protein interactions [62], whereas G-patch domains
have been implicated as RNA-interacting modules [63].
Recently, an OCRE (OCtamer REpeat) motif (amino
acids 197–256) (fig. 2C) was identified in AGGF1, and
the authors suggested that this motif may be involved in
RNA metabolism and/or in signaling pathways activated
by the tumor necrosis factor (TNF) superfamily of cy-
tokines [64]. 
At the cellular level, AGGF1 is mainly localized in the 
cytoplasm and around the nucleus, though signal was also
detected inside the nucleus [61]. Multiple assays showed
that AGGF1 secreted outside the endothelial cell when
angiogenesis starts (when endothelial cells are grown on
matrigel-coated plates), although weak secretion signal
was also detected with endothelial cells cultured on plas-
tic dishes [61]. Our recent results suggest that AGGF1 can
secrete outside bacterial cells containing overexpressed
recombinant AGGF1 [X. Tian and Q. Wang, unpublished
data]. The molecular mechanisms for trafficking and se-
cretion of AGGF1 remain to be established. 

With the chick chorioallantoic membrane (CAM) angio-
genesis assay, we found that the purified AGGF1 protein
(75 ng/µl) promoted strong angiogenesis (fig. 3A) [61].
Angiogenesis was also observed around the discs which
were spotted with VEGF-A (100 ng/µl) as a positive con-
trol (fig. 3A) [61]. These results suggest that, similar to
VEGF-A, AGGF1 strongly promotes angiogenesis, indi-
cating that AGGF1 is a potent angiogenic factor [61].
This conclusion is supported by our recent finding that
AGGF1 delivered as a transgene by an adenovirus vector
promoted strong angiogenesis in a matrigel angiogenesis
assay and in a mouse skeletal muscle angiogenesis assay
in vivo [S. You and Q. Wang, unpublished data]. The mol-
ecular mechanism for AGGF1-mediated angiogenesis is
not clear. On the cellular level, AGGF1 can promote weak
endothelial cell proliferation and can bind to endothelial
cells (cell adhesion); on the molecular level, AGGF1 can
bind to another angiogenic factor, TWEAK, and there
may be a cell surface receptor for AGGF1 [61]. These 
hypotheses warrant future studies. 

Molecular mechanism for the pathogenesis of KTS

Histological studies showed an increase in both the num-
ber and diameter of the venules in the dermis and subder-
mal fat and widespread hypertrophy of the smooth muscle
in the walls of subcutaneous veins [65]. The blood flow in
the affected limb is greater than the unaffected one, and
the increased blood flow is related to the presence of a ne-
vus on the affected limb [65]. MRI angiography data also
revealed the distorted architecture of the vascular system,
indicating a defect in the process of vascular growth and
remodeling [55, 66]. Our results showing that transloca-
tion t(5;11) increases expression of AGGF1, and that KTS
mutation E133K in AGGF1 promotes stronger angio-
genesis than wild-type AGGF1, suggest that the molecu-
lar mechanism for the pathogenesis of KTS is ‘increased’
angiogenesis (fig. 3B). The increased angiogenesis the-
ory is supported by the histological features of KTS and
magnetic resonance imaging (MRI) findings described
above. 
The sporadic occurrence of KTS and the mosaic pattern of
KTS features may be explained genetically by the concept
of paradominant inheritance proposed by Happle [67–69].
Based on this hypothesis, KTS would be caused by a 
defect in a lethal gene. Homozygotes for the mutation 
cannot survive, and they die during early embryogene-
sis. Heterozygous individuals are phenotypically nor-
mal. Therefore, the gene can be transmitted unperceived
through many generations until a somatic mutation or
‘second hit’ occurs in the developing embryo, causing
loss of heterozygosity and leading to the formation of a
cell population being homozygous or heterozygous for
the mutation. 
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Figure 3. (A) AGGF1 is an angiogenic factor in chick chorioallantoic membrane (CAM) angiogenesis assays. Buffer (the same elution
fraction as purified AGGF1, but from bacteria with the empty expression vector) and BSA were negative controls, and VEGF-A (100 ng/µl)
was used as a positive control. AGGF1 protein (75 ng/µl) promoted strong angiogenesis. (Adapted from Tian et al. [61] with the permis-
sion of Nature Publishing Group). (B) A molecular mechanism for the pathogenesis of KTS. Small arrows on the chromosomes show the
location of AGGF1. Translocation of the chromosome 11 sequences upstream of AGGF1 causes a threefold increase in expression of
AGGF1, resulting in increased levels of the protein. Mutation E133K increases the angiogenic activity of AGGF1. Both effects are expected 
to result in increased angiogenesis, which leads to the development of vascular malformations in KTS patients (Chr, chromosome; Der, 
derivative).
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Genetics of other vascular and vascular/overgrowth
anomalies

Molecular genetics studies have identified several dis-
ease-causing genes for other vascular anomalies. Table 2
lists some important genes identified for several vascular
and vascular/overgrowth anomalies. Two of these genes
have been linked to vascular morphogenesis before the
human genetics studies, and they are the TIE2 gene on
chromosome 9p21 and the VEGFR3 gene on 5q35.3.
Gain-of-function mutations in TIE2 cause multiple cuta-
neous and mucosal venous malformation (VMCM)
(MIM 600195) [70]. Inactivating mutations in VEGFR3
cause lymphedema type I [71]. The link of genes in 
table 2 to vascular morphogenesis was all initially identi-
fied by the human genetics approach. 
CMs (MIM 163000) are the most common cutaneous vas-
cular malformation, present in 0.3% of the newborns [72].
CMs also occur in several combined vascular anomalies 
associated with hypertrophy, as in the case of KTS. Het-
erozygous inactivating RASA1 mutations were detected in
families with CMs with either arteriovenous malformation,
arteriovenous fistula or Parkes Weber syndrome (CM-arte-
riovenous malformation, CMAVM) (MIM 608354) [73].
RASA1 codes for p120-RasGTPase-activating protein 
(p-120-RasGAP) which catalyzes intrinsic GTPase activ-
ity of Ras. It is a downregulator of the Ras/mitogen-acti-
vated protein kinase (MAPK)-signaling pathway, which

mediates cellular growth, differentiation and proliferation
from various receptor tyrosine kinases on cell surfaces
[74, 75]. The p120-RasGTPase also binds to p190-
RhoGAP which directs signaling to the cytoskeleton [76],
and to Rap1a, which is involved in integrin signaling-
mediated cellular adhesion [77, 78].
As a single entity, Parkes Weber syndrome (PKWS, MIM
608355) [79] is very similar to KTS. It is characterized 
by cutaneous CMAVMs in association with hypertrophy
of the affected limbs [80]. Several differences distinguish
these two syndromes [81]. In contrast to KTS, the vascu-
lar malformations in PKWS are fast flow and involve 
arterial malformations. Lymphatic malformations are rare
in PKWS. The hypertrophy involved in PKWS occurs
mostly in the length of the extremities. 
Type 1 cerebral CMs (CCM1) (MIM 116860) are caused
by loss-of-function mutations in the KRIT1 gene [82, 83].
KRIT1 or CCM1 gene codes for Krev interaction trapped-
1 protein, which was identified as a binding partner of
Rap1a [84], an antagonist of Ras transformation [85].
KRIT1 also binds to ICAP (integrin cytoplasmic domain-
associated proten-1), implying a process of integrin sig-
naling-mediated cellular adhesion in the pathogenesis of
CCM [86]. It is worth noting that some CCM family
members with KRIT1 mutations also have hyperkeratotic
cutaneous capillary-venous malformations [73, 87]. The
second CCM gene was identified as a novel gene,
MGC4607 on 7p15-p13, which encodes a protein, mal-

Table 2. Genetics of several vascular and vascular/overgrowth anomalies.

Disease Chromosome Gene

Venous malformations, multiple cutaneous and mucosal (VMCM) 9p21 TIE2 [70]
Lymphedema type I (Nonne-Milroy lymphedema) 5q35.3 VEGFR3 [71]
Capillary malformation-arteriovenous malformation (CMAVM) 5q13.3 RASA 1 [73]
Cerebral capillary malformation (CCM)

CCM1 7q11.2-q21 KRIT1 [82, 83]
CCM2 7p15-p13 MGC4607 [88, 89]
CCM3 3q25.2-27 PDCD10 [90]

Glomuvenous malformation (GVM) 1p22-p21 glomulin [91]
Lymphedema-distichiasis (LD) syndrome 16q24.3 FOXC2 [92]
OL-EDA-ID Xq28 NEMO [93]
Hypotrichosis-lymphedema-telangiectasia syndrome (HLTS) 20q13.33 SOX18 [94]
Hereditary hemorrhagic telangiectasia (HHT) (Osler-Rendu-Weber disease)

type 1 (HHT1) 9q34.1 endoglin (ENG) [95]
type 2 (HHT2) 12q11-q14 ACVRLK1 [96]

Juvenile polyposis/hereditary hemorrhagic telangiectasia 18q21.1 MADH4 [97]
Coats’ disease (retinal telangiectasis) Xp11.4 NDP [98]
Age-related macular degeneration: Sorsby’s fundus dystrophy (SFD) 22q12.1-q13.2 TIMP3 [102]
Cerebral arteriopathy (CADASIL) 19p13.2-p13.1 Notch3 [104]
Ehlers-Danlos syndrome, vascular type (type IV) 2q31 COL3A1 [105]
Proteus and Proteus-like syndromes 10q23.31 PTEN [107–110]
Macrocephaly, multiple lipomas, hemangiomata 10q23.31 PTEN [112]

Bannayan-Zonana syndrome (BZS)
Bannayan-Riley-Ruvalcaba syndrome (BRSS)
Riley-Smith syndrome (RSS)
Ruvalcaba-Myhre-Smith syndrome (RMSS)

Klippel-Trenaunay syndrome (KTS) 5q13.3 AGGF1 [61]
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cavernin, with a phosphotyrosine binding domain, a do-
main found in ICAP1a (a binding partner of KRIT1).
Malcavernin and KRIT1 may be members of a protein
complex involved in integrin signaling [88, 89]. The third
CCM gene, CCM3, has been identified as PDCD10 (pro-
grammed cell death 10, TFAR15) on 3q26-27 [90]. The
role of the PDCD10 gene in vascular morphogenesis re-
mains to be investigated. 
Glomuvenous malformations or glomangiomas (venous
malformations with smooth muscle-like glomus cells)
(MIM 138000) are caused by loss-of function mutations
in the glomulin (FAP48) gene coding for an FK506-bind-
ing protein (FKBP)-associated protein of 48 kD [91]. 
One form of hereditary lympedema is the lymphedema-
distichiasis syndrome (LD) (MIM 153400). It involves
lymphedema together with the presence of double rows of
eyelashes. Other complications may include cardiac and
skeletal abnormalities. LD is caused by inactivating mu-
tations in the FOXC2 (MFH-1) gene, which codes for a
forkhead transcription factor [92]. On the other hand,
lymphedema with osteoporosis, ectodermal dysplasia
(anhidrotic) and immunodeficiency, called OL-EDA-ID
(MIM 300301), was found to be caused by a mutation 
in the stop codon of the nuclear factor-kappaB (NF-kB)
essential modulator gene (NEMO) [93]. The mutation 
results in expression of a protein that is 27 amino acids
longer than the wild-type protein. It was shown that 
reduced NF-kB signaling is a possible mechanism for 
OL-EDA-ID [93]. Another interesting combination of
lymphedema with hypotrichosis (sparse hair) and telang-
iectasia (abnormal dilation of capillaries and arterioles)
(MIM 607823) was found to be caused by inactivating
mutations in the SOX18 gene, which belongs to the SOX
(Sry-type high-mobility group box) gene family. This
gene family codes for transcription factors required for
diverse developmental processes such as cardiac devel-
opment, sex and neural determination [94].
Hereditary hemorrhagic telangiectasia (HHT) or Osler-
Rendu-Weber disease is a vascular dysplasia leading to
telangiectases and AVMs of skin, mucosa and viscera
(lung, liver and brain). The mucosal complications in-
volve epistaxis and GI bleeding. There are two types of
the disease, HHT1 (MIM 187300) and HHT2 (MIM
600376). HHT1 patients have an earlier onset of epix-
taxis and telengiectasis than those with HHT2, and only
HHT1 patients have a high frequency of pulmonary
AVMs. The inactivating mutations in the endoglin (ENG)
gene, which encodes an accessory TGFb receptor, were
found to cause HTT1 [95]. HHT2 was caused by loss-of
function mutations in the ACVRLK1 (ALK1) gene, which
codes for activin receptor-like kinase type 1 [96]. Both
proteins are involved in the TGFb signaling pathway. A
combined syndrome of juvenile polyposis and HHT
(MIM 175050) was found to be associated with muta-
tions in the MADH4 gene, which encodes SMAD4 [97].

This protein is an integral downstream effector of TGFb
signal transduction.
Another telangiectasia-related disease, Coats’ disease or
retinal telangiectasis, was shown to be caused by a so-
matic mutation in the NDP gene, which encodes Norrie
disease protein (Norrin) [98]. The disease is character-
ized by a defect of retinal vascular development, leading
to vessel leakage, subretinal exudation and retinal detach-
ment. The consequent retinal detachment often results in
progressive visual loss. Norrie disease (MIM 310600), on
the other hand, is an X-linked recessive disorder in which
affected males are blind at birth or in early infancy. The
ocular findings involve bilateral retinal folds, retinal de-
tachment, vitreous hemorrhage and bilateral retrolental
masses consisting of hemorrhagic vascular and glial 
tissue (vitreoretinal dysplasia). Patients also develop pro-
gressive sensorineural deafness and varying degrees of
developmental delay. More than 100 different mutations
of the NDP gene have been identified in Norrie disease,
suggesting an angiogenic role for NDP [99]. It has been
proposed that retinal telangiectasis is secondary to so-
matic mutation in the NDP gene [98]. Molecular model-
ing of NDP revealed a protein structure similar to that of
TGFb and other cysteine-knot growth factors [100].
The hereditary macular dystrophies are progressive de-
generations of the central retina and a cause of irreversible
visual loss. Among these disorders, Sorsby’s fundus dys-
trophy (SFD) (MIM 136900) is very similar to age-related
macular degeneration (AMD), a major cause of blindness
in the elderly population of Western countries. The bilat-
eral central visual loss occurs during the fourth or fifth
decade of life. Sorsby et al. described five families with a
fundus dystrophy [101]. The dystrophy became manifest
at about the age of 40 years; the earliest manifestations
were color vision deficits and abnormal yellow-white 
deposits, followed by a central macular lesion with edema,
hemorrhage and exudates. In subsequent years, atrophy
with pigmentation of the central area and extension 
occurred peripherally. The choroidal vessels became 
exposed and appeared somewhat sclerotic. Within about
35 years after onset, the entire fundus was involved. The
choroidal vessels disappeared by this stage, and the ter-
minal picture was one of extensive choroidal atrophy. The
disease is caused by mutations, likely inactivating, in the
TIMP3 gene [102]. The gene codes for a protein called
metalloproteinase-3, which is a matrix-bound inhibitor
of matrix metalloproteinases (MMPs). MMPs play a 
major role in angiogenesis by degrading the ECM and
activating growth factors through their degradative activ-
ity, thus facilitating EC migration. TIMP3 inhibits angio-
genesis by blocking the binding of VEGF to its receptor
VEGFR-2 [103].
Cerebral autosomal dominant arteriopathy with subcorti-
cal infarcts and leukoencephalopathy (CADASIL) (MIM
125310) is thought to be the most common form of hered-
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itary stroke disorder. It is characterized by recurrent tran-
sient ischemic attacks, strokes and vascular dementia.
Other symptoms involve migraine, mostly with aura, psy-
chiatric disturbance, cognitive decline and epilepsy. Arte-
riopathy is characterized by progressive degeneration of
vascular SMCs of small arteries and the accumulation of
granular osmiophilic material (GOM) and Notch3 pro-
tein within the cell surface of these cells. Notch3 is a
member of Notch transmembrane receptors. Its expres-
sion is highly restricted to vascular SMCs. Mutations in
the Notch3 gene were found to cause CADASIL [104].
However, the molecular mechanisms by which the mutant
Notch3 proteins lead to the disease are still not clear.
The vascular form of Ehlers-Danlos syndrome (type IV)
(MIM 130050) is characterized by joint and dermal man-
ifestations and proneness to spontaneous rupture of bowel,
intestine and large arteries (e.g. splenic, pulmonary, re-
nal). Patients have also a striking facial appearance, easy
bruising and translucent skin with visible veins. Some 
patients have cerebral vascular complications, including
intracranial aneurysms, spontaneous carotid cavernous
sinus fistulas and dissection of cervical arteries. The 
disease is caused by mutations in the COL3A1 gene,
which encodes type III procollagen [105]. Collagen III is
an important component of the arterial walls that pro-
vides tensile strength to the tissues.
Proteus syndrome (PS) is a complex hamartomatous dis-
order characterized by asymmetric and disproportionate
overgrowth of body parts (macrocephaly, gigantism of
hands and feet), connective tissue nevi, epidermal nevi,
dysregulated adipose tissue and vascular malformations.
Vascular malformations include vascular hamartomas
and capillary-venous malformations [106]. Interestingly,
germline mutations in the tumor suppressor gene PTEN
(phosphatase, tensin homologue, deleted on chromosome
TEN) were identified in up to 20% of PS cases (MIM
176920) and around 50% of Proteus-like syndrome (PSL)
patients [107–110]. PTEN encodes a lipid phosphatase
that mediates cell cycle arrest and apoptosis [107]. It was
fist described in Cowden syndrome (CS) (MIM 158350),
which is characterized by multiple hamartomas and a risk
of breast, thyroid and endometrial carcinomas [111].
PTEN mutations are also associated with other syndromes
(MIM 153480) that clinically overlap and are character-
ized by macrocephaly, lipomatosis, hemangiomata, arteri-
ovenous malformations and developmental delay [112]
(table 2).

Summary

Significant progress has been made in the molecular 
genetics studies of a number of vascular anomalies. Dis-
ease-causing or susceptibility genes have been identified
for multiple cutaneous and mucosal venous malforma-

tions, lymphedema type I, capillary malformations associ-
ated with arteriovenous malformations, cerebral capillary
malformations, glomuvenous malformations, hereditary
hemorrhagic telangiectasia, some forms of lymphedema
and telangiectasia, SFD, cerebral arteriopathy, vascular-
type Ehlers-Danlos syndrome, Proteus and Proteus-like
syndromes and some clinically overlapping syndromes
associated with macrocephaly, lipomas and heman-
giomata, and, finally, KTS (table 2). These findings make
genetic testing possible for some patients and/or families
with these diseases. Identification of the disease genes
for vascular anomalies also offers interesting targets for
investigating the molecular mechanisms involved in 
vascular morphogenesis, growth and development. The
functional roles of TIE2, VEGFR-3 and AGGF1 in vas-
culogenesis and angiogenesis have been identified, but
the clear functions of other vascular anomaly genes
listed in table 2 remain to be identified. The functional
studies of vascular anomaly genes may lead to the devel-
opment of therapeutic options for treating these vascular
malformations as well as more common diseases, in-
cluding cancer, diabetic blindness, age-related macular
degeneration, rheumatoid arthritis, psoriasis and other
conditions with excessive angiogenesis, or coronary artery
disease, stroke and delayed wound healing with insuffi-
cient angiogenesis or abnormal vessel regression. For ex-
ample, our finding that AGGF1 is an angiogenic factor
may facilitate the development of therapeutic angiogene-
sis, in which AGGF1 is delivered as a recombinant protein
or as a transgene by adenovirus vectors to promote collat-
eral growth of blood vessels for patients with ischemic
heart disease or peripheral vascular diseases. Our finding
that knockdown of AGGF1 expression blocks vessel tube
formation may lead to the development of antiangiogenic
therapies designed to block angiogenesis and to treat 
cancer and macular degeneration with excessive angio-
genesis.
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