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Abstract

Molecular functional and metabolic imaging allows

visualization of disease-causing processes in living

organisms. Here we present a new approach for the

functional molecular imaging (FMI) of endogenous

tyrosine kinase receptor activity using Met and its

ligand, hepatocyte growth factor/scatter factor (HGF/

SF), as a model. HGF/SF and Met play significant roles

in the biology and pathogenesis of a wide variety of

cancers and, therefore, may serve as potential targets

for cancer prognosis and therapy. We have previously

shown that Met activation by HGF/SF increases oxygen

consumption in vitro and results in substantial alter-

ation of blood oxygenation levels in vivo, as measured

by blood oxygenation level–dependent magnetic res-

onance imaging. Using contrast medium (CM) ultra-

sound imaging, we demonstrate here that HGF/SF

induces an increase in tumor blood volume. This

increase is evident in small vessels, including vessels

that were not detected before HGF/SF treatment. The

specificity of the effect was validated by its inhibition

using anti–HGF/SF antibodies. This change in tumor

hemodynamics, induced by HGF/SF and measured by

CM ultrasound, is further used as a tool for Met FMI in

tumors. This novel noninvasive molecular imaging

technique may be applied for the in vivo diagnosis,

prognosis, and therapy of Met-expressing tumors.
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Introduction

Tyrosine kinase growth factor receptors play an important

role in normal development, as well as in tumorigenicity

and metastasis. Alteration in their structure, quantity, ac-

tivity, or subcellular localization results in uncontrolled

cell growth and/or modification of cell differentiation,

which leads to tumor formation. Aberrant signaling through

the Met tyrosine kinase receptor and its ligand, hepa-

tocyte growth factor/scatter factor (HGF/SF), has been

described for a variety of human cancers (http://

www.vai.org/metandcancer). Overexpression of Met and/or

HGF/SF mutationally activates Met, and expression of both

Met and HGF/SF by the same cell (autocrine loop) contributes

to tumorigenesis [1]. Increased Met or HGF/SF expression in

human cancers is often associated with high tumor grade and

poor prognosis [2,3].

Met was found to be consistently and significantly overex-

pressed in colorectal carcinoma [4], malignant pleural meso-

thelioma [5], and gastric carcinoma [6]. In addition, increased

levels of Met or HGF/SF were reported in non–small cell lung

carcinomas, osteosarcomas, ovarian and pancreatic cancers,

and others (summarized in Maulik et al. [2]).

Met and HGF/SF were thoroughly studied in breast cancer.

The overexpression and coexpression of Met and HGF/SF

were reported in breast carcinoma tissues relative to benign

breast tissues [7]. In addition, HGF/SF expression was shown

to be a strong and independent predictor of recurrence and

survival in human breast cancer [8], and expression of Met

was found to be a strong independent predictor of decreased

survival [9,10]. Moreover, Met expression was demonstrated

as a diagnostic marker for identifying node-negative patients

who are likely to develop a more aggressive disease [10].

A disorganized and uncontrolled vascular supply, accompa-

nied by poor oxygenation and lowered pH, is a pathophysio-

logic hallmark of tumors. Growing tumors exhibiting vascular

deficiency or defective microcirculation are deprived of O2,

glucose, and other nutrients, resulting in a hypoxic micro-

environment that promotes the formation of new blood vessels

(for a review, see Folkman [11] and Hanahan and Folkman

[12]). Previous observations from our laboratory demonstrated

that activation of Met by HGF/SF increases cell oxygen con-

sumption and glycolysis [13]. Characterization of tumor meta-

bolic phenotype by magnetic resonance spectroscopy shows
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an increase in glucose consumption, glycolysis rate, and cy-

tosolic NADH/NAD ratio, compared with benign tissues [14].

In addition, hypoxia-inducible factor (HIF) proteins induce

the elevation of Met levels under hypoxic conditions, resulting

in enhanced Met-HGF/SF signaling through Gab-1 and in-

creased cell motility [13,15].

We have previously shown that Met activation by HGF/SF

in vivo alters the hemodynamics of normal and malignant

Met-expressing tissues. Tumor-bearing BALB/c mice were

injected with HGF/SF and were imaged using magnetic

resonance imaging (MRI) and Doppler ultrasound. Organs

and tumors expressing high levels of Met showed the most

substantial alterations in blood oxygenation levels, as mea-

sured by blood oxygenation level–dependent MRI. No sig-

nificant alteration was observed in tumors or in organs that

do not express Met [16].

In this study, HGF/SF–induced hemodynamic alterations

were used to develop a novel functional molecular imaging

(FMI) method based on Met activation. This real-time imag-

ing takes advantage of ultrasound perfusion contrast me-

dium (CM) technology. We show here that Met activation

results in major hemodynamic changes, including increased

tumor blood volume, increased tumor area with significant

blood flow, and opening of existing blood vessels that

showed undetectable blood flow before the treatment. This

novel FMI technique can be used for the in vivo diagnosis,

prognosis, and therapy of Met-expressing tumors.

Materials and Methods

Animal Models

Two animal models were used in this study: 1) xenografts

of D1-DMBA-3 (DA3) (a cell line derived from a poorly

differentiated mammary adenocarcinoma using dimethyl-

benzanthracene) [17] in female BALB/c mice; and 2) xeno-

grafts of the human breast carcinoma cell line MCF7 in

athymic female nude mice. To induce tumors, 5 � 105 cells

were injected into the lower left mammary gland of mice. The

mice were allowed food and water ad libitum. Tumors were

allowed to grow until they had reached a volume of 0.5 to

1.5 cm2 (approximately 20 days) and then were imaged.

DA3 tumor-bearing mice were treated with HGF/SF–

neutralizing antibodies (Abs), as previously described [18].

In short, 0.2 mg of anti–HGF/SF (mAbs A-1, A-5, and A-7)

per 100 ml per animal was injected intraperitoneally before

CM ultrasound FMI.

All studies involving animal models were approved by

the Van Andel Research Institute Institutional Animal Care

and Use Committee or by the Committee of Animal Use and

Care at Tel Aviv University.

CM Ultrasound Imaging

Mice were anesthetized with 2% inhalation anesthesia

(isoflurane; Halocarbon Products, River Edge, NJ) delivered

with oxygen, using a nonrebreathing anesthetic delivery

system (Summit Anastasia Solutions, Bend, OR). Anesthe-

tized mice were placed on a heating pad to maintain body

temperature and to minimize temperature-induced changes

in blood flow. Hair surrounding the tumor area was removed

before imaging using a depilatory cream (Carter Product,

New York, NY). An imaging gel was placed on the tumor, and

a 27-gauge needle was inserted into the tail vein for repeated

intravenous injections. To retain the physiologic conditions

and to reduce the volume injected into the mice, first-pass

(bolus CM injection and imaging performed on the first time

that the CM was washed into the tumor), low-intensity, non-

destructive, CM-enhanced ultrasound imaging was per-

formed. The use of CM enables the detection of smaller

blood vessels relative to large blood vessels observed by

Doppler ultrasound. Ultrasound measurements were carried

out at 20 frames/sec, with a fixed 15L8s, 14-MHz linear

transducer power (�18 dB/0.25 MI) (Sequoia 512; Acuson,

Mountain View, CA). To enable repeated imaging after

first-pass imaging, microbubbles were destroyed with a de-

structive imaging mode, allowing the detection of new micro-

bubbles in the flow to the imaged area.

To localize tumor boundaries and basal blood flow, color

Doppler ultrasound was performed. For high-temporal-

resolution FMI of Met, CM ultrasound imaging was per-

formed before and after HGF/SF treatment (Figure 1A).

Pre–HGF/SF contrast enhancement was measured by

intravenous injection of 150 ml of saline through the tail vein

and, 5 minutes later, by intravenous injection of 150 ml of CM

bolus I (15 mg/mouse, Definity Perflutren Lipid Microsphere;

Bristol-Myers Squibb Medical Imaging, Inc., N. Billerica, MA).

CM enhancement in the tumor was measured for 15 sec-

onds at a rate of 20 frames/sec (starting before the injection),

while CM enhancement reached plateau. Microbubble de-

struction mode was applied to clear the signal for additional

CM imaging (Figure 1A).

HGF/SF contrast enhancement was measured 20 min-

utes after HGF/SF injection (1024 U/mouse purified human

HGF/SF) by tail vein intravenous injection of 150 ml of saline

and, 5 minutes later, by intravenous injection of 150 ml of CM

bolus II (15 mg/mouse). CM enhancement in tumor was mea-

sured for 15 seconds at a rate of 20 frames/sec (starting

before the injection), while CM enhancement reached pla-

teau (Figure 1A).

Imaging settings were standardized and unchanged

throughout the experiment. No major near-field artifacts were

encountered. Images were obtained by experienced sonog-

raphers who were not informed of the treatment status of the

animals throughout the study.

Image Analysis

A mouse cursor was used to outline the tumor’s regions of

interest (ROI) on the B-mode ultrasound image based on

structural criteria and echogenicity parameters [19]. To ana-

lyze the HGF/SF–induced alteration of intensity and volume,

a hypoechoic center was chosen to avoid the ill-defined

echogenic border that may contain normal tissues.

CM enhancement was calculated from time series images

(clips) using a dedicated functional molecular image analy-

sis software UIA (I-Labs, Petach Tikva, Israel) and a MICA

image analysis software (CytoView, Petach Tikva, Israel).

Met Molecular Imaging: HGF/SF Increases Blood Volume Tsarfaty et al. 345

Neoplasia . Vol. 8, No. 5, 2006



Calculations were performed in several steps. 1) For pixel-

by-pixel analysis, signal percentage alteration was calcu-

lated by comparing the background intensity (the average

intensity of seven images before CM injection) with the

maximum signal intensity (SI; average intensity of seven

images after the CM reached plateau) for each pixel. 2) CM

alteration maps were calculated for each pixel and then

color-coded; blue tones represent reduction in signal and

red/yellow tones represent increased intensity. The defined

ROI outlined on the B-mode image were overlaid onto

appropriate maps. 3) The average pixel intensity of selected

ROI was calculated for each frame in the imaging sequence

and was fitted to an exponential curve. Gaussian smoothing

was applied to the average pixel.

Pre–HGF/SF CM enhancement was calculated from

the first bolus imaging as the difference between the maximal

SI (maximal enhancement) and the background (see step

immediately above). Post–HGF/SF CM enhancement was

calculated from the second bolus imaging as the difference

between the maximal SI (maximal enhancement) and the

background (see step immediately above).

Mapping of the effect of HGF/SF was performed by com-

paring the CM enhancement maps generated pre–HGF/SF

treatment (saline) and post–HGF/SF treatment for each

mouse. HGF/SF tumor enhancement effect maps demon-

strate alterations in contrast enhancement on HGF/SF treat-

ment (postmap � premap).

The effect of HGF/SF on tumor contrast enhancement

was calculated by analyzing the average maximal SI (per-

centage) on the pixels of the designated ROI before and after

HGF/SF treatment (Figure 1B). The effect of HGF/SF on

blood volume was calculated by using the average signal

calculated on the pixels of the ROI and by fitting it to an

exponential curve: Y = C � A(1 � e�bt), where C represents

background noise, A represents volume, t represents time,

and b represents flow. Statistical analysis was performed

using Student’s t test (with Microsoft Excel).

Results

HGF/SF Increases Hemodynamics in Met-Expressing

Tumors as Measured by Doppler and CM

Ultrasound Imaging

The effect of HGF/SF on tumor blood volume was as-

sessed using Doppler and CM real-time perfusion ultrasound

Figure 1. High-temporal-resolution FMI of Met: experimental layout and image analysis. (A) Experimental layout: to localize tumor boundaries and basal blood flow,

color Doppler ultrasound was performed. Baseline CM enhancement: mice were injected intravenously with 150 �l of saline and, later, with 150 �l of CM (15 �g/

mouse; 5 minutes after the injection of saline), followed by a microbubble destruction mode that was necessary for additional CM imaging. HGF/SF CM

enhancement: CM imaging was performed by intravenous injection of 150 �l of HGF/SF (1024 U/mouse purified human HGF/SF) [38] and, 20 minutes later, with

150 �l of CM (15 �g/mouse). (B) Image analysis: the effect of HGF/SF on tumor contrast enhancement was calculated by analyzing the average maximal SI

(percentage) on the pixels of the designated ROI before HGF/SF treatment (baseline) and after HGF/SF treatment.
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imaging. DA3 tumors expressing high Met levels were im-

aged before and after HGF/SF treatment. As previously

described [16], Doppler analysis showed an increase

in the number and in the size of blood vessels, indicating

an increase in blood flow to tumors following HGF/SF

injection (Figure 2, A and B). Ultrasound images are focused

on the tumor area. In color Doppler imaging, blood vessels

are depicted as blue and red spots; yellow and green rep-

resent regions of higher blood flow velocity. However, only

large blood vessels with high flow could be detected using

this technique.

To increase imaging resolution and to enable better quan-

tification, CM ultrasound imaging was performed. We mea-

sured the magnitude of the HGF/SF effect on tumor CM

enhancement before and after treatment. We found that, on

HGF/SF treatment, tumor enhancement was magnified,

showing higher rim and intratumoral enhancement (Figure 2,

C and D, yellow arrows). Both color Doppler and CM analy-

sis indicated an increase in blood volume to the tumors on

HGF/SF treatment.

To study the time dependency of the HGF/SF effect on

CM tumor enhancement, CM imaging was performed be-

fore, 20 minutes after, and 35 minutes after HGF/SF admin-

istration by repeated injection and destruction of CM. HGF/

SF– induced tumor CM enhancement was assessed for

each mouse by quantifying the SI in the tumor (ROI was de-

fined according to anatomy and structural criteria; Figure 3A)

for each time point (Figure 3B). Each fitting curve represents

the average pixel intensity of the selected ROI, as calculated

for each frame in the imaging sequence (20 frames/sec for

15 seconds after CM injection).

The increase in CM SI peaked by approximately two-fold

at 20 minutes after HGF/SF injection. For further analysis,

we chose 20 minutes as our optimal time for the increase in

HGF/SF–induced tumor contrast enhancement. CM en-

hancement levels were quantified and color-coded. Saline

(pre–HGF/SF treatment) (Figure 3C) and post–HGF/SF

treatment (Figure 3D) CM enhancements were mapped.

Brighter red and yellow colors represent higher SI. The

HGF/SF effect was mapped by subtracting the saline map

from the map obtained 20 minutes after HGF/SF treatment

(Figure 3E ); bright yellow represents a significant increase

in average SI on HGF/SF treatment. These results demon-

strate that HGF/SF treatment dramatically increases CM en-

hancement in the tumor area.

Specificity of HGF/SF Effects on Tumor CM

Enhancement—Validation by Inhibition Using

Anti–HGF/SF Ab

To validate the specificity of HGF/SF effects and to

ascertain that the hemodynamic responses are not influ-

enced by bolus injection of the CM, the effect of saline and

CM without HGF/SF was assessed. For each mouse, CM

enhancement was compared before and after saline injec-

tion (as described in the Materials and Methods section). To

evaluate the magnitude of the saline effect, we used statis-

tical analysis on a group of seven mice. Our results show that

saline and CM do not increase the average CM enhance-

ment (0.96-fold induction; P = .9).

To further validate the specificity of HGF/SF effects on

tumor CM enhancement, mice bearing DA3 tumors were

injected with an anti–human HGF/SF Ab cocktail, which

recognizes and neutralizes human HGF/SF and not the

endogenous mouse HGF/SF [18]. HGF/SF–induced tumor

CM enhancement was blocked when HGF/SF was admin-

istered concurrent with, or after, Ab administration. Quanti-

fied enhancement levels were color-coded and mapped

before and after HGF/SF treatment (Figure 4). Mapping of

enhancement differences showed that HGF/SF effects on

tumor CM enhancement were significantly inhibited when

Figure 2. HGF/SF induces increase in blood flow in a Met-expressing mammary adenocarcinoma tumor, as measured by Doppler and CM ultrasound imaging. A

mouse bearing a DA3 mammary adenocarcinoma tumor was injected intravenously with saline, followed by HGF/SF. Color Doppler ultrasound imaging was

performed (A) before HGF/SF treatment and (B) 20 minutes after HGF/SF treatment. Blood vessels are depicted as blue and red spots; yellow and green represent

regions of higher blood flow velocity. Doppler analysis showed an increase in the number and in the size of blood vessels on HGF/SF treatment (yellow arrows).

CM ultrasound imaging was performed (C) before HGF/SF treatment and (D) 20 minutes after HGF/SF treatment. On HGF/SF treatment, tumor enhancement was

magnified, as shown in higher rim and intratumoral enhancements (yellow arrows). Size bar, 1 cm.
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Figure 3. HGF/SF effect on tumor enhancement: time dependency and mapping. A mouse bearing a DA3 mammary adenocarcinoma tumor was injected

intravenously with saline, followed by HGF/SF. CM ultrasound imaging was performed before HGF/SF treatment and 20 minutes after HGF/SF treatment. (A) The

tumor was imaged using color Doppler ultrasound. For further calculation and quantification, the tumor was outlined (yellow mark) to specify the ROI based on

structural criteria. Size bar, 1 cm. (B) A graph representing alterations of CM enhancement on HGF/SF treatment for marked ROI (panel A, yellow). CM imaging

was performed before (blue curve), 20 minutes after (red curve), and 35 minutes after (green curve) HGF/SF treatment. Each curve demonstrates the average

tumor enhancement after CM injection, calculated for 15 seconds (for each frame; 20 frames/sec). To normalize the signal, the background intensity was calculated

as 100%. Percent SI increased by approximately two-fold and peaked 20 minutes after HGF/SF injection. (C–E) Mapping HGF/SF effects on tumor enhancement.

CM ultrasound SI color-coded maps were generated (C) before HGF/SF injection and (D) 20 minutes after HGF/SF injection. Brighter red and yellow colors

represent higher SI (D versus C). The HGF/SF effect was mapped as the difference in SI before and after HGF/SF injection (E), where bright yellow represents a

significant increase in average SI on HGF/SF treatment.

Figure 4. Inhibition of HGF/SF effects on tumor enhancement by HGF/SF–neutralizing Ab. A mouse bearing a DA3 mammary adenocarcinoma tumor was

injected intravenously with saline, followed by HGF/SF. The tumors were injected with anti –human HGF/SF Ab cocktail before treatment or with HGF treatment.

CM ultrasound imaging was performed before HGF/SF treatment and 20 minutes after HGF/SF treatment. (A) The tumor was imaged using color Doppler

ultrasound. For further calculation and quantification, the tumor was outlined (yellow mark) to specify the ROI based on structural criteria. Size bar, 1 cm. (B–D) CM

ultrasound SI color-coded maps were generated (C) before HGF/SF + HGF/SF–neutralizing Ab treatment and (D) 20 minutes after HGF/SF + HGF/SF–

neutralizing Ab treatment. Brighter red and yellow colors represent higher SI. (B) The blocking of the HGF/SF effect was mapped as the difference in SI before and

after HGF/SF injection, where brighter color represents an increase in average SI on HGF/SF treatment.
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the animals were treated with the Ab cocktail. Overall, an

average inhibition of 82% was detected in all mice tested

(n = 7, P = .05).

HGF/SF–Induced Alteration of Tumor Blood Volume

and Velocity

The alteration in CM enhancement on HGF/SF treatment

was assessed for each mouse by comparing the CM en-

hancement before and after HGF/SF treatment (as de-

scribed in the Materials and Methods section). To evaluate

the magnitude of the HGF/SF effect, we used statistical

analysis on a group of 18 mice (Figure 5A). Our results show

that HGF/SF increased the average CM enhancement by

1.8-fold (P = .004).

To further validate the HGF/SF effect on tumor blood

volume, we assessed the tumor areas with significant CM

enhancement in response to HGF/SF treatment. Blood

vessels/pixels that show measurable enhancement before

HGF/SF treatment were designated as ‘‘preopened’’ vessel

areas, whereas ‘‘newly opened’’ blood vessel areas refer to

areas in which vessels that did not show any measurable

enhancement before treatment had measurable enhance-

ment on treatment. We calculated the differences in the

number of pixels with measurable CM enhancement in the

tumor area before and after treatment (Figure 5B). HGF/SF

increases the areas with significant enhancement by 2.219-

fold, on average (n = 18, P = .0012).

HGF/SF–induced changes in blood velocity and volume

were studied by calculating the average tumor CM enhance-

ment from time series images (20 frames/sec for 15 seconds

after CM injection) and by fitting them to an exponential curve

(see the Materials and Methods section). A 1.5-fold volume

increase was observed on HGF/SF treatment in preopened

vessels (n = 18, P < .0001), whereas in newly opened ves-

sels, a 4.49-fold increase (n = 18, P < .0001) was obtained in

regions that did show very low enhancements before HGF/

SF treatment (Figure 5C). HGF/SF showed a small, insignifi-

cant effect on blood velocity in all blood vessels. These

analyses demonstrate that HGF/SF opens new blood ves-

sels with high volume and low velocity.

HGF/SF–Induced Increase in Tumor Blood Volume

in the Human Breast Cancer Cell Line MCF7

To study the HGF/SF treatment effect on tumor blood

volume in a human breast cell line, we used nude mice bear-

ing MCF7 tumors. The alteration of CM SI was studied for

each mouse by comparing the CM enhancement before

and after HGF/SF treatment. Statistical evaluation of the

magnitude of the HGF/SF effect showed that HGF/

SF increases the average CM enhancement by 1.37-fold

Figure 5. Quantification of HGF/SF– induced increase in tumor volume. Eighteen mice bearing DA3 mammary adenocarcinoma tumors were injected

intravenously with saline, followed by HGF/SF. CM ultrasound imaging was performed before HGF/SF treatment and 20 minutes after HGF/SF treatment. (A) HGF/

SF increases CM SI. The average calculated alteration of SI (pixel intensity) before HGF/SF treatment (saline) and after HGF/SF treatment (HGF/SF) is shown.

Standard error bars are indicated. HGF/SF increased the average CM signal enhancement by 1.8-fold ( P = .004). (B) HGF/SF increases the area with measurable

flow. Areas that showed a detectable signal before HGF/SF treatment were designated ‘‘preopened’’; areas that did not show a detectable signal before HGF/SF

treatment and showed a detectable signal after HGF/SF treatment were designated ‘‘newly opened.’’ A comparison of areas in the ROI with detectable blood

flow before and after HGF/SF treatment showed a 3.62-fold increase (n = 18, P < .0001) in areas with significant enhancement. (C) HGF/SF increases blood

volume. Areas that showed a detectable signal before HGF/SF treatment were designated ‘‘preopened’’; areas that did not show a detectable signal before HGF/

SF treatment and showed a detectable signal after HGF/SF treatment were designated ‘‘newly opened.’’ The average tumor CM enhancement before HGF/SF

treatment (gray bars) and after HGF/SF treatment (black bar) that was calculated from time series images (20 frames/sec for 15 seconds after CM injection) of

the preopened and newly opened regions was fitted to an exponential curve Y = C � A(1 � e��t), where C represents background noise, A represents volume,

� represents velocity, and t represents time. A 1.5-fold volume increase was observed on HGF/SF treatment in preopened vessels (n = 18, P < .0001), whereas in

newly opened vessels, a 4.49-fold increase (n = 18, P < .0001) was obtained. These analyses demonstrate that HGF/SF opens new blood vessels with high volume.
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(Figure 6; n = 7, P = .01). HGF/SF–induced changes in blood

velocity and volume were studied by calculating the aver-

age tumor CM enhancement from time series images

(20 frames/sec for 15 seconds after CM injection) and by

fitting them to an exponential curve (see the Materials and

Methods section). A 1.2-fold volume increase was observed

on HGF/SF treatment (n = 7, P < .025).

Met levels in MCF7 cells are lower that those in DA3 cells

[20,21]; therefore, our results may reflect differences in Met

levels between these two cell lines and may indicate that the

HGF/SF–induced increase in blood volume is dependent on

Met levels in the tumor.

Discussion

We have previously reported that tumors expressing high

levels of Met show the most substantial alterations in blood

oxygenation levels, as measured by blood oxygenation

level–dependent MRI. No significant alteration was ob-

served in tumors or in organs that do not express Met [16].

Diagnostic ultrasound has the advantage of producing

real-time images with excellent temporal resolution. How-

ever, the task of mapping tumor vessels with ultrasound has

previously been difficult due to acoustic blood signals, which

are below that of the surrounding vessel walls. These low-

signal levels prevent traditional Doppler techniques from

being used to accurately assess tumor microvascular flow

rates [22]. Moreover, blood flow rate in the tumor may be sig-

nificantly lower than that in normal tissues due to the highly

tortuous vessel structure and increased flow resistance [23].

The use of intravascular microbubble contrast agents in-

creases ultrasound sensitivity to capillary-sized vessels and

very low flow rates while maintaining the ability to detect

morphologic information from traditional B-mode ultrasound

imaging [24]. Some studies provided preliminary evidence

that microbubble-induced enhancement could be useful in

tumor diagnosis [25].

We have further developed a first-pass CM ultrasound

technique that takes advantage of several recent improve-

ments in ultrasound imaging technology [26]. We are em-

ploying a nondestructive method to measure the first pass.

This flow measurement technique is based on the assump-

tion that contrast microbubbles enter tumor circulation at a

constant rate [27]. We have documented that an intensity

change in specific CM ultrasound signals is detectable after

HGF/SF injections. We show here that Met activation re-

sults in an increased tumor area with significant blood vol-

ume and in major increases in total tumor blood volume. The

increase in blood volume is a consequence of the opening of

blood vessels that, before treatment, showed undetectable

blood volume and are considered ‘‘newly opened,’’ with a

4.49-fold increase after HGF/SF treatment. It was recently

shown that tumors with small, flattened vessels show a

significantly higher resistance to microbubble perfusion than

to MRI contrast agents and appear scarcely vascularized on

CM examination, despite a vessel volume that is adequate

for normal function [28]. Here we demonstrate that HGF/SF

reduces the resistance of tumor vessels.

Aggressive tumors often have insufficient blood supply,

partly because the tumor cells grow faster than endothelial

cells and partly because a newly formed vascular supply is

disorganized [29,30]. Under such microenvironment, tumor

cells are exposed to both hypoxia and nutrient deprivation

[31,32]. In tumor cells exposed to hypoxia, HIF-1, which is a

transcription factor composed of HIF-1a and HIF-1b subunits

[33], is activated to promote the transcription of several

genes, such as glucose transporters, glycolytic enzymes,

and angiogenic factors [34]. The importance of angiogenesis

in tumor growth and metastasis has been well documented

[11,12]. Tumor enlargement and metastasis formation are

dependent on this process. Angiogenesis creates new blood

vessels to the tumor, reduces anaerobic conditions in the

tumor, and enables tumor growth and metastasis progres-

sion [12]. In this paper, we suggest an additional mechanism

for tumor cell survival under anaerobic conditions. A tyrosine

kinase oncogenic signal induces an increase in blood flow

and in blood volume to the tumor and reduces anaerobic

conditions. We mapped the alteration in CM SI induced by

HGF/SF. This mapping is an estimation of blood volume al-

terations in different regions of the tumor.

The data presented here demonstrate, for the first time, a

dramatic increase in blood flow to the tumor as a result of the

activation of the Met tyrosine kinase growth factor receptor,

which plays a major role in tumor proliferation and metas-

tasis. The dramatic increase in the area of significant flow

and tumor blood volume is shown to be primarily a conse-

quence of the opening of blood vessels that did not show de-

tectable flow before HGF/SF treatment. Based on regular

color Doppler or CM ultrasound imaging, these areas can be

misinterpreted as necrotic areas. Met FMI using HGF/SF treat-

ment reveals that these areas contain viable tumor tissues.

A competition theory–based model proposed by Gatenby

[35] suggests that the metabolic changes associated with

transformation manipulate the tumor microenvironment in

a way that favors the growth of tumor cells at the expense

Figure 6. HGF/SF induces increased SI: human breast cancer cells. Seven

nude mice bearing MCF7 breast adenocarcinoma tumors were injected

intravenously with saline, followed by HGF/SF. CM ultrasound imaging was

performed before HGF/SF treatment and 20 minutes after HGF/SF treatment.

The average calculated alteration of SI (percentage change in pixel intensity)

before HGF/SF treatment (saline) and after HGF/SF treatment (HGF/SF) is

shown. Standard error bars are indicated. HGF/SF increased the average CM

signal enhancement by 1.37-fold (P = .01).
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of normal cells. We demonstrate that elevation of tyrosine

signaling in the tumor will also increase blood flow to the

tumor. Increased flow in blood vessels leads to increased

levels of oxygen, glucose, and other nutrients supplied to

the tumor.

The molecular mechanisms of the Met-HGF/SF–induced

alteration of hemodynamics are not fully understood. We

have previously suggested two basic mechanisms (direct

and indirect) of the effect of Met signaling on tumor cells [16].

The indirect mechanism suggests that HGF/SF affects the

blood vessels and changes the systemic blood flow. Met

signaling was shown to be activated in endothelial cells,

favoring the model of blood vessel activation by HGF/SF.

The direct mechanism suggests that HGF/SF, through Met

signaling in tumor cells, causes local hypoxia, which in turn

induces an alteration in blood flow. In addition, we have pre-

viously shown that Met induces mitochondrial activity [36],

and we were able to show recently that Met activation

induces mitochondrial hyperpolarization and ATP synthesis

(data not shown). The direct mechanism is supported by

published data showing that Met is involved in the HIF-1a

hypoxic pathway [37].

Several new molecular therapies, including the potential

use of anti-Met therapy, are cytostatic rather than cytotoxic—

meaning that these therapies inhibit cell growth rather than

promote cell death. Classic imaging measuring tumor loca-

tion, diameter, and volume may no longer provide an accu-

rate reading of a tumor in its cytostatic state and of the

patient’s overall condition. Moreover, the traditional stan-

dards for drug dosing are rendered obsolete because mo-

lecularly targeted therapies may be largely free of side

effects. Met FMI, as demonstrated in this paper, can serve

as a powerful system that measures the potential effect of

anti-Met inhibitors, can be used to screen patients who might

benefit from an anti-Met treatment, and can be used to follow

up on treatment response.

The results presented here further demonstrate the

complex biology induced by the tumor as it recruits more

energy resources from its host tissue. Recruitment of en-

ergy by the tumor does not end with angiogenesis; it pro-

ceeds with increased blood flow to the tumor, which supplies

extensive energy requirements that allow tumor growth

and metastasis.
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