Abstract
The pyruvate dehydrogenase kinase-catalyzed inactivation of the pyruvate dehydrogenase complex was studied using dialyzed, soluble proteins from mitochondria purified from green leaf tissue of Pisum sativum L. seedlings. At subsaturating ATP concentrations, K+ or NH4+, but not Na+, stimulated the pyruvate dehydrogenase kinase by lowering the Km(ATP). Micromolar concentrations of NH4+ were required to produce the same effect as millimolar concentrations of K+. This is apparent from the observations that the activation constant (Kact) for NH4+ was 0.1 mM, whereas the Kact(K+) was 0.7 mM. Maximal pyruvate dehydrogenase kinase velocities attained with NH4+ were higher than those with K+, and, therefore, NH4+ was able to stimulate PDH kinase further in the presence of saturating K+. This result supports our conclusion that photorespiratory NH4+ production in plant mitochondria may be involved in regulating the entry of carbon into the Krebs cycle by way of the pyruvate dehydrogenase complex.
Full Text
The Full Text of this article is available as a PDF (534.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Budde R. J., Randall D. D. Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc Natl Acad Sci U S A. 1990 Jan;87(2):673–676. doi: 10.1073/pnas.87.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Budde R. J., Randall D. D. Regulation of pea mitochondrial pyruvate dehydrogenase complex activity: inhibition of ATP-dependent inactivation. Arch Biochem Biophys. 1987 Nov 1;258(2):600–606. doi: 10.1016/0003-9861(87)90382-1. [DOI] [PubMed] [Google Scholar]
- Budde R. J., Randall D. D. Regulation of steady state pyruvate dehydrogenase complex activity in plant mitochondria : reactivation constraints. Plant Physiol. 1988 Dec;88(4):1026–1030. doi: 10.1104/pp.88.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
- Cate R. L., Roche T. E. A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem. 1978 Jan 25;253(2):496–503. [PubMed] [Google Scholar]
- Gemel J., Randall D. D. Light regulation of leaf mitochondrial pyruvate dehydrogenase complex : role of photorespiratory carbon metabolism. Plant Physiol. 1992 Oct;100(2):908–914. doi: 10.1104/pp.100.2.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser E., Norling B., Ernster L. Reconstitution of mitochondrial oligomycin and dicyclohexylcarbodiimide-sensitive ATPase. Eur J Biochem. 1980 Sep;110(1):225–235. doi: 10.1111/j.1432-1033.1980.tb04859.x. [DOI] [PubMed] [Google Scholar]
- KACHMAR J. F., BOYER P. D. Kinetic analysis of enzyme reactions. II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J Biol Chem. 1953 Feb;200(2):669–682. [PubMed] [Google Scholar]
- Miller G., Evans H. J. The Influence of Salts on Pyruvate Kinase from Tissues of Higher Plants. Plant Physiol. 1957 Jul;32(4):346–354. doi: 10.1104/pp.32.4.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
- Platt S. G. Ammonia regulation of carbon metabolism in photosynthesizing leaf discs. Plant Physiol. 1977 Nov;60(5):739–742. doi: 10.1104/pp.60.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt M. L., Roche T. E. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J Biol Chem. 1979 Aug 10;254(15):7191–7196. [PubMed] [Google Scholar]
- Reed L. J. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Regul. 1981;18:95–106. doi: 10.1016/b978-0-12-152818-8.50012-8. [DOI] [PubMed] [Google Scholar]
- Robertson J. G., Barron L. L., Olson M. S. Effects of alpha-ketoisovalerate on bovine heart pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase. J Biol Chem. 1986 Jan 5;261(1):76–81. [PubMed] [Google Scholar]
- Schuller K. A., Randall D. D. Mechanism of pyruvate inhibition of plant pyruvate dehydrogenase kinase and synergism with ADP. Arch Biochem Biophys. 1990 Apr;278(1):211–216. doi: 10.1016/0003-9861(90)90250-3. [DOI] [PubMed] [Google Scholar]
- Shah V. K., Davis L. C., Brill W. J. Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta. 1972 Feb 28;256(2):498–511. doi: 10.1016/0005-2728(72)90078-3. [DOI] [PubMed] [Google Scholar]
- Suelter C. H. Enzymes activated by monovalent cations. Science. 1970 May 15;168(3933):789–795. doi: 10.1126/science.168.3933.789. [DOI] [PubMed] [Google Scholar]
