
Plant Physiol. (1 996) 11 2: 865-869 

Elicitation of Plant Hypersensitive Response by Bacteria’ 
Sheng Yang He* 

Department of Energy Plant Research Laboratory, Department of Botany and Plant Pathology, and Cenetics 
Program, Michigan State University, East Lansing, Michigan 48824 

Cell death caused by pathogen infection has been of 
great interest to plant biologists for many years because of 
its frequent association with plant resistance. There appear 
to be two types of plant cell death associated with patho- 
gen infection: a rapid, hypersensitive cell death localized at 
the site of infection during an incompatible interaction 
between a resistant plant and an avirulent pathogen, and a 
slow, “normosensitive” plant cell death that spreads be- 
yond the site of infection during some compatible interac- 
tions involving a susceptible plant and a virulent, necro- 
genic pathogen. Hypersensitive cell death is accompanied 
by the induction of multifaceted defense responses, includ- 
ing production of active oxygen species and antimicrobial 
compounds (phytoalexins), rapid cross-linking of cell-wall 
proteins, and, ultimately, resistance to pathogens (Dixon et 
al., 1994; Goodman and Novacky, 1994). Consequently, 
hypersensitive cell death is considered to be a sacrifice of 
locally infected tissue (sometimes only one or a few cells) to 
protect against the spread of the pathogen into healthy 
plant tissues. In contrast, the slow, normosensitive plant 
cell death does not effectively prevent pathogen multipli- 
cation or spread and is therefore not associated with local 
resistance. 

It is interesting that both hypersensitive and normosen- 
sitive cell death can lead to a systemic, broad-spectrum 
resistance response throughout the plant called SAR (Ryals 
et al., 1994). SAR is effective against subsequent infection 
by the same or different pathogens. It has long been ob- 
served that diverse plant pathogens, from multicellular 
organisms such as fungi and worms to simple parasites 
such as viruses, can cause superficially similar hypersensi- 
tive cell death in resistant plants (Goodman and Novacky, 
1994). Therefore, hypersensitive cell death has been con- 
sidered to be a conserved mechanism in higher plants for 
rapidly self-eliminating cells doomed to die, and, in the 
process of doing so, activating other local and systemic 
resistance responses either causally or simultaneously. In 
the past few years, steady progress has been made in 
understanding the mechanism by which pathogens elicit 
hypersensitive cell death and the mechanism of signal 
perception and transduction in the plant cell during hyper- 
sensitive cell death. In this Update I discuss how bacteria 
elicit hypersensitive cell death. 

Supported by grants from the U.S. Department of Agriculture 
and Department of Energy. 

* E-mail hes@pilot.msu.edu; fax 1-517-353-9168. 

WHAT IS THE HYPERSENSITIVE RESPONSE? 

Stakman (1915) is generally considered to be the first to 
use the term ”hypersensitive reaction” (HR) to describe 
rapid host cell death in resistant plants (oat, wheat, and 
barley) upon infection by the fungus Puccinia graminis. 
Stakman observed that the more resistant a cultivar, the 
more rapid the death of a limited number of host cells in 
the vicinity of the invading fungal hyphae. Recently, the 
term ”hypersensitive response” has been more frequently 
used, but there has been some controversy over the scope 
of the definition of HR. 1s HR merely a cell death response 
or does it encompass associated resistance responses? Be- 
cause hypersensitive cell death alone may or may not be 
sufficient to restrict pathogen infection, it is important to 
define HR clearly. The original definition of HR by Stak- 
man clearly equated HR with the abnormally rapid death 
of host cells attacked by fungal hyphae (Stakman, 1915). 
Therefore, in this Update I will restrict the use of the term 
HR to hypersensitive cell death. 

Klement et al. (1964) discovered the ability of pathogenic 
bacteria to elicit HR almost 50 years after Stakman’s dis- 
covery of the response. The key to their discovery was the 
use of a nove1 inoculation technique for introducing bacte- 
ria into plant leaves. They used syringes to infiltrate large 
numbers (>106 cells/mL) of an avirulent bacterium 
(Pseudomonas syringae pv syringae) into the intercellular 
space of leaves of a nonhost plant (tobacco) and observed 
the appearance of rapid, localized hypersensitive necrosis 
due to the death of most of the plant cells in the infiltrated 
leaf tissue. A saprophytic bacterium (Pseudomonas fluore- 
scens) did not elicit any HR, whereas a virulent bacterium 
(P. syringae pv tabaci) caused a slowly spreading tissue 
necrosis (Klement et al., 1964). Klement et al.’s seminal 
finding has spurred numerous investigations into the 
mechanism of bacterial elicitation of the HR. Biochemical, 
physiological, and microscopic studies were undertaken 
from the 1960s to the early 1980s, and revealed severa1 
important characteristics of the HR: (a) Active bacterial 
metabolism is required for HR elicitation. In other words, 
elicitors of HR are not preformed, but are produced after 
infiltration of bacteria into the plant apoplast. More inter- 
estingly, the requirement for active bacterial metabolism is 
only temporary (30 min to 4 h) (Klement and Goodman, 
1967; Roebuck et al., 1978), suggesting that once HR elici- 

Abbreviations: HR, hypersensitive response; SAR, systemic ac- 
quired resistance. 
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tors are produced, living bacteria are no longer needed. (b) 
Elicitation of the HR requires close contact between bacte- 
ria and plant cells. Prevention of such close contact by 
infiltrating bacteria in diluted agar, which precludes the 
attachment of bacteria to plant cells, inhibits HR elicitation 
(Stall and Cook, 1979). (c) In at least some plant-bacterial 
combinations, one bacterium is sufficient to trigger the 
death of a plant cell (Turner and Novacky, 1974). (d) Fi- 
nally, rigorous biochemical studies have been unsuccessful 
in the search for bacterial elicitors of HR; thus, it appears 
that HR elicitors are either extremely labile or are pre- 
sented to the plant cell only on contact (Klement, 1982). 
Molecular genetic studies undertaken in recent years have 
provided clear explanations for most of the above obser- 
vations, as discussed below. 

DISCOVERY OF HRP CENES 

In the early 1980s a number of researchers started to use 
transposon-mediated mutagenesis to reveal bacterial genes 
that play important roles in various plant-bacterial interac- 
tions. Lindgren et al. (1986) identified clusters of bacterial 
genes, known as hrp (for hypersensitive reaction and patho- 
genicity) genes, in the bean pathogen P. syringae pv phaseoli- 
cola. Transposon-induced mutations in hrp genes were found 
to abolish the ability of P. syringae to elicit the HR in nonhost 
plants or to cause disease in host plants (Lindgren et al., 1986). 
hrp mutants behave very much like bacteria that have no 
apparent interactions with plants, such as Escherichia coli and 
P. fluorescens. The identification of hrp genes suggested that 
the molecular mechanism(s) underlying bacterial pathogenic- 
ity and bacterial elicitation of plant disease resistance may 
involve the same bacterial genes. 

hrp genes have subsequently been isolated from many 
plant pathogenic bacteria, characterized most extensively 
from P. syringae pv syringae, P. syringae pv phaseolicola, 
Pseudomonas solanacearum (which causes wilt in many so- 
lanaceous plants), Xanthomonas campestris pv uesicatoria 
(which causes bacterial spot on tomato and pepper), and 
Erwinia amylouora (which causes fire blight on rosaceous 
plants) (Fenselau and Bonas, 1995; Huang et al., 1995; Van 
Gijsegem et al., 1995; Bogdanove et al., 1996b). Surpris- 
ingly, the cloned hrp clusters from P. syringae pv syringae 61 

Figure 1. hrp genes of P. syringae and their 
functions. New, Proposed new nomenclature 
for P. syringae hrp genes (Bogdanove et al., 
1996a). Old, Current nomenclature of P. syrin- 
gae hrp genes (Huang et al., 1995). Arrows in- 
dicate transcription direction of each gene 
operon. 

and E .  amylouora 321 enabled nonpathogens (e.g. E. coli or 
P. fluorescens) to elicit the HR in plants (Huang et al., 1988; 
Beer et al., 1990). The functional cloning of these two hrp 
clusters in E. coli revealed that the minimum number of 
genes required for elicitation of the HR by plant pathogenic 
bacteria are carried on a DNA fragment of about 25 to 30 kb 
in length, a very small portion of the bacterial genome 
(which is normally about 4000-5000 kb). 

DNA-DNA hybridization studies indicate that at least 
some hrp genes are similar among necrogenic bacteria belong- 
ing to different genera (P. syringae, E. amylovora, Erwinia stew- 
artii, P. solanacearum, and X .  campestris). Recent DNA se- 
quence studies confirm that many hrp genes cloned from 
diverse plant-pathogenic bacteria are homologous (Fenselau 
and Bonas, 1995; Huang et al., 1995; Van Gijsegem et al., 1995; 
Bogdanove et al., 1996b). Thus, hrp genes appear to be uni- 
versal among diverse necrosis-causing, gram-negative bacte- 
ria1 pathogens of plants. In the following section, I shall use 
the P. syringae hrp gene cluster as an example for discussing 
the biochemical functions of hrp genes. 

BIOCHEMICAL FUNCTIONS OF HRP CENES 

The biochemical functions of hrp genes have remained a 
puzzle until quite recently. DNA sequencing has played a 
major role in the determination of many hrp gene functions. 
As will be discussed below, many hrp genes have striking 
similarities with genes of known function. Figure 1 shows 
the gene organization and likely functions of hrp genes of 
P. syringae pv syringae Pss61 (Huang et al., 1995). There are 
at least 25 hrp genes in this bacterium. Based on DNA 
sequence similarity to other known genes and subsequent 
biochemical and molecular characterization, we now know 
that hrp genes have at least two biochemical functions: gene 
regulation and protein secretion. 

Three P. syringae hrp Cene Products Regulate the 
Expression of Other Genes 

hrp genes are either not expressed or are expressed at very 
low levels when bacteria are grown in nutrient-rich medium, 
whereas they are highly expressed when bacteria enter the 
intercellular space (apoplast) of plant tissues (Rahme et al., 

Pseudomonas syringae hrp genes and their biochemical functions 
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1992; Xiao et al., 1992). Unlike viruses, nematodes, and many 
fungi, plant-pathogenic bacteria do not invade living plant 
cells. Therefore, signal exchanges behveen plant cells and 
bacteria must occur in (or through) the apoplast outside of the 
plant cell. A number of researchers have observed that induc- 
tion of P. syringae krp genes could be achieved by using 
artificial minimal medium lacking complex nitrogen nutri- 
ents, indicating that a lack of nutrients in the plant apoplast 
may be the signal for the induction of hrp genes (Rahme et al., 
1992; Xiao et al., 1992; Arlat et al., 1994; Bogdanove et al., 
1996b). Specific compounds (eg. Suc and sulfur-containing 
amino acids) present in the plant apoplast may also serve as 
signals for the induction of X. campestris vesicatoria krp genes 
(Shulte and Bonas, 1992). The induction of hrp genes in the 
nutrient-poor plant apoplast or in artificial minimal medium 
indicates that krp genes may be involved in releasing nutri- 
ents from plant cells. 

How do bacteria sense the plant apoplast environment? 
It was found that at least 3 of the 25 P. syringae k r p  gene 
products are involved in the detection of the apoplast 
environment: HrpL, HrpS, and HrpR (Fig. 1). The krpS and 
krpX genes are among the first two krp genes to be ex- 
pressed once bacteria enter plant tissues. It has been hy- 
pothesized that the HrpS and HrpR proteins, once pro- 
duced, bind to the promoter sequence of the hrpL gene to 
induce the production of the HrpL protein, an alternative 
sigma factor (Xiao et al., 1994). Once the HrpL protein is 
produced, it activates promoters of other hrp genes and 
some bacterial avirulence (avr)  genes, which determine 
gene-for-gene interactions between bacteria and plants 
(Xiao et al., 1994). HrpS and HrpR are similar in sequence 
to a family of bacterial proteins that regulates genes in- 
volved in diverse metabolic functions, including those in- 
volved in nutrient transport and metabolism (Grimm and 
Panopoulos, 1989). The sequence similarity of krpS and 
krpR with gene regulators involved in nutrition appears to 
support the hypothesis that krp  genes are involved in ob- 
taining nutrients in the plant apoplast. 

An hrpS homolog has been found in a very different 
bacterium, E. amylovora (S.V. Beer, personal communica- 
tion). In P. solanacearum a different krp gene (hrpB)  was 
found to be involved in the detection of the plant apoplast 
(Genin et al., 1992). Thus, different bacteria may or may not 
use the same mechanism to detect the apparently similar 
environment in the plant apoplast. 

Many hrp Cene Products Are Components of a Protein 
Secretion Apparatus 

One surprising finding from the sequence analysis was that 
many krp genes show striking similarities with genes in- 
volved in the secretion of proteinaceous virulence factors in 
human and animal pathogenic bacteria (Fenselau and Bonas, 
1995; Huang et al., 1995; Van Gijsegem et al., 1995; Bogdanove 
et al., 1996b). Most plant-pathogenic bacteria that cause ne- 
crosis are gram-negative, and therefore have hvo cell mem- 
branes enveloping the cytoplasm. These bacteria are known 
to make several types of protein secretion apparatus. For 
example, Erwinia ckrysanthemi, a soft-rot-causing bacterium, 
makes one type (type I) of secretion apparatus for proteases 

and another (type 11) for plant cell-wall-degrading enzymes 
(Salmond, 1994). Both types of secretion apparatus are widely 
conserved among many other bacteria, including human 
pathogens such as E. coli and Pseudomonas aeruginosa (Sal- 
mond, 1994). The krp genes were found to specify a third type 
(type 111), the Hrp secretion apparatus, which appears to be 
similar to the those discovered in several human-pathogenic 
bacteria, including Yersinia spp. (Fenselau and Bonas, 1995; 
Huang et al., 1995; Van Gijsegem et al., 1995; Bogdanove et al., 
1996b). It is interesting that, although the regulatory hrp genes 
in different bacteria may be different (krpS,  hrpX, and krpL in 
P. syringae versus hrpB in P. solanacearum), most hrp genes 
involved in the assembly of the Hrp secretion apparatus are 
similar among diverse plant pathogenic bacteria. This sug- 
gests that although different bacteria may detect the plant 
apoplast environment in their own unique ways, they never- 
theless produce a similar type of protein-secretion apparatus. 

BACTERIAL HR ELlClTORS 

The discovery of the nove1 Hrp secretion apparatus raised 
an immediate question: what are the proteins that traverse it? 
Since hrp genes are essential for bacteria, both to elicit the 
plant HR and to cause disease, it was expected that some of 
the proteins that traverse the Hrp secretion apparatus may be 
elicitors of plant HR and that others may be involved in 
causing necrosis during pathogenesis. Wei et al. (1992) first 
provided evidence that one of the E. amylovora krp genes 
(hrpN) encodes a proteinaceous elicitor, harpin, which elicits 
HR necrosis when injected into the apoplast of appropriate 
plants. Although no krpN gene homolog could be found in P. 
syringae, another proteinaceous HR elicitor, harpin,,,, was 
identified and was shown to be encoded by a different krp 
gene, hrpZ (He et al., 1993). Furthermore, harpin,,, was the 
first extracellular protein shown to be secreted via the Hrp 
secretion apparatus (He et al., 1993). Recently, harpin,,, was 
shown to trigger SAR (Strobel et al., 1996) and plant HR- 
associated genes (Gopalan et al., 1996). A third bacterial pro- 
tein elicitor of the HR was identified in P. solanacearum, and 
was named PopAl (Arlat et al., 1994). The E. amylovora 
harpin, P. syringae pv syringae 61 harpinPsv and P. solanacea- 
rum PopAl, although largely dissimilar in primary sequences, 
share similar properties that may be important in their HR 
elicitor activities. They are a11 heat-stable, Gly-rich, and hy- 
drophilic. E. amylovora harpin and P. syringae pv syringae 
harpin,,, appear to elicit HR irrespective of plant genotypes 
(Wei et al., 1992; He et al., 1993), whereas P. solanacearum 
PopAl seems to exhibit a degree of specificity in HR elicita- 
tion in cultivars of petunia (Arlat et al., 1994). Mutations in the 
harpin-encoding gene (krpN) eliminated the HR-eliciting ac- 
tivity of E. amylovora in tobacco leaves, suggesting that harpin 
may be the only HR elicitor produced by E. amylovora. In 
contrast, mutations in the harpin,,,-encoding gene ( k rpZ)  
only reduced the HR-eliciting activity of P. syringae pv syrin- 
gae (Alfano et al, 1996), and popAl mutants of P. solanacearum 
elicited a normal HR in tobacco leaves (Arlat et al., 1994), 
indicating that the latter two bacteria produce other HR elic- 
itors that also traverse the Hrp secretion apparatus. 

Avr proteins are candidates for being the "other HR 
elicitors." avr genes mediate the elicitation HR/ resistance 
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only in plants carrying matching plant resistance genes 
(Keen, 1990; Dangl, 1995). They control the specificity of 
plant-bacterial interactions, and most avr genes are cloned 
based on this property. For example, P. syringae pv glycinea 
avrB was cloned based on its ability to convert a virulent 
(causing disease) strain of P. syringae pv glycinea into an 
avirulent (eliciting HR) strain on the soybean cvs Norchief 
and Harosoy, both of which carry the RPGl resistance gene 
(Keen, 1990). avrB was later found to trigger HR in Arabi- 
dopsis thaliana Columbia, which harbors the plant resistance 
gene RPMl (Bisgrove et al., 1994). RPGl and RPMl may be 
the same gene or two different genes possessing similar 
specificity in the recognition of Avr signals. It appears that 
during plant-bacterial coevolution, bacteria and plants ac- 
cumulate a reservoir of avr genes and disease-resistance 
genes, respectively. Whenever a matching bacterial avr 
gene and a corresponding plant disease-resistance gene are 
present, the interaction becomes incompatible. More than 
30 bacterial avr genes have been cloned (Dangl, 1995; D.W. 
Gabriel, personal communication). The function of avr 
genes is strictly dependent on hrp genes (Huynh et al., 1989; 
Gopalan et al., 1996; Pirhonen et al., 1996). Since many Hrp 
proteins are components of the Hrp secretion apparatus, 
the simplest explanation is that Avr proteins, like harpins, 
are secreted via the Hrp secretion apparatus to the plant 
apoplast. However, when purified Avr proteins were infil- 
trated into the apoplast of a plant carrying the correspond- 
ing plant resistance, no HR was observed (Keen, 1990; 
Gopalan et al., 1996). 

In 1990, avrD of P. syringae pv tomato was found to encode 
a bacterial cytoplasmic enzyme that uses apparently common 
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Figure 2 .  A working model for the delivery of H R  elicitors by P. 
syringae and, perhaps, other pathogenic bacteria. AvrD protein is a 
cytoplasmic enzyme that uses a bacterial metabolite to produce a 
low-molecular-weight elicitor, which is then diffused to the surface 
of (or into) the plant cell and interacts with a plant plasmalemma- 
bound or cytoplasmic receptor (RPC4!). Harpin is secreted via the 
Hrp secretion apparatus into the plant apoplast and interacts with a 
hypothetical receptor in the plant plasma membrane. AvrB protein is 
secreted from the bacterial cytoplasm through the extended Hrp 
secretion apparatus, including the Hrp pilus, into the  plant cell and 
interacts with a cytoplasmic receptor (RPMl ! ) .  R P C 4  and R P M l  are 
plant resistance gene products (receptors?) involved in the signaling 
pathways of AvrD and AvrB, respectively. 

bacterial metabolites to produce low-molecular-weight HR 
elicitors called syringolides (Keen et al., 1990). The mode of 
action of AvrD appears to be unique, because none of the 
other avr genes has been demonstrated to mediate the pro- 
duction of low-molecular-weight elicitors. It is interesting that 
like a11 other bacterial avr genes, avrD does not function in hrp 
mutants despite the production of syringolides (Keen et 
al., 1990). 

Recently, animal pathogenic bacteria possessing a type- 
I11 protein secretion apparatus have been shown to directly 
inject virulence factors (e.g. protein phosphatase) into host 
cells (Persson et al., 1995). To test whether Avr proteins are 
also injected into the plant cytoplasm, avrB of P. syringae pv 
glycinea was expressed in A. thaliana Columbia harboring 
the corresponding resistance gene RPMl (Gopalan et al., 
1996). Transgenic Arabidopsis plants expressing AvrB 
were found to exhibit a systemic HR, leading to seedling 
death in an RPMl-dependent manner (Gopalan et al., 
1996). This observation provides strong evidence for direct 
injection of some Avr proteins or their enzymatic products 
into the plant cell. Transferring AvrB signal directly into 
the plant cell is also consistent with the cytoplasmic loca- 
tion hypothesized for Rpml, a putative AvrB receptor 
(Grant et al., 1995). It is likely that the original functions of 
HrpZ and many Avr proteins are to promote parasitism, 
but the evolving plant surveillance has recognized Avr 
and HrpZ proteins as elicitors of plant defense responses 
(Fig. 2). 

PERSPECTIVES 

Thirty years of research on the mechanism of bacterial 
elicitation of the HR has generated some of the most in- 
triguing findings in the field of plant-pathogen interac- 
tions. It is remarkable that seemingly simple bacteria have 
evolved such elaborate sensory and protein-delivery sys- 
tems in adapting to the environment and to physical struc- 
tures of plant cells, from which the ultimate goal of the 
infecting bacteria is to get nutrients. It is equally remark- 
able that the plant has evolved highly sophisticated sur- 
veillance systems to recognize bacterial factors as triggers 
of a cell suicida1 program (HR) and other defense responses 
for combating infecting bacteria. It is hoped that future 
research will elucidate the mechanism by which bacteria 
take up nutrients from the plant cell during pathogenesis 
and how the HR cell death program is actually executed. 
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