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ABSTRACT Degeneracy, the ability of elements that are
structurally different to perform the same function, is a
prominent property of many biological systems ranging from
genes to neural networks to evolution itself. Because struc-
turally different elements may produce different outputs in
different contexts, degeneracy should be distinguished from
redundancy, which occurs when the same function is per-
formed by identical elements. However, because of ambiguities
in the distinction between structure and function and because
of the lack of a theoretical treatment, these two notions often
are conflated. By using information theoretical concepts, we
develop here functional measures of the degeneracy and
redundancy of a system with respect to a set of outputs. These
measures help to distinguish the concept of degeneracy from
that of redundancy and make it operationally useful. Through
computer simulations of neural systems differing in connec-
tivity, we show that degeneracy is low both for systems in which
each element affects the output independently and for redun-
dant systems in which many elements can affect the output in
a similar way but do not have independent effects. By contrast,
degeneracy is high for systems in which many different
elements can affect the output in a similar way and at the same
time can have independent effects. We demonstrate that
networks that have been selected for degeneracy have high
values of complexity, a measure of the average mutual infor-
mation between the subsets of a system. These measures
promise to be useful in characterizing and understanding the
functional robustness and adaptability of biological networks.

There are many examples of biological systems composed of
elements that are structurally different but which, under
certain conditions, can perform similar functions. Classic
illustrations include nucleotide triplets degenerate in the third
position that code for the same amino acid, different proteins
that catalyze the same enzymatic reaction, and different
genotypes that produce the same phenotype. In a neurobio-
logical context, the capability of different, nonisomorphic
structures to yield isofunctional outputs, effects, or conse-
quences has been called degeneracy (1, 2). This term previ-
ously was used in immunology to refer to the ability of different
antibodies to bind to the same antigen (3). In physics, the term
degeneracy is applied to systems taking on several discrete or
distinct energy values or states.

Examples of degeneracy in neurobiology abound (2). The
convergent-divergent connectivity of the brain suggests that
large numbers of neuronal groups are able to affect the output
of any chosen subset of neurons in a similar way. For example,
a large number of different brain structures can influence, in
series or in parallel, the same motor outputs, and after
localized brain lesions, alternative pathways capable of gener-
ating functionally equivalent behaviors frequently emerge (4).
Degeneracy also is encountered at the neuronal level. Neural
signaling mechanisms typically use parallel as well as converg-

ing pathways of transmitters, receptors, kinases, phosphatases,
and second messengers. A constrained set of outputs such as
specific changes in the levels of second messengers or in gene
expression thus can be brought about by a large number of
different input combinations.

Although many similar examples exist in all fields and levels
of biology, a specific notion of degeneracy has yet to be firmly
incorporated into biological thinking, largely because of the
lack of a formal theoretical framework. As a consequence,
instances of degeneracy often are not treated as exemplifica-
tions of a biological principle, but are discounted as redun-
dancy. In technical usage, redundancy refers to duplication or
repetition of elements within electronic or mechanical com-
ponents to provide alternative functional channels in case of
failure. In information theory, it refers to the repetition of
parts or all of a message to circumvent transmission error.
Although the structural definition of redundancy applies
readily in engineering, the requirement of identity among
elements in a population or in biological networks is rarely
satisfied and in any case is difficult to assess. The biological
examples mentioned above, for instance, do not in general
involve structurally identical parts. This fact has important
consequences, because unlike redundant elements, degenerate
elements may produce different outputs in different contexts.

In the present paper, we propose to clarify these issues by
moving explicitly to the functional level, defining both degen-
eracy and redundancy in information theoretical terms. This
approach allows us to distinguish between degeneracy and
redundancy within a unified framework and, through the use
of well-defined measures, to make both concepts operationally
useful. Although these measures are applied here to neural
examples, in principle they may be extended to any biological
network or complex system.

THEORY

As in previous papers, we consider neural systems consisting
of a number of elementary components, which we take to
represent neuronal groups sharing anatomical connections (5,
6). We then study the dynamic interactions between these
elements and an output sheet, assuming that the global sta-
tistical properties of a system do not change with time (sta-
tionarity). With these assumptions in place, we characterize
degeneracy and redundancy in terms of the average mutual
information between subsets of elements within a neural
system and the output sheet.

Consider a neural system X with n elements whose activity
is described by a Gaussian stationary multidimensional sto-
chastic process (7) that produces a set of outputs by means of
an output sheet O and a fixed connectivity matrix CON(X;O)
between O and a subset of the system units (Fig. 1A). The joint
probability density function describing such a multivariate
process, corresponding here to its functional connectivity, can
be characterized (7, 8) in terms of entropy (H) and mutual
information (MI). Entropy and mutual information are used
here in their statistical connotation; they can be thought of asThe publication costs of this article were defrayed in part by page charge
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multivariate generalizations of variance and covariance in
univariate statistics that are sensitive both to linear and
nonlinear interactions. For instance, consider a jth subset Xj

k

of the system X composed of k units, and the output sheet O.
The MI between Xj

k and O is given by:

MI(Xj
k;O) 5 H(Xj

k) 1 H(O) 2 H(Xj
k,O), [1]

where H(Xj
k) and H(O) are the entropies of Xj

k and O
considered independently, and H(Xj

k, O) is the joint entropy of
subset Xj

k and output O. Thus, MI(Xj
k;O) measures the portion

of entropy shared by the system subset Xj
k and the output O.

It is high if both Xj
k and O have high entropy (high variance)

and share a large fraction of it (high covariance); it is low or
zero if Xj

k and O have low entropy or are statistically inde-
pendent.

Degeneracy and Redundancy. By itself, mutual information
is a measure of the deviation from statistical independence
between two subsets and is insensitive to the direction of the
interaction: a positive value of mutual information between Xj

k

and O could be the result of a causal effect of Xj
k on O through

forward connections, of O on Xj
k through back connections, or

of another subset simply providing statistically correlated input
to both Xj

k and O. Here we are interested only in measuring the
causal effects on the output of changes in the state of subsets
of the system. To evaluate these causal effects, we consider the
change in mutual information between each subset Xj

k and O
when that subset is injected with a fixed amount of variance
(uncorrelated random noise, Fig. 1B). We call the mutual
information value obtained by such perturbation of each
subset MIP(Xj

k;O). For simplicity, we shall assume that before
injecting the variance the variance of the system is zero, so that
the initial value of mutual information between the system and
the output is also zero.

We define the degeneracy DN(X;O) of X with respect to O
as:

DN(X;O) 5 O
k51

n

[,MIP(Xj
k;O). 2 (kyn)MIP(X;O)]. [2a]

According to Eq. 2a, DN(X) is high when the mutual
information between the whole system (k 5 n) and the output
is high and at the same time the average mutual information
between small subsets of the system (small values of k) and the

output is higher than would be expected from a linear increase
over increasing subset size (Fig. 2A).

DN(X;O) can be expressed in mathematically equivalent
ways. In particular, DN(X;O) corresponds to the average
mutual information shared between bipartitions of X and the
output O, summed over all bipartition sizes:

DN(X;O) 5 1/2O
k51

n

,MIP(Xj
k;X 2 Xj

k;O)., [2b]

where the mutual information that is shared between Xj
k, X-Xj

k,
and O is MIP(Xj

k;X-Xj
k;O) 5 MIP(Xj

k;O) 1 MIP(X-Xj
k;O) 2

MIP(X;O). Thus, according to Eq. 2b, DN(X;O) is high when,
on average, the mutual information shared between any
bipartition of the system and the output is high (Fig. 2B).

We now define the redundancy R(X;O) of X with respect to
O as the difference between the summed mutual information
upon perturbation between n subsets of size k 5 1 and O and
the mutual information upon perturbation between the entire
system (k 5 n) and O:

R(X;O) 5 O
j51

n

[MIP(X1
j;O)] 2 MIP(X;O). [3]

According to this definition, redundancy is high if the sum of
the mutual information between each element and the output
is much larger than the mutual information between the entire
system and the output. This means that each of the elements
of the system contributes similar information with respect to
the output. Redundancy is zero if all elements of the system
contribute to the output independently and the mutual infor-
mation between the entire system and O is equal to the sum
of the mutual information between each element of the system
and O.

Based on this definition, we also can express DN(X;O) in
terms of average redundancy values with respect to O for
increasing subset sizes:

DN(X;O) 5 O
k51

n

[(kyn)R(X;O) 2 ,R(Xj
k;O).]. [4]

According to Eq. 4, DN(X;O) is high when the redundancy of
the system (i.e., for k 5 n) with respect to the output is high
and at the same time the average redundancy for small subsets
(small values of k) is lower than would be expected from a
linear increase over increasing subset size (Fig. 2C).

A measure of degeneracy that does not require averaging
among different subsets is also usefully introduced. This
measure, which we shall designate by italics as D(X;O), and

FIG. 1. Schematic diagram illustrating bases for the proposed
measure of degeneracy. (A) We consider a system X, composed of
individual elements (gray circles, n 5 8) that are interconnected
(arrows) among each other [with a connection matrix CON(X)] and
that also have connections to a set of output units O [with a connection
matrix CON(X;O)]. (B) A subset (shaded in gray) of the system X is
perturbed by injecting (large Vs at the top) a fixed amount of variance
(uncorrelated noise) into each of its constituent units. This perturba-
tion activates numerous connections within the system (thick arrows)
and produces changes in the variance of a number of units within X
and O. The resulting mutual information under perturbation
MIP(Xk

j;O) is computed (see Eq. 1). This procedure is repeated for all
subsets of sizes 1 # k # n of the system X.

FIG. 2. Graphical representation of different expressions for de-
generacy. (A) Degeneracy expressed in terms of the average mutual
information between subsets of X and O under perturbation (see Eq.
2a). (B) Degeneracy expressed in terms of the average mutual
information shared between bipartitions of X and O (see Eq. 2b). (C)
Degeneracy expressed in terms of the average redundancy (see Eq. 4).
A graphical interpretation for the degeneracy D(X;O) (see Eq. 5) is
indicated as a dotted rectangular area with height corresponding to
that of bar at n 2 1.
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which is related to degeneracy DN(X;O), measures the portion
of the entropy of the output that is jointly accounted for by
different elements of the system. It is given by:

D~X;O) 5 ( MIP(X1
j;X 2 X1

j;O) 2 R(X;O)

5 MIP(X,O) 2 ( MIP(X1
j;OuX-X1

j;O!, [5]

where the sum is over the n elements and MIP(Xj
1;OuX-Xj

1;O)
is the conditional mutual information between each element
and O given the mutual information between the rest of the
system and O. The relationship between DN(X;O) and D(X;O)
is displayed graphically in Fig. 2C.

Relationship to Complexity and Integration. In previous
work (5), we introduced a measure called neural complexity
CN(X), which measures the degree to which an isolated system
is both functionally integrated (different elements of the
system are integrated and behave coherently) and functionally
segregated or specialized (different elements are relatively
independent and the system is highly differentiated). We also
introduced the system integration I(X), a measure of the total
reduction of entropy because of the interactions within the
system (5). The expressions for complexity and integration of
a system bear a striking formal resemblance to the expressions
for the degeneracy and redundancy of a system with respect to
an output (Fig. 3). If, in the expression for DN(X;O), one
replaces MIP(Xj

k;O)—the mutual information between each
subset and the output—by H(Xj

k)—the entropy of each sub-
set—one obtains CN(X) and the equations defining the two
measures are formally identical. As defined, I(X) 5 S H(xi) 2
H(X), i.e., the difference between the sum of the entropies of
the n individual components considered independently and the
entropy of X considered as a whole [compare Eq. 3; compare
also the original information theoretical expression for redun-
dancy (7) as the ratio (S H(xi) 2 H(X))yS H(xi)]. The neural
complexity CN(X) of system X is defined in three mathemat-
ically equivalent ways (Fig. 3 A–C): CN(X) 5 S [,H(Xj

k). 2
(kyn)H(X)] 5 1y2S ,MI(Xj

k;X-Xj
k). 5 S [(kyn)I(X) 2

,I(Xj
k).] (compare with Eqs. 2a, 2b, and 4).

A related expression for complexity (9) that does not require
averaging among different subsets measures the portion of the
entropy of a system that is accounted for by the interactions
among its elements (Fig. 3C). This measure, which we shall
designate by italics as C(X), is given by SMI(Xj

1;X-Xj
1) 2 I(X)

5 H(X) 2 SH(Xj
1uX-Xj

1), where (Xj
1uX-Xj

1) is the conditional
entropy of each element given the entropy of the rest of the
system (compare Eq. 5). Note that both CN(X) and C(X) have
zero values for systems composed of disconnected elements,
low values for systems composed of elements that are inte-
grated and homogeneous (undifferentiated) and high values
for systems that are both integrated and differentiated.

Implementation. To evaluate DN(X;O) for systems with
many different connectivity patterns, we implemented several
model systems as linear realizations. As described (5, 6), this
implementation allows us to derive covariance matrices ana-
lytically. Each linear system X consisted of n neural elements
connected to each other according to a connection matrix
CON(X) with no self-connections. CON(X) was normalized so
that the absolute value of the sum of the afferent synaptic
weights per unit was set to a constant value w , 1. A subset
of m output elements (m,n) was connected (CON(X;O), Fig.
1A) one by one to elements of the output sheet O with
connections of unit weight.

We consider the vector A of random variables that repre-
sents the activity of the elements of X after perturbation, i.e.,
after injecting uncorrelated Gaussian noise R of unit magni-
tude into a subset Xj

k of elements. For example, if the subset
receiving the injection of uncorrelated noise corresponds to
the entire system, under stationary conditions we have that
A 5 ApCON(X) 1 R. By defining Q 5 [1 2 CON(X)]21 and
averaging over the states produced by successive values of R,
we obtain the covariance matrix under perturbation COVP(X)
5 ,AtpA. 5 ,QtpRtpRpQ. 5 QtpQ, where the superscript
t refers to the transpose. The covariance matrix then is
normalized to a correlation matrix to ensure that all output
elements have unit variance, and the correlation matrix is
multiplied through the output connection matrix CON(X;O)
to obtain the correlation matrix between the system and the
output sheet. Under Gaussian assumptions, all deviations from
independence among the units are expressed by their covari-
ances; from these, values of H(X) and therefore of MIP(X;O)
can be derived according to standard formulae (8). This
procedure is repeated by applying the uncorrelated Gaussian
noise in turn to all possible subsets of the system, in such a way
that R has unit magnitude for the elements of each subset and
is set to zero for the other elements. If the resulting covariance
matrix has some elements with zero variance, the correspond-
ing rows and columns are eliminated.

ILLUSTRATION

We first illustrate the measures of degeneracy defined above
by applying them to several simple examples. Then, we dem-
onstrate that an increase in degeneracy with respect to an
output pattern tends to be accompanied by an increase in
complexity.

Examples of Independence, Degeneracy, and Redundancy.
Three basic examples can be constructed to illustrate key
properties of degeneracy. Fig. 4 (Top) shows an example of a
network for which different elements produce totally inde-
pendent effects or do not affect the output at all (indepen-
dence). Fig. 4 (Bottom) shows an example of a fully connected
network; all of its units can affect the output but their effects
on the output are essentially identical, i.e., the units show
functional redundancy. Fig. 4 (Middle) shows an example of a
degenerate network with structured connections; many of the
elements have effects on the output that are both functionally
redundant and functionally independent (degeneracy). Graphs
of connectivities are given in Fig. 4A; resulting correlation
matrices are presented in Fig. 4B. Plots in Fig. 4 C–E display,
respectively, the distributions of average mutual information
between subsets of X and O (Eq. 2a), average mutual infor-
mation shared between bipartitions of X and O (Eq. 2b) and
average redundancy (Eq. 4), with the resulting degeneracy
DN(X;O) displayed as the shaded area. DN(X;O) is zero for a
system (Fig. 4 C–E, Top) for which all elements affect the
output independently (zero redundancy). A system (Fig. 4
C–E, Bottom) that has very high functional redundancy has
relatively low values of degeneracy, as different combinations
of the system’s units have similar effects on the output. A
system (Fig. 4 C–E, Middle) in which many combinations of

FIG. 3. Graphical representation of different expressions for com-
plexity. Note the homology between these expressions and those
illustrated in Fig. 2. (A) Complexity, CN(X), expressed in terms of the
average entropy. (B) Complexity expressed in terms of the average
mutual information. (C) Complexity expressed in terms of the average
integration (see ref. 9). A graphical interpretation for the complexity
C(X) is indicated as a dotted rectangular area with height correspond-
ing to that of bar at n 2 1.
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units have both functionally redundant and functionally inde-
pendent effects on the output has the highest degeneracy. This
structure is accompanied by relatively high redundancy for
large subsets, and by relatively low redundancy for smaller
subsets of the system. Note that for systems larger than those
shown the degeneracy values for degenerate systems would be
much larger than those for fully redundant systems. The
examples shown are representative; tests for variation in all
critical parameters, in particular the total amount of connec-
tivity (w), the amount of variance injected, and the ratio of
system to output units produced similar results.

Optimizing Degeneracy with Respect to a Set of Outputs.
Fig. 5 summarizes results obtained from simulations of neu-
ronal networks whose intrinsic connectivity gradually was
changed to produce high degeneracy with respect to a partic-
ular set of outputs—given here by a particular correlation
matrix among the units of the output sheet. To achieve the
appropriate synaptic changes we used a constrained nonlinear
optimization algorithm (Matlab Optimization Toolbox,
Natick, MA). During each iteration, the algorithm produced
sets of correlation matrices and allowed calculation of the
degeneracy with respect to the desired output as given in Eq.
5 (similar results were obtained when optimizing using Eq. 2a).
Connection strengths of the intrinsic connections within the
system then were incrementally modified so that, on average,
connections that supported higher overall degeneracy were
strengthened while others were weakened. No self-connec-
tions were allowed. For the results shown in Fig. 5, networks
were initialized to have positive connections only, and all
connections remained positive for the entire simulation. As in
previous studies (6), the total amount of connectivity per
network unit (w, computed as the sum of afferent connection

strengths) was kept constant for all units throughout the
simulation (here w 5 0.9).

The top row of Fig. 5 displays data obtained from random
networks (used as initial conditions in the optimization runs).
Connection matrices typically consisted of randomly chosen
normally distributed connection strengths (Fig. 5A, Top) that
gave rise to fairly uniform patterns of correlations (Fig. 5B,
Top). Random networks produced low degeneracy with re-
spect to their outputs (mean value of D(X;O) 5 4.37 6 0.25;
Fig. 5C, Top). Their complexity was also low (mean value of
C(X) 5 0.18 6 0.04; Fig. 5D, Top).

After connection strengths were adjusted to yield high
degeneracy, networks contained patterned connectivity, ar-
ranged in two weakly linked modules that were more strongly
connected to pairs of output units (Fig. 5A, Bottom). As
required by simulation constraints, they produced the appro-
priate correlation patterns in their output units (Fig. 5B,
Bottom). Their degeneracy was significantly higher than that of
random networks (mean value of D(X;O) 5 8.10 6 0.06; Fig.
5C, Bottom). In addition, their intrinsic complexity was high
(mean value of C(X) 5 0.84 6 0.02; Fig. 5D, Bottom). We
tested a variety of other output patterns and parameter settings
(i.e., varying the amount of connectivity, the relative number
of system units versus output units, and inclusion of inhibitory
connections). Essentially similar results were obtained in all
cases.

To test whether the networks shown in Fig. 5, Bottom,
correspond to optimally or near-optimally degenerate solu-
tions, we constructed a variety of other networks designed to
yield the output pattern used in the simulations. Consistently,
the values for degeneracy of these networks were considerably
lower than those obtained from the optimization runs. This

FIG. 4. Results from simulations of three examples of systems of eight units, each connected to an output sheet of four units. The three examples
are: a system that lacks all intrinsic connectivity (Top, independent case), a system that is characterized by four modules of two strongly
interconnected units that are weakly interconnected among themselves (Middle, degenerate case), and a system whose units are fully interconnected
(Bottom, redundant case). (A) Graphs of connections among units of the system and among system units and the output. Arrow width indicates
connection strengths (not all connections shown). (B) Correlation matrices, displaying correlations intrinsic to X, intrinsic to O, as well as
cross-correlations between X and O. The two arrows demarcate the output portion of the correlation matrix. (C) Distribution of the average mutual
information between subsets of X and O over all subset sizes (see Eq. 2a). (D) Distribution of the average mutual information shared between
bipartitions of X and O (see Eq. 2b). (E) Distribution of the average redundancy over all subset sizes (see Eq. 4). Degeneracy is indicated in C–E
as a shaded area (compare Fig. 2). Expressions for the ordinates of graphs in C–E are at the top of each column.
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finding suggests that the network architectures found by
gradient ascent are indeed close to optimal with respect to
their degeneracy. We found that, whenever a patterned output
was required (i.e., an output characterized by both high and
low correlations), the architectures resembled groups of units
with strong intra-group connections and weaker inter-group
connections.

DISCUSSION

In this paper we have defined the concepts of degeneracy and
redundancy in functional terms and provided a principled way
to formulate these concepts by using information theoretical
measures. By using simple linear models we have illustrated the
conditions under which degeneracy and redundancy are each
either high or low and have analyzed the relationship between
degeneracy and redundancy. Finally, we have shown in linear
model systems that procedures leading to the selection of
systems having high degeneracy with respect to a set of outputs
are accompanied by an increase in the complexity of these
systems, i.e., an increase in the degree to which these systems
are both functionally integrated and locally segregated.

Degeneracy and Redundancy. We originally suggested that
nonisomorphic structures that are isofunctional in a biological
context under some criterion should be considered degenerate
(1–3). It is implicit in this definition that as long as some
biological elements are structurally different yet may often
produce a similar output there may arise situations in which
these elements lead to different outputs. Identical elements,
i.e., structurally redundant ones, cannot do so. A degenerate
system, unlike a fully redundant one, is thus extremely adapt-
able to unpredictable changes in circumstances and output
requirements (2). It is no accident that selectional processes
such as those that underlie evolution and the immune system
show widespread evidence of degeneracy.

The approach taken here stresses a functional definition of
both degeneracy and redundancy. Although this functional

approach is in general consistent with structural definitions, it
presents certain theoretical advantages. First, by providing a
definition of degeneracy in information theoretical terms, it
permits the development of general, quantitative measures.
Second, by considering degeneracy and redundancy within the
same theoretical framework, it allows a precise distinction
between the two concepts. Thus, this approach makes it
explicit that, whereas a degenerate system appears to be
functionally redundant with respect to particular outputs in a
particular context, it may perform differently in different
contexts.

According to this functional approach, in a system consti-
tuted of completely independent elements, each element
accounts for a different portion of the entropy of the output
units and thus can be said to have an independent function.
However, no element can functionally substitute for any other
element and the system is extremely brittle. In a fully redun-
dant system, each element shares the same portion of the
output entropy. All elements thus can be said to perform the
same function. Although that function may be extremely
robust, there is no flexibility to accommodate different func-
tions when circumstances change. In a degenerate system, a
large number of elements of the system jointly contribute to
portions of the entropy of the output units. The system is thus
functionally redundant and fault-tolerant with respect to many
output functions. At the same time, however, different ele-
ments will contribute to different portions of the entropy of the
output units, making the system highly adaptive. The relation-
ship between degeneracy and redundancy is therefore the
following: to be degenerate, a system must have a certain
degree of functional redundancy. However, a completely
redundant system will not be degenerate, because the func-
tional differences between distinct elements and thus their
ability to contribute independently to a set of outputs will be
lost.

Degeneracy and Complexity. As we have mentioned, if one
substitutes the mutual information value between each subset

FIG. 5. Typical results obtained from simulations of 40 systems of eight units connected to an output sheet of four units; during optimization
the system’s connectivity was modified by gradient ascent to increase degeneracy D(X;O) (Eq. 5) with respect to a fixed output pattern. This output
was given as a correlation matrix of the units of the output sheet. In the results shown, the output consisted of a high cross-correlation (0.75) among
pairs of two units of the output and a low cross-correlation (0.25) between them. (Top) Data obtained from one example of a randomly connected
system before the beginning of the runs. (Bottom) Data from one example obtained after gradient ascent resulted in a stable value for degeneracy.
(A) Schematic representations of graphs showing the interconnections between units of the system and the output. (B) Correlation matrices
(conventions as in Fig. 4B). (C) Distribution of values for degeneracy D(X;O) (see Eq. 5) for 40 randomly chosen (Top) and optimized (Bottom)
systems. (D) Distribution of values for complexity C(X) for the corresponding systems.
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and the output with the entropy value of each subset, the
equations defining the two measures are formally identical.
Similarly, integration, which measures the decrease of entropy
within a system, is formally similar to the redundancy of the
system with respect to the output. The close relationship
between degeneracy DN(X;O) and complexity CN(X) is oth-
erwise not merely formal. Just as CN(X) is high only if a system
is both functionally integrated and functionally segregated,
DN(X;O) is high only if the elements of a system are both
functionally redundant and functionally independent with
respect to a set of outputs.

To measure degeneracy, perturbation is applied and the
mutual information between subsets of the system and the
output then is evaluated. This approach considers only genuine
causal effects of a system subset on the output and discounts
any effects of the output back on the system or any effects
caused by statistically correlated input from other subsets.
Although the original definition of complexity was based on
mutual information, a definition of complexity that takes into
account the causal direction of the interaction between subsets
of the system is equally warranted. As demonstrated here for
degeneracy, this analysis can be done by considering the
change in mutual information upon perturbation of each
subset in turn (10). Unlike complexity, however, both degen-
eracy and redundancy as defined here can take on negative
values. This may occur if different elements of the system have
no effect on the output taken one by one, but have a coop-
erative effect taken together; for example, if the state of the
output is a logical ‘‘exclusive or’’ of the states of two system
elements.

Degeneracy DN(X;O) also is usefully compared with match-
ing complexity CM(S;X), a measure of how well the connec-
tivity of a system distributes the mutual information between
an input sheet S and the system to all subsets of the system (6).
The relationship between degeneracy, matching, and complex-
ity has another interesting aspect. In previous work, it was
shown that systems whose connectivity is modified to increase
matching with a given set of inputs show a concomitant
increase in complexity. As described here, systems selected for
high degeneracy with a given set of outputs also show a
concomitant increase in complexity. This finding suggests that
high complexity values may reflect the statistical structure of
a complex environment as well as responses to various selective
pressures with multiple alternatives yielding adaptive outputs.

Degeneracy and Biological Networks. As with other statis-
tical measures borrowed from information theory, the mea-
sure of degeneracy introduced here requires some knowledge
of the joint probability distribution of the elements of the
system to which it is applied. Moreover, to obtain an estimate
of the changes in mutual information caused by perturbation,
the effects of perturbation on elements of the network, singly
or in conjunction with other elements, must be known. These
are demanding requirements on any application to real bio-
logical networks. However, within a limited domain, estimates
of the correlations among a small subset of biological variables
can be obtained and, from these, approximate measures of
degeneracy and redundancy can in principle be derived. Such
measures also are readily applicable to computer simulations
incorporating detailed knowledge of a particular biological
system. Because degeneracy and redundancy are defined here
as statistical measures, they are meant to refer to sets of
possible outputs rather than to a single output. The evaluation
of degeneracy and redundancy with respect to a single output
may require the development of algorithmic measures corre-
sponding to the statistical measures presented here (cf. ref. 11).

Despite certain limitations on their practical applicability,
the measures and distinctions introduced here can be helpful

in analyzing and understanding biological networks. Because
evolutionary selective pressure typically is applied to a long
series of events involving many interacting elements at multi-
ple temporal and spatial scales, it is unlikely that well-defined
functions can be neatly assigned to independent subsets of
elements or processes in biological networks. For example, if
selection occurs for the ability to locomote, connections within
and among many different brain structures, such as the spinal
cord, brainstem nuclei, the cerebellum etc., in conjunction with
parameters of the muscoloskeletal apparatus, are likely to be
modified in a degenerate fashion to contribute to this ability.
Locomotion will be affected, but many other functions influ-
enced by these structures also will likely be affected in parallel,
resulting in a concomitant increase in the degeneracy of the
system.

A manifest consequence of degeneracy in the nervous
system is that neurological lesions often may appear to have
little effect, at least within a familiar context. For example, for
a long time it was thought that the section of the corpus
callosum—hundreds of millions of reentrant neural fibers
joining the two hemispheres—has little or no consequence on
behavior—a striking example of apparent redundancy. How-
ever, careful experiments have revealed subtle and not-so-
subtle deficits of split brain patients (12), indicating that the
reentrant connections between the two hemispheres provide
not just redundancy but also degeneracy. Similarly, the dele-
tion of a particular gene in so-called knockout experiments
often has no apparent phenotypic consequence. On the other
hand, changes in the context may reveal functionally important
interactions (e.g., ref. 13). Such examples indicate that degen-
eracy is not just a likely consequence of mutational and
selectional events acting on integrated and multilevel systems,
but also that, in turn, it provides a rich substrate for selective
events. The ability of natural selection to give rise to a large
number of nonidentical structures capable of producing similar
functions appears to increase both the robustness of biological
networks and their adaptability to unforeseen environments by
providing them with a large repertoire of alternative functional
interactions.
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