Abstract
Oxidant stress resistance in Conyza bonariensis and wheat (Triticum aestivum) has been correlated with high levels of antioxidant enzyme activities. Additionally, external oxidant stresses can increase a plant's levels of the enzymes of polyamine biosynthesis and polyamines, especially putrescine. We investigated the constitutive relationships between putrescine, putrescine-generating enzymes, and oxidant stress resistance in wheat and C. bonariensis. Putrescine was Constitutively elevated (2.5- to 5.7-fold) in 2-week-old-resistant wheat and C. bonariensis biotypes, which correlated with a 10- to 15-fold increase in paraquat oxidant resistance. Arginine and ornithine decarboxylase activities doubled, along with higher putrescine levels in resistant C. bonariensis. The variations in levels of putrescine and arginine and ornithine decarboxylase activities paralleled the constitutive variation of antioxidant enzymes, as well as oxidant resistance. Higher levels of both putrescine and antioxidant enzyme activities occurred during a peak of oxidant resistance at 10 weeks, when paraquat resistance in C. bonariensis plants is >50-fold greater than in the sensitive biotype. Application of 100 [mu]M putrescine can double oxidant-stress resistance in the resistant C. bonariensis. Putrescine may play an important role in contributing to the base level of oxidant resistance found at the nonpeak period.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman A., Friedman R., Levin N. Arginine and ornithine decarboxylases, the polyamine biosynthetic enzymes of mung bean seedlings. Plant Physiol. 1982 Apr;69(4):876–879. doi: 10.1104/pp.69.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amsellem Z., Jansen MAK., Driesenaar ARJ., Gressel J. Developmental Variability of Photooxidative Stress Tolerance in Paraquat-Resistant Conyza. Plant Physiol. 1993 Dec;103(4):1097–1106. doi: 10.1104/pp.103.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrell A., Culianez-Macia F. A., Altabella T., Besford R. T., Flores D., Tiburcio A. F. Arginine Decarboxylase Is Localized in Chloroplasts. Plant Physiol. 1995 Nov;109(3):771–776. doi: 10.1104/pp.109.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burtin D., Martin-Tanguy J., Tepfer D. alpha-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes. Plant Physiol. 1991 Feb;95(2):461–468. doi: 10.1104/pp.95.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flores H. E., Galston A. W. Osmotic stress-induced polyamine accumulation in cereal leaves : I. Physiological parameters of the response. Plant Physiol. 1984 May;75(1):102–109. doi: 10.1104/pp.75.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galston A. W., Sawhney R. K. Polyamines in plant physiology. Plant Physiol. 1990 Oct;94(2):406–410. doi: 10.1104/pp.94.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart J. J., Ditomaso J. M., Linscott D. L., Kochian L. V. Transport Interactions between Paraquat and Polyamines in Roots of Intact Maize Seedlings. Plant Physiol. 1992 Aug;99(4):1400–1405. doi: 10.1104/pp.99.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishnamurthy R., Bhagwat K. A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 1989 Oct;91(2):500–504. doi: 10.1104/pp.91.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H. Biochemical plant responses to ozone : I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol. 1991 Mar;95(3):882–889. doi: 10.1104/pp.95.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin-Tanguy J., Sun L. Y., Burtin D., Vernoy R., Rossin N., Tepfer D. Attenuation of the Phenotype Caused by the Root-Inducing, Left-Hand, Transferred DNA and Its rolA Gene (Correlations with Changes in Polyamine Metabolism and DNA Methylation). Plant Physiol. 1996 May;111(1):259–267. doi: 10.1104/pp.111.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minton K. W., Tabor H., Tabor C. W. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2851–2855. doi: 10.1073/pnas.87.7.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagele A., Felix K., Lengfelder E. Induction of oxidative stress and protection against hydrogen peroxide-mediated cytotoxicity by the superoxide dismutase-mimetic complex copper-putrescine-pyridine. Biochem Pharmacol. 1994 Feb 9;47(3):555–562. doi: 10.1016/0006-2952(94)90188-0. [DOI] [PubMed] [Google Scholar]
- Panagiotidis C. A., Artandi S., Calame K., Silverstein S. J. Polyamines alter sequence-specific DNA-protein interactions. Nucleic Acids Res. 1995 May 25;23(10):1800–1809. doi: 10.1093/nar/23.10.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poduslo J. F., Curran G. L. Increased permeability of superoxide dismutase at the blood-nerve and blood-brain barriers with retained enzymatic activity after covalent modification with the naturally occurring polyamine, putrescine. J Neurochem. 1996 Aug;67(2):734–741. doi: 10.1046/j.1471-4159.1996.67020734.x. [DOI] [PubMed] [Google Scholar]
- Popovic R. B., Kyle D. J., Cohen A. S., Zalik S. Stabilization of Thylakoid Membranes by Spermine during Stress-induced Senescence of Barley Leaf Discs. Plant Physiol. 1979 Nov;64(5):721–726. doi: 10.1104/pp.64.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore L. J., Soler A. P., Gilmour S. K. Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem. 1997 May 9;272(19):12536–12543. doi: 10.1074/jbc.272.19.12536. [DOI] [PubMed] [Google Scholar]
- Snedden W. A., Arazi T., Fromm H., Shelp B. J. Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiol. 1995 Jun;108(2):543–549. doi: 10.1104/pp.108.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snedden W. A., Koutsia N., Baum G., Fromm H. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J Biol Chem. 1996 Feb 23;271(8):4148–4153. doi: 10.1074/jbc.271.8.4148. [DOI] [PubMed] [Google Scholar]
- Tiburcio A. F., Masdeu M. A., Dumortier F. M., Galston A. W. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability. Plant Physiol. 1986;82:369–374. doi: 10.1104/pp.82.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobias K. E., Kahana C. Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry. 1993 Jun 8;32(22):5842–5847. doi: 10.1021/bi00073a017. [DOI] [PubMed] [Google Scholar]
- Watson M. B., Malmberg R. L. Regulation of Arabidopsis thaliana (L.) Heynh Arginine decarboxylase by potassium deficiency stress. Plant Physiol. 1996 Aug;111(4):1077–1083. doi: 10.1104/pp.111.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young N. D., Galston A. W. Putrescine and Acid Stress : Induction of Arginine Decarboxylase Activity and Putrescine Accumulation by Low pH. Plant Physiol. 1983 Apr;71(4):767–771. doi: 10.1104/pp.71.4.767. [DOI] [PMC free article] [PubMed] [Google Scholar]