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Transposition of Reversed Ac Element Ends
Generates Novel Chimeric Genes in Maize
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The maize Activator/Dissociation (Ac/Ds) elements are members of the hAT (hobo, Ac, and Tam3) superfamily of type I
(DNA) transposons that transpose through a “cut-and-paste” mechanism. Previously, we reported that a pair of Ac
ends in reversed orientation is capable of undergoing alternative transposition reactions that can generate large-scale
chromosomal rearrangements, including deletions and inversions. We show here that rearrangements induced by
reversed Ac ends transposition can join the coding and regulatory sequences of two linked paralogous genes to
generate a series of chimeric genes, some of which are functional. To our knowledge, this is the first report
demonstrating that alternative transposition reactions can recombine gene segments, leading to the creation of new
genes.
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Introduction

The maize Ac element is 4,565 base pairs (bp) in length and
encodes an 807-amino acid transposase that catalyzes Ac/Ds
transposition. The A¢/Ds element ends are delineated by
complementary 11-bp terminal inverted repeat sequences,
while the sub-terminal sequences are distinct from each other
[1]. The individual Ac¢ termini are designated as 5" or 3’
according to their proximity to the beginning and end of the
Ac transcript. Transposition requires one Ac 5’ end and one
Ac 3" end [2]. In standard transposition, the Ac¢ 5" and 3’ ends
are part of a single transposon, and the outcome of
transposition is the excision of the element from a donor
site and insertion into a target site. However, transposition
reactions can also involve the 5’ and 3’ ends of different Ac/Ds
elements, which can be in either a direct or reversed
orientation with respect to each other [3,4]. These alternative
transposition events can generate deletions, duplications,
inversions, and other sequence rearrangements. Because Ac¢/
Ds preferentially transposes into genic regions, the rearrange-
ments induced by alternative A¢/Ds transposition would be
predicted to shuffle coding and regulatory sequences, and
thereby generate new genes. We searched for such events in
maize stocks containing a pair of reversed Ac ends in the pI
gene, which regulates kernel pericarp pigmentation. We
obtained four chimeric alleles in which the promoter, exon 1
and exon 2 of the p2 gene (a paralog of pI) [5] is joined with
exon 3 of the pl gene. Because the pI and p2 coding
sequences are very similar, the new chimeric genes would
encode proteins nearly identical to that encoded by the pI
gene. The p2 promoter is inactive in pericarp in the
progenitor allele; however, these four new alleles show
significant expression in kernel pericarp, and specify a novel
orange pericarp phenotype. We propose that this new
phenotype is largely caused by an altered expression pattern
resulting from the chromosomal rearrangement. These
results demonstrate that alternative transposition reactions
can generate gene fusions and therefore may have been an
important force in gene and genome evolution.
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Results

Structures of Novel Chimeric Alleles

The maize pl gene encodes a Myb-homologous transcrip-
tional regulator required for synthesis of red pigments in
kernel pericarp (Figure 1) and cob glumes [6]. The PI-rril
allele (red pericarp, red cob) contains a truncated Ac element
(fAc, fractured Ac) inserted in the second intron of pI, and a
full-length Ac element inserted 13,175 bp upstream of the fAc
element; the 5’ end of Ac and the 3’ end of fAc in PI-rrll are
oriented towards each other (Figure 1C). A paralog of pl,
termed p2, is located approximately 60 kilobases (kb)
upstream of the pI gene in the chromosome containing the
PI-rrll allele [7] (Figure 1C). The p2 gene is not expressed in
kernel pericarp and hence does not contribute to pericarp
color [5,8]. Reversed Ac ends transposition in PI-rril would
eliminate pI gene function, and most mutants derived from
PI-rr11 have colorless kernel pericarp and cob. However, we
did isolate four alleles with orange pericarp and orange cob,
and these were designated as P-0032, P-001062, P-001067, and
P-001068 (Figure 1A).

Genetic tests indicate that there is no Ac activity in the
genome of the P-oo alleles. We characterized the structural
rearrangements in the P-oo alleles by genomic DNA gel blot
and PCR. Genomic DNA from plants carrying the P-0032
allele was cut with HindIIl and Kpnl, and hybridized with
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Synopsis

Transposable elements, or “jumping genes,” are DNA segments that
can move to new sites in the genome. One type of transposable
element from maize, called Ac/Ds, moves by a reaction known as
“cut-and-paste.” In this mechanism, a transposase enzyme cleaves
at both ends of a single Ac/Ds element, releasing the element from
one site and inserting it at another location. However, if two Ac/Ds
elements are situated near each other, the transposase may
sometimes cut at the ends of two different elements. When these
two Ac/Ds ends insert at a new location, a large rearrangement of
the genome can occur; this process is termed alternative trans-
position. In this work, the authors studied alternative transposition
events that affect the structure and expression of two genes that
control maize kernel color. Alternative Ac transposition can cause
fusions of the coding sequences of the two genes, generating a new
functional chimeric gene that specifies a new maize kernel color.
This mechanism of gene creation through alternative transposition
is similar to the way that functional antibody genes are generated in
the vertebrate immune system. These results show how the actions
of transposable elements can reshuffle the genome to generate new
functional genes.

maize pl genomic probe fragments 15 or 8B (Figure 1B). In
comparison to PIl-rrll, the P-0032 allele lacks the 7.0-kb
HindIII fragment (from pI), the 10.7-kb Kpnl fragment (from
p1), and the 6.8-kb Kpnl fragment (from p2). The absence of
these fragments and the lack of Ac activity in the genome
suggest that P-0032 has a deletion that includes both pI and p2
sequences. On the other hand, the presence of the 6.5-kb
HindIII fragment detected by pI fragment 15 indicates that
the 3’ portion of the pI gene and at least a part of fAc are
intact. The faint 7.6-kb fragment in the KpnI-8B blot suggests
that the upstream deletion end point is within the 8B-
homologous fragment in p2. To test this, we performed PCR
analysis using oligonucleotide primers 2 and 4, which flank
the fAc¢ insertion in pI and are complementary to corre-
sponding sites in the p2 gene. A ~2.4-kb product was
amplified from P-0032 DNA and sequenced. The results
indicate that the 3’ end of fAc is inserted into a site in intron 2
of p2 (position 5619 in GenBank sequence AF210616), while
the sequence downstream of fAc is from intron 2 of pI (the pI
and p2 sequences are highly homologous, but sufficient
sequence polymorphisms exist to distinguish the origin of
PCR products). This result, together with the DNA gel blot
results, indicates that P-0032 is a gene fusion containing exon
1 and exon 2 of the p2 gene, the fAc sequence, and exon 3 of
the pI gene.

We characterized three additional P-oo alleles derived from
Pl-rr11: P-001062, P-001067, and P-001068. We performed PCR
using primer 4 of the pI gene, and a series of primers
complementary to intron 2 of p2. Sequencing of the PCR
products revealed that these three alleles have structures
resembling that of P-0032: each has exons 1 and 2 from p2,
and exon 3 from pl. However, each allele exhibits a distinct
site of fAc insertion in p2 intron 2: nucleotides 5912, 8088, and
8365 of AF210616 in P-001067, P-001068, and P-001062,
respectively (Figure 1C). Importantly, the rearrangements
show precise junctions of the p2 sequence with the fAc
terminus. In contrast, transposition of Ds elements in
Arabidopsis is reported to generate large deletions, but the
deleted sequences extend into the Ds termini, indicating the
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involvement of cellular DNA repair mechanisms in deletion
formation [9]. The precise junctions observed in the P-o0
alleles are consistent with their formation through a single
transposase-mediated insertion event.

The P-oo Alleles Are Generated by Reversed Ac Ends
Transposition

As mentioned above, the p2 gene is located approximately
60 kb proximal to pI, and in the same transcriptional
orientation [7]. The PI-rrll allele contains reverse-oriented
Ac 5" and fAc 3’ ends whose transposition can generate a
variety of chromosomal rearrangements [3]. If the excised A¢/
fAc ends insert into a site in intron 2 of p2, the fAc in pI intron
2 will be precisely joined to the insertion point in intron 2 of
p2, and the ~60 kb of DNA between them will be deleted
(Video S1). The resulting chromosome will carry a new fusion
gene, composed of the promoter, exon 1 and exon 2 of p2,
joined through fAc to exon 3 of pI (Figure 2). The structures
of P-0032, P-001062, P-001067, and P-001068 are consistent with
their origin via this reversed Ac¢ ends transposition mecha-
nism.

We considered an alternative mechanism for generation of
the fusion alleles via transposon-induced homologous re-
combination. Transposition of A¢/Ds elements is known to
induce recombination between flanking homologous sequen-
ces [10,11]. The second introns of the pI and p2 genes are 4.6
and 3.8 kb, respectively, and are 849% identical over their
common lengths. Alleles formed by homologous recombina-
tion should have crossover sites at homologous sequences.
However, the P-oo alleles have breakpoints at various sites
within the p2 intron, and each junction occurs precisely at the
JAc 3" end. Moreover, all alleles retain the fAc sequence, with
the sequences upstream of fA¢ resembling p2 and the
sequences downstream of fAc resembling pl. This structure
would not be expected from homologous recombination, but
is consistent with transposition-induced rearrangement.

Expression of the P-oo Alleles in Pericarp

In addition to the P-oo alleles described above, we isolated
an additional allele, termed p-ww2, that specifies colorless
kernel pericarp and cob (Figure 1A). The p-ww2 allele was
derived via an alternative transposition reaction involving fAc
and a nearby, directly oriented Ac¢ element inserted 3" of fAc
[4], followed by excision of the Ac element. The structure of p-
ww?2 is very similar to that of the four fusion alleles, except
that fAc is joined to a site in exon 3 of p2, instead of intron 2
of p2 (Figure 1C). Although the deletion in p-ww?2 is slightly
smaller than those of the P-oo alleles, the colorless kernel
pericarp and cob phenotype indicates that the p gene is not
functional in p-ww2, whereas the four P-oo alleles that specify
orange pericarp color indicate that the p2/pI fusion genes are
functional.

To test for expression of the fusion alleles, we performed
RT-PCR on RNA extracted from developing kernel pericarp.
Previous studies showed that pI is expressed in various floral
organs including kernel pericarp, while the p2 gene is
expressed in other tissues including maize silk, but not in
pericarp. The PCR primers 1 and 3 amplify a product of 605
bp from the pI gene, and 522 bp from p2 gene, due to
different lengths of the 5° UTR of each gene [5]. The
progenitor allele PI-rr11 has both pI and p2 genes intact,
and was used as a positive control. It generates a product of
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Figure 1. Phenotypes and Gene Structures of P-oo Alleles

(A) The kernel pericarp pigmentation phenotypes specified by the indicated alleles.

(B) Genomic Southern blot. Genomic DNA from plants homozygous for the indicated alleles was cut with Kpnl and Hindlll, and hybridized with probes
15 or 8B from the p1 gene. Lanes marked P-0032 contain approximately twice as much DNA as lanes marked P7-rr11; this DNA overloading enables the
detection of the 7.6-kb band in the Kpnl 8B blot, but also results in the intense 6.5-kb band in the Hindlll 15 blot.

(C) Restriction map. The solid and gray boxes are exons 1, 2, and 3 (left to right) of p7 and p2, respectively. Red triangles indicate Ac or fAc insertions,
and the open and solid arrowheads indicate the 3’ and 5’ ends, respectively, of Ac/fAc. Sequences hybridizing with Southern blot probes are indicated
by the solid bars above (probe 8B) and below (probe 15) the map. The short horizontal arrows indicate the orientations and approximate position of
PCR primers. Primers are identified by numbers below the arrows. The sequence of the junction of each fusion allele is shown here; the black letters
indicate p2 sequence, while the red letters indicate fAc sequence. K, Kpnl; H, Hindlll. Lines below the map indicate the restriction fragments produced by
digestion with Kpnl or Hindlll and hybridizing with the indicated probe; asterisks indicate Hindlll restriction sites located within Ac or fAc sequences.

DOI: 10.1371/journal.pgen.0020164.g001

605 bp as expected for pI expression in kernel pericarp. The
pl-wwlll2 allele was used as a negative control; it has a
deletion of the pI coding sequence, but retains the sequences
upstream of pI, including the p2 gene [10]. As expected, no
products were amplified from this allele. The P-oo alleles
generated RT-PCR products of 522 bp, which is consistent
with expression of the fusion genes that include a 5" UTR
derived from the p2 gene (Figure 3). Sequencing of the RT-
PCR products confirmed that the P-oo transcripts contained
exon 1 and exon 2 of p2, and exon 3 of p1, as predicted by the
gene structures. The chimeric P-oo genes would encode a
protein identical to that encoded by the pI gene except for a
change in the fourth amino acid residue [5,12].

No expression of the unrearranged p2 gene was detected in
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either pl-wwl112 or Pl-rr11. This is consistent with previous
reports, and supports the conclusion that the native p2 gene
is not expressed in kernel pericarp [5]. It is somewhat
surprising that p-ww2 and the P-oo genes, each of which
contain the p2 promoter, generate transcripts in kernel
pericarp. It has previously been shown that sequences nearly
identical to genomic fragment 15 of the pI gene form part of
an enhancer located approximately 5 kb upstream of the pI
transcription start site [13]. In p-ww2 and the P-oo alleles, the
pl1 fragment 15 is located at new positions ranging from 6.2
kb to 14.4 kb 3’ of the p2 transcription start site. At these new
sites, the fragment 15 sequence may enhance expression of
the fusion genes in pericarp. This idea is consistent with the
observation that the intensity of pericarp pigment specified
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Figure 2. Deletions by Reversed Ac Ends Transposition Generate Chimerical Genes
The solid circle indicates the centromere, the short vertical line indicates the target site, and the other symbols have the same meaning as those in

Figure 1. (For animated version, see Video S1).

(A) Ac transposase (blue oval) binds to the 5’ end of Ac and 3’ end of fAc.

(B) As in ordinary transposition, the Ac 5" end and the fAc 3’ end are excised by transposase cleavage, and the sequences flanking the Ac/fAc ends join
together to form a ~13-kb circle. The X mark at the junction indicates the transposon footprint.

(C) The excised transposon ends insert into a site in intron 2 of p2. The Ac 5’ end joins to the distal side of the insertion site to form a circle, and the fAc
3’ end joins to the proximal side of the insertion site to generate a chimeric gene containing exon 1 and exon 2 of p2 and exon 3 of p1.

This study reports the isolation of the progenitor (A) and deletion products (C). Note that the hypothetical structures shown in (B) are transient in nature

and would not be amenable to physical isolation.
DOI: 10.1371/journal.pgen.0020164.g002

by each P-oo allele is approximately correlated with the size of
the deletion; i.e., alleles in which the fragment 15 sequence is
located closer to the p2 promoter produce more intense
pericarp color. Further analysis will be required to test this
model.

Discussion

Our results document four cases of exon shuffling induced
by members of the hAT superfamily of DNA transposons. hAT
elements are widespread in plants, animals, and fungi. The
somatic rearrangement of vertebrate immunoglobulin genes
through V(D)] recombination is catalyzed by proteins (Ragl/
Rag?2) that are functionally related to 2AT family transposases
[14,15]. Indeed, the formation of the P-oo alleles described
here through transposase-induced intra-chromosomal dele-
tion is analogous to the mechanism of vertebrate antibody
gene rearrangement [16,17]. In contrast to the situation in
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Figure 3. RT-PCR Analysis of P-oo Transcripts

RNA was extracted from kernel pericarp (20 DAP), reverse transcribed,
and PCR-amplified using primers complementary to both p7 and p2
transcripts. The progenitor allele (P1-rr11) shows amplification of a 605-
bp band from p1. The p-ww2 and P-oo alleles show amplification of a
522-bp band characteristic of the 5’ region of the p2 gene. The pi-
ww1112 allele has a deletion of p1; the native p2 gene is intact in this
allele, but is not expressed in kernel pericarp.

DOI: 10.1371/journal.pgen.0020164.g003

@ PLoS Genetics | www.plosgenetics.org

vertebrates in which the immunoglobulin rearrangements are
limited to somatic cells, the genome rearrangements detected
in maize can be inherited because of the late recruitment of
gametophytic cells during plant development [18].

Recent sequence analysis of the rice and maize genomes
have shown that the Mutator and Helitron transposon
families are involved in large-scale duplication and shuffling
of coding sequences [19-21]. Although it is not yet known
whether the resulting chimeric genes are functional, their
sheer abundance suggests that these transposon-induced
rearrangements could be an additional large potential source
of chimeric genes.

Previous reports of exon shuffling in cultured human cells
have been associated with illegitimate recombination, or
retrotransposition of long interspersed nuclear elements
[22,23]. Exon shuffling via retrotransposition can occur only
when retroelements are inserted in or near exon sequences.
In rice, the Tos17 retrotransposon inserts preferentially into
low-copy-number sequences [24]. In contrast, the vast
majority of retroelement sequences in the maize genome
are located predominantly in intergenic regions [25] and
hence would not be expected to contribute to exon shuffling,
whereas the tendency of Ac to insert preferentially into genic
regions [26] greatly enhances its potential role in mediating
exon shuffling reactions. Some cases of exon shuffling may
confer a positive selective advantage that could promote
fixation of variant chromosomal structures, such as inversions
or reciprocal translocations, in sympatric populations [27,28].

Chromosomal rearrangements have been reported for
other, non-hAT, transposon systems. In the fungus Fusarium,
transposition involving termini of different TcI-mariner
elements can generate deletions and inversions that also
[29]. In
Drosophila, transposition of Foldback elements and an associ-
ated white gene can result in activation of white gene

may shuffle coding and regulatory sequences

expression, although little is known about the mechanism of
Foldback transposition [30]. Also in Drosophila, transposition
involving the termini of different P elements can induce
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various chromosomal rearrangements including deletions
and inversions [31,32]. It seems likely that alternative trans-
position reactions of the type we report here are not unique
to the hAT transposon superfamily, but may be a common
feature of “cut-and-paste” eukaryotic transposons. Some
transposable elements, such as Ac¢/Ds and Sleeping Beauty, tend
to transpose to linked sites [33,34], leading to transposon
clusters in which the termini of the linked transposons could
be in either direct or reversed orientation. Alternative
transposition reactions may then act upon these clustered
transposon termini to generate large-scale chromosomal
rearrangements. In support of this idea, a recent report has
demonstrated that transgenic mice containing clusters of
Sleeping Beauty transposon ends exhibit a high frequency of
chromosomal aberrations [35]. Given the abundance of
tandemly duplicated segments in plant and animal genomes,
our results suggest that the alternative transposition events
could represent an important evolutionary mechanism for
the generation of new genes.

Materials and Methods

Genetic stocks. Alleles of the maize pI gene are identified by a two-
letter suffix that indicates their expression pattern in pericarp and
cob: e.g., P1-rr (red pericarp and red cob); and p/-ww (white pericarp
and white cob). The P-o0 (orange pericarp and orange cob) alleles
described here were derived from PI-rr11 [3]; p-ww2 was derived from
p1-vv9D9A [4].

Genomic DNA extractions and Southern blot hybridization. Total
genomic DNA was prepared from leaf tissue using a modified
cetyltrimethylammonium bromide (CTAB) extraction protocol [36].
Agarose gel electrophoresis and Southern hybridizations were
performed as described [37], except hybridization buffers contained
250 mM NaHPO, (pH 7.2), 7% SDS, and wash buffers contained 20
mM NaHPO, (pH 7.2), 1% SDS.

PCR amplifications. PCR amplifications were performed as
described [38] using the following oligonucleotide primers:
CGCGACCAGCTGCTARCCGTG, CCAAGGAGGAAGAAGA CAT-
CATCATCAAG, GCAGCTTGCTCATGTCGATGGC, and
GCAGCTTGCTCATGTCG ATGGC. HotMaster Taq polymerase from
Eppendorf (Hamburg, Germany) was used in the PCR reaction.
Reactions were heated at 94 °C for 3 min, and then cycled 35 times at
94 °C for 20 s, 63 °C for 30 s, and 65 °C for 1 min per 1 kb length of
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