Table 3.
Results with a learned Bayesian network.
Cross-validation | Trained on: | All | All | NoS | All | NoE | All | key |
Tested on: | All | NoS | NoS | NoE | NoE | key | key | |
mixed | AUC | 0.84 ± 0.01 | 0.64 ± 0.01 | 0.70 ± 0.02 | 0.72 ± 0.02 | 0.82 ± 0.02 | 0.63 ± 0.03 | 0.80 ± 0.02 |
MCC | 0.46 ± 0.03 | 0.11 ± 0.03 | 0.10 ± 0.16 | 0.26 ± 0.22 | 0.44 ± 0.03 | 0.40 ± 0.04 | 0.40 ± 0.04 | |
Overall error rate | 0.17 ± 0.01 | 0.67 ± 0.01 | 0.23 ± 0.00 | 0.36 ± 0.28 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.18 ± 0.01 | |
Effect error rate | 0.27 ± 0.05 | 0.75 ± 0.01 | 0.15 ± 0.24 | 0.40 ± 0.25 | 0.29 ± 0.07 | 0.24 ± 0.06 | 0.25 ± 0.05 | |
No effect error rate | 0.16 ± 0.01 | 0.11 ± 0.03 | 0.21 ± 0.03 | 0.29 ± 0.18 | 0.16 ± 0.02 | 0.18 ± 0.01 | 0.18 ± 0.01 | |
sensitivity | 0.41 ± 0.07 | 0.93 ± 0.01 | 0.13 ± 0.21 | 0.51 ± 0.33 | 0.41 ± 0.08 | 0.31 ± 0.04 | 0.31 ± 0.09 | |
specificity | 0.95 ± 0.02 | 0.15 ± 0.02 | 0.96 ± 0.07 | 0.68 ± 0.47 | 0.95 ± 0.03 | 0.97 ± 0.01 | 0.97 ± 0.01 | |
lac rep | AUC | 0.85 ± 0.01 | 0.47 ± 0.03 | 0.73 ± 0.02 | 0.70 ± 0.02 | 0.82 ± 0.02 | 0.61 ± 0.02 | 0.81 ± 0.02 |
MCC | 0.52 ± 0.02 | 0.11 ± 0.03 | 0.32 ± 0.04 | 0.43 ± 0.04 | 0.46 ± 0.05 | 0.42 ± 0.04 | 0.42 ± 0.03 | |
Overall error rate | 0.17 ± 0.01 | 0.60 ± 0.01 | 0.24 ± 0.01 | 0.19 ± 0.01 | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.01 | |
Effect error rate | 0.25 ± 0.03 | 0.72 ± 0.01 | 0.46 ± 0.03 | 0.20 ± 0.06 | 0.21 ± 0.05 | 0.17 ± 0.07 | 0.22 ± 0.06 | |
No effect error rate | 0.15 ± 0.01 | 0.16 ± 0.02 | 0.19 ± 0.01 | 0.19 ± 0.01 | 0.18 ± 0.01 | 0.20 ± 0.01 | 0.19 ± 0.01 | |
sensitivity | 0.51 ± 0.03 | 0.86 ± 0.02 | 0.40 ± 0.03 | 0.33 ± 0.03 | 0.38 ± 0.06 | 0.30 ± 0.02 | 0.33 ± 0.02 | |
specificity | 0.94 ± 0.01 | 0.24 ± 0.02 | 0.88 ± 0.01 | 0.97 ± 0.01 | 0.96 ± 0.01 | 0.98 ± 0.01 | 0.97 ± 0.01 | |
lysozyme | AUC | 0.86 ± 0.02 | 0.51 ± 0.06 | 0.67 ± 0.05 | 0.78 ± 0.04 | 0.83 ± 0.05 | 0.70 ± 0.04 | 0.78 ± 0.05 |
MCC | 0.47 ± 0.06 | 0.09 ± 0.05 | - | 0.37 ± 0.10 | 0.40 ± 0.10 | 0.37 ± 0.12 | 0.34 ± 0.12 | |
Overall error rate | 0.17 ± 0.03 | 0.75 ± 0.02 | 0.19 ± 0.00 | 0.16 ± 0.02 | 0.16 ± 0.02 | 0.16 ± 0.02 | 0.16 ± 0.02 | |
Effect error rate | 0.38 ± 0.14 | 0.80 ± 0.01 | - | 0.30 ± 0.13 | 0.34 ± 0.11 | 0.32 ± 0.13 | 0.33 ± 0.14 | |
No effect error rate | 0.10 ± 0.03 | 0.05 ± 0.08 | 0.19 ± 0.00 | 0.15 ± 0.02 | 0.14 ± 0.02 | 0.15 ± 0.02 | 0.15 ± 0.02 | |
Sensitivity | 0.55 ± 0.19 | 0.98 ± 0.02 | 0.00 ± 0.00 | 0.29 ± 0.10 | 0.36 ± 0.09 | 0.30 ± 0.09 | 0.26 ± 0.09 | |
Specificity | 0.90 ± 0.07 | 0.07 ± 0.02 | 1.00 ± 1.00 | 0.97 ± 0.02 | 0.95 ± 0.02 | 0.97 ± 0.01 | 0.97 ± 0.01 | |
Train: lac rep | AUC | 0.72 | 0.43 | 0.68 | 0.70 | 0.77 | 0.57 | 0.75 |
MCC | 0.30 | - | 0.23 | 0.21 | 0.36 | 0.34 | 0.35 | |
Overall error rate | 0.17 | 0.19 | 0.27 | 0.21 | 0.17 | 0.17 | 0.17 | |
Test: lysozyme | Effect error rate | 0.33 | - | 0.65 | 0.57 | 0.41 | 0.35 | 0.35 |
No effect error rate | 0.16 | 0.19 | 0.14 | 0.16 | 0.14 | 0.15 | 0.15 | |
Sensitivity | 0.20 | 0.00 | 0.46 | 0.25 | 0.35 | 0.26 | 0.26 | |
Specificity | 0.98 | 1.00 | 0.80 | 0.92 | 0.94 | 0.97 | 0.97 | |
Train: lysozyme | AUC | 0.79 | 0.44 | 0.65 | 0.58 | 0.78 | 0.66 | 0.78 |
MCC | 0.41 | -0.11 | 0.32 | 0.06 | 0.42 | 0.40 | 0.41 | |
Overall error rate | 0.20 | 0.39 | 0.24 | 0.25 | 0.20 | 0.20 | 0.20 | |
Test: lac rep | Effect error rate | 0.22 | 0.84 | 0.46 | 0.30 | 0.26 | 0.23 | 0.23 |
No effect error rate | 0.19 | 0.28 | 0.19 | 0.25 | 0.19 | 0.20 | 0.19 | |
Sensitivity | 0.32 | 0.13 | 0.40 | 0.01 | 0.35 | 0.30 | 0.33 | |
Specificity | 0.97 | 0.78 | 0.88 | 1.00 | 0.96 | 0.97 | 0.97 |
See Table 2 for column details. Note that MCC score or effect rate cannot be shown if all mutations are predicted as 'no effect'.