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Proteins, the workhorses of living systems, are constructed from
chains of amino acids, which are synthesized in the cell based on
the instructions of the genetic code and then folded into working
proteins. The time for folding varies from microseconds to hours.
What controls the folding rate is hotly debated. We postulate here
that folding has the same temperature dependence as the �-fluc-
tuations in the bulk solvent but is much slower. We call this
behavior slaving. Slaving has been observed in folded proteins:
Large-scale protein motions follow the solvent fluctuations with
rate coefficient k� but can be slower by a large factor. Slowing
occurs because large-scale motions proceed in many small steps,
each determined by k�. If conformational motions of folded pro-
teins are slaved, so a fortiori must be the motions during folding.
The unfolded protein makes a Brownian walk in the conforma-
tional space to the folded structure, with each step controlled by
k�. Because the number of conformational substates in the un-
folded protein is extremely large, the folding rate coefficient, kf, is
much smaller than k�. The slaving model implies that the activation
enthalpy of folding is dominated by the solvent, whereas the
number of steps nf � k��kf is controlled by the number of accessible
substates in the unfolded protein and the solvent. Proteins, how-
ever, undergo not only �- but also �-fluctuations. These additional
fluctuations are local protein motions that are essentially indepen-
dent of the bulk solvent fluctuations and may be relevant at late
stages of folding.

folding energy landscape � fractional viscosity dependence � internal
viscosity � Maxwell relation � protein–solvent interaction

Proteins in cells fold and unfold continuously. Consequently,
an understanding of folding rates is key. The distribution and

strength of contacts in the native state is one ingredient that
influences the rate of folding (1). A second ingredient is the
effect of the solvent, because protein motions are intimately
linked to the motions of the environment. Our slaving model
quantifies the linkage. The model is based on three concepts:
Proteins assume a large number of different conformations or
substates (2), their organization is described by a hierarchic
energy landscape (3), and large-scale protein fluctuations follow
the �-relaxation (Debye or dielectric relaxation) in the bulk
solvent (4–6). Here we propose that these concepts also are valid
for folding and that they lead to the model pictured in Fig. 1. Fig.
1a is a cartoon of folding and a 1D cross-section through the
high-dimensional energy landscape. Fig. 1b is a 2D cross-section.
Each valley in this landscape represents a conformational sub-
state of the unfolded protein ensemble (U), the transition state
ensemble (TSE), and the native ensemble (N). An unfolded
protein starts out in U and makes a random walk in U until it
reaches the TSE. Each step in this walk can occur only if the
solvent moves and, hence, its rate is proportional to the rate
coefficient k�(T) of the �-relaxation. Once in the TSE, the
protein either returns to U or falls into the folding funnel that
leads to N (7–11). Fig. 1a is, however, misleading because it
suggests that there is only one pathway for folding. The 2D
cross-section in Fig. 1b shows that there are many pathways and
that the density of substates can differ in different parts of the
landscape. A dense region in U can act as an intermediate state.
Proteins with dissimilar structures have been found to have the
same folding activation enthalpy (12, 13). The slaving model

explains the similar activation enthalpies as being dominated by
k�(T). Although proteins may possess some internal viscosity
(14, 15), the slaving model does not require internal protein
dissipation to explain the data. Thus, internal viscosity must be
a negligibly small effect in existing experiments.

Slaving in the Native Protein
Before treating the effect of the solvent on protein folding, we
discuss some aspects of the dynamics of the protein in the native
state. Consider the rate coefficient, kexit(T), for the exit of CO
or O2 from myoglobin (Mb) embedded in a glycerol�water
solvent (4–6). Because Mb does not have static channels, the exit
of ligands must involve conformational f luctuations, which are
controlled by the �-f luctuations in the solvent: kexit(T) parallels
k�(T) over almost six orders of magnitude but is slower by nearly
five orders of magnitude (5). Slowing occurs because large-scale
protein motions are not due to a single large fluctuation but are
the result of a large number, nexit, of elementary steps. Each step
can only take place if the solvent moves. The rate coefficient
kexit(T) is therefore given by

kexit�T� � ck��T��nexit�T� . [1]

The coefficient c is included because it may take somewhat
more or less than one solvent fluctuation to induce a step. We
take c � 1 for simplicity. If nexit(T) is temperature-independent,
the enthalpic barrier governing the ligand exit is entirely due to
the solvent. If the conformational random walk occurs on a
sloping energy landscape or if an enthalpic protein barrier HP is
present, nexit(T) depends on temperature and is given by

nexit�T� � n se
HP

RT, [2]

where R is the gas constant and ns is the solvent-dependent
number of steps if HP � 0. In the language of transition state
theory, ln ns � S‡�R, where S‡ is the activation entropy. Mea-
surements of kexit(T) and k�(T) yield the parameters HP and ns.
Although the concept of slaving was introduced based on
experiments (5), the theoretical understanding of slaving is from
Lubchenko and Wolynes (4) and is based on the physics of
glass-forming liquids. Glass-forming liquids have a dynamic
mosaic structure described by the Random First-Order Transi-
tion theory. Applied to slaving, the theory not only describes how
the molecular motions of the solvent distort the boundaries of
the protein but also gives the length and time scales of the
solvent-imposed constraints.

Protein folding and large-scale motions of folded proteins are
related; they correspond to random walks on the global energy
landscape while the protein is embedded in a solvent. It is
therefore reasonable to postulate that folding, like ligand escape,
is slaved to the solvent and proceeds in a large number of steps,
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nf. In the slaving model, Eq. 2 also applies to folding. To test the
model, kf(T) and k�(T) should be measured in the same solvent.
We have not found such data. However, many folding rates have
been determined as a function of the solvent viscosity �(T),
which is related to k�(T) by the Maxwell relation (16):

k��T� �
G0�T�

��T�
, [3]

where G0 is the shear modulus. At 300 K glycerol–water mixtures
have G0 � 4 � 1011 cP�s�1. G0 varies only weakly with solvent
composition and temperature, providing usable values of k�(T)
from �(T). The Maxwell relation can therefore be used to
approximately test Eq. 2 for folding when k� is not known. Fig.
2 presents kf(�) for a few proteins together with k�(�) for
glycerol–water solvents. The data exhibit two outstanding fea-
tures: (i) The coefficients kf of all proteins are much smaller than
k�, consistent with the slaving model in which a large number of
steps, nf, slows protein motions relative to 1�k�. For some
proteins, kf follows 1��, whereas others show a fractional
viscosity dependence (e.g., refs. 14, 15, and 17–21):

kf��� � � �

�0
���

, � � 1, �0 � 1 cP. [4]

Consider first the case in which kf(�) � 1��. Assuming G0 to
be constant, Eqs. 2 and 3 substituted into Eq. 4 gives kf(�) � k�

and HP � 0, implying that folding is slaved and that the control
of folding is largely entropic and given by the solvent. The
overdamped Kramers equation (22) leads to the same conclusion
but does not determine nf.

Fractional Viscosity Dependence of Protein Motions
The rate coefficients kf in many folding experiments do not
follow the overdamped Kramers law and deviate from the
expected 1�� dependence. An example is shown in Fig. 3a,
where kf

�1 is plotted as a function of viscosity at 293 K (14, 15).
The data up to 5 cP can be fit equally well with a linear fit and
a power law, Eq. 4 with � � 0.55. The linear fit implies an internal
protein viscosity, and the power-law fit calls for an explanation
of the fractional viscosity dependence. Which model is correct?
Flash photolysis experiments in Mb break the deadlock because
dynamic data as a function of temperature (5) and viscosity (23)
are available. The experiments start with CO bound to the heme
iron in Mb. A laser flash breaks the Fe–CO bond, CO escapes
into the solvent, and the escape rate coefficient kexit is measured
as functions of T in different solvents. Fig. 3b shows the rate
coefficients for folding and for CO exit as function of log�. The
isothermal data in Fig. 3b demonstrate that kexit(�) follows Eq.
4 with � � 0.55. Also shown in Fig. 3b is kf taken from Fig. 3a.
The linear (Fig. 3b, solid line) and the power-law (Fig. 3b, dashed
line) fits diverge above 10 cP. Because the power-law fits for kf
and kexit give the same coefficient � � 0.55 and because folding
and ligand escape both involve large-scale protein motions, the
data favor the slaving model. We consequently propose that the
power-law fit to the isothermal data is the better description of
the viscosity data and that the protein’s internal viscosity is not
relevant.

The data in Fig. 3 raise another question: What causes the
fractional viscosity dependence of kexit and kf? The information

Fig. 1. A schematic description of protein folding. In real space, the unfolded
polypeptide (U) folds into the working protein (N). In conformational space,
the protein makes a random walk through the high-dimensional energy
landscape. (a) A 1D cross-section through the energy landscape showing the
U (blue), TSE (red), and N (green) conformational basins. The long arrow
represents a folding path with an overall rate kf, whereas the short arrow
shows a single step, with a rate k�, in the conformational diffusion during
folding. (b) A 2D cross-section through the energy landscape illustrating two
different paths for the folding motions of proteins. Starting from a U confor-
mation, proteins make a Brownian walk in the conformational space until
they finally fall into the ensemble of N substates.
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Fig. 2. The folding rates for various polypeptides and proteins versus the
solvent viscosity: (Gly-Ser)n (n � 1 and 3) polypeptide chains (17) (from Eq. 4,
� � 0.95 and 0.80, respectively), tryptophan cage (21) (� � 0.84), cytochrome
c (14, 15) (� � 0.55), �-helix (� � 0.53), �-hairpin (18) (� � 0.93), and protein L
(19) (� � 0.93). The rate coefficients for the bulk �-fluctuations for glycerol–
water mixtures (k�) and for kexit also are plotted for comparison.
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from protein dynamics studies provides insight. There are three
main ways to look at kexit and kf, isosolvent, isoviscous, and
isothermal. The isosolvent and isoviscous data are in Fig. 4a, and
the isothermal data are in Fig. 3b. In the isosolvent approach
(Fig. 4a, solid lines) kexit(T) is measured in a given solvent.
Evaluating the data with Eq. 2 gives log ns � 3 and HP � 5
kJ�mol. Thus, CO needs �103 steps and has to overcome a small
enthalpic barrier to escape. Fig. 4b shows that ns is temperature-
independent if measured in the same solvent. A surprise comes
from looking at the isoviscous data in Fig. 4 a and b: kexit(T)
follows an Arrhenius law with Hexit � 33 kJ�mol. This value
creates a puzzle. Eq. 3, with G0 constant, states that k� and 1��
must have the same temperature dependence. The activation
enthalpy in isoviscous solvents should therefore be given by HP,
apart from a correction for the solvent-dependence of G0. The
slopes of log nexit versus 1�T should therefore be the same for
isoviscous and isosolvent data: HP for the isoviscous data should
not be as large as 33 kJ�mol. Fig. 4b shows, however, that the
isoviscous curves have a much larger slope than the isosolvent
one. The large activation enthalpy of kexit and the steep increase
of nexit and, therefore, of ns, with 1�T in isoviscous solvents must
be due to changing entropy. As pointed out earlier, ln ns is
essentially the activation entropy. Isosolvent data are strikingly
different, with ns constant, apart from the small effect of HP.

What causes the different behavior of isosolvent and isoviscous
experiments? The answer lies in an experimental requirement.

To measure kexit(T) at fixed viscosity requires a different
solvent at each temperature. Different solvents can interact
differently with the protein and its hydration shell and can
change the dynamic and static properties and, in particular, the
stability (19, 20, 24–29). Fig. 4b shows that the number of steps
required for CO to escape at constant viscosity increases with
decreasing temperature. The data also demonstrate that nexit at
constant temperature increases with decreasing viscosity. In
either case, the increase in nexit is caused by a decrease in the
viscogen concentration. Thus, nexit is largest and kexit is smallest
in the fully hydrated protein. The conclusion is consistent with
experiments by Yedgar and coworkers (26). The temperature
dependence of folding from the collapsed state of cytochrome c
at constant viscosity also supports the arguments given here.
Measured from 290 to 303 K, kf(T) has an apparent activation
enthalpy of �30 kJ�mol at constant viscosity (15, 21). Most or
all of the apparent activation enthalpy is due to the effect of the
solvent on the protein. Solvent–protein interaction also is re-
sponsible for the power-law dependence in Eq. 4. Present
experiments in the literature have not been thorough enough to
determine under what conditions � might be constant between
different proteins or protein processes.

The Slaving Model and Folding
Folding involves large-scale motions and takes place in solvents
of different compositions and viscosities. The arguments dis-

a

b

Fig. 3. The viscosity dependence of large-scale protein motions. (a) Viscosity
dependence of the folding time at 293 K for cytochrome c (14, 15). The solid
line is a linear fit predicting an internal friction within the protein (14, 15), and
the dashed line is a fit to Eq. 4 for a power-law viscosity dependence of folding,
with � � 0.55. Error bars are the standard deviation. (b) Plot of the isothermal
rate coefficients versus viscosity. The dotted lines are the rates for the exit of
CO from Mb (kexit) at the indicated temperatures; the solid and dashed lines
are the folding rates (kf) corresponding to the linear (solid line) and power-law
(dashed line) fits in a, respectively.

a

b

Fig. 4. The exit of CO from Mb (23). (a) Arrhenius plot of the CO exit rate. The
symbols are the experimental data (23), the solid lines connect the data points
measured in different glycerol–water mixtures [99% (wt�wt), 79% (wt�wt),
and 60% (wt�wt)], and the dashed lines are the Arrhenius fits to the isoviscous
data for five viscosities [log(��cP) � 1, 2, 3, 4, and 5]. (b) Arrhenius plot of nexit.
The solid line shows the data for the 79% (wt�wt) mixture, and the dashed
lines show the data for three of the viscosities.
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cussed for ligand escape therefore also apply to folding, in
particular to ‘‘two-state’’ folders (30). The shape of the energy
landscape in Fig. 1 is important. In one extreme, the main part
of the energy landscape is f lat and large, and the protein stays
in U for a long time before it finds the TSE and falls into one of
the many substates of N. In the other extreme, the folding funnel
extends to the entire region U, and the protein folds fast. It is
difficult to get information about the shape of the folding
landscape with experiments that monitor many proteins simul-
taneously. Consider as an example a landscape with many
substates in U and few in the transition state ensemble. Fluc-
tuations in the length-of-stay in U may then fake a broad TSE.
Single-molecule experiments provide unique insight into the
energy landscape (31). One impressive example is a study by
Haran and collaborators (32): Based on previous work by Eaton
and collaborators (33), they studied the cold shock protein
CspTm in a solution adjusted so that the folded and unfolded
state were equally populated. Protein and solvent were encap-
sulated in a surface-tethered vesicle so that the same protein
could be observed many times. Folding and unfolding were then
measured by using the Förster resonance energy transfer tech-
nique. The experiment shows that the protein stays approxi-
mately the same time (�1 s) in U and N but that the transitions
between U and N take �10�4 s. This result provides a peek into
the energy landscape: U and N, surprisingly, contain about the
same number of substates, but the protein spends little time in
the TSE. The observation that U and N are nearly equally
populated provides more evidence that folded proteins are not
in a unique state, as is often stated, but can assume a very large
number of conformational substates. Hagen et al. (15) have

made the observation that there seems to be a ‘‘speed limit’’ near
106 s-1. This also implies some minimum number of steps nf for
protein folding. Such a lower limit for nf, if it exists, may be a
measure of hydration shell entropy.

We have so far concentrated the discussion on the effect of
the solvent on the folding process. This effect is dominated by
the �-f luctuations. Proteins and solvents, however, also un-
dergo �-f luctuations (6), which involve local motions, but we
have so far not found direct evidence for their inf luence on
folding. It is likely, however, that �-f luctuations also are
important for many features of folding, for instance, the
expulsion of water molecules and reorientation of side chains
in the final stages of folding. More experiments are needed to
explore the role of the �-f luctuations.

The slaving model solves some old problems but produces new
ones. We mention just a few: How do solvents change nf, the
number of steps in the conformational space? How do solvents
affect the hydration shell? Why is there a systematic connection
between viscosity and n as the solvent is varied? How are folding
and protein dynamics affected by crowding in cells (34)? Because
protein function involves folding and unfolding, the answers to
these questions should lead to a better understanding of how
proteins work in the biological environment.
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