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DNA microarrays have proven to be powerful tools for gene expression analyses and are becoming increas-
ingly attractive for diagnostic applications, e.g., for virus identification and subtyping. The selection of
appropriate sequences for use on a microarray poses a challenge, particularly for highly mutable organisms
such as influenza viruses, human immunodeficiency viruses, and hepatitis C viruses. The goal of this work was
to develop an efficient method for mining large databases in order to identify regions of conservation in the
influenza virus genome. From these regions of conservation, capture and label sequences capable of discrim-
inating between different viral types and subtypes were selected. The salient features of the method were the
use of phylogenetic trees for data reduction and the selection of a relatively small number of capture and label
sequences capable of identifying a broad spectrum of influenza viruses. A detailed experimental evaluation of
the selected sequences is described in a companion paper. The software is freely available under the General
Public License at http://www.colorado.edu/chemistry/RGHP/software/.

In addition to their already widespread use in differential
gene expression experiments, DNA microarrays are increas-
ingly being explored for use in diagnostic applications (3, 23,
28). Current applications of interest include the identification
of risk for genetic diseases such as cancer, the detection of drug
resistance in a wide variety of species, and the identification
and subtyping of viral pathogens (28). An ongoing goal in our
laboratory is the development of an oligonucleotide microar-
ray for the rapid identification and subtyping of influenza vi-
ruses. While previously reported influenza virus microarrays
detected DNA made by reverse transcription of viral RNA and
amplification by PCR (9, 20), our approach is based on the
direct capture and detection of amplified RNA by use of a
two-step hybridization process (Fig. 1). The amplification of
viral RNA is performed by reverse transcription-PCR, fol-
lowed by a runoff transcription as described in the companion
paper (26).

Several substantial challenges exist in designing capture and
label sequences for influenza virus identification. First, one
should use limited numbers of capture and label sequences
that will “hit” many viral targets belonging to a specific sub-
type. This situation is different from that encountered in gene
expression studies, in which the capture sequences are derived
from a single, specified gene with a known sequence. Second,
the influenza virus is an RNA virus with a high mutation rate
and is therefore a “moving target”; regions of conservation
determined at one point in time will likely change as the virus
mutates. The high mutation rate requires a rapid, reliable

method that can be used to reduce the currently available data
set of interest to a set of sequences that comprise a simple,
functional array. Third, the postgenomic era has provided rapidly
growing databases of publicly available sequence information. In
fact, the National Institutes of Health is funding the Influenza
Genome Sequencing Project, aimed at making the complete
sequences of thousands of influenza viruses rapidly available
(www.niaid.nih.gov/dmid/genomes/mscs/default.htm#influenza).
As such databases continually grow and change, a systematic
method of extracting the desired information from them is
required.

Probe design for oligonucleotide microarrays has been the
subject of recent reviews (19, 25), and several software tools for
the design of microarray probes have been developed. For
example, OligoWiz (12, 27) searches for potential probes by
taking into account five different parameters: specificity, melt-
ing temperature, the position within the transcript, complexity,
and self-annealing ability. The user assigns weights to each of
these parameters and a sum score is calculated. The program
returns the oligonucleotides with the best scores. Other exam-
ples of software tools for probe design programs are Oligo-
Array (17, 18), GoArrays (15), or Probe Select (8). In addition,
other programs that are not specifically designed for microar-
ray oligonucleotide sequence selection are available but can be
used to find and optimize primers, especially for large-scale
sequencing purposes. Examples include PRIDE (5), Prime-
Array (14), and PRIMO (10).

The objective of most currently available sequence selection
tools, such as those mentioned above, is to find primers or
probes targeting a single gene within a single organism. In
general, sequences are chosen for an experiment on the basis
of their specificity for the target, similarity of hybridization
conditions, inability to cross-hybridize, and the “coverage” of
the genes of interest by the sequence set.

* Corresponding author. Mailing address: Department of Chemistry
and Biochemistry, University of Colorado, UCB215, Boulder, CO
80303. Phone: (303) 492-7027. Fax: (303) 492-5894. E-mail: kuchta
@colorado.edu.

† M. Mehlmann and E. D. Dawson contributed equally to this work.

2857



For the typing and subtyping of influenza viruses, the objec-
tive is more demanding, since the capture and label sequences
not only should target a single gene of a specific virus strain but
also should target many viruses of the same subtype. To design
such capture and label sequences, sequences from a set of virus
strains must be examined in order to identify regions that are
capable of targeting multiple viruses. Relatively few programs
focus on the examination of a set of sequences. Andersson et
al. (1a) compared bacterial genomes in an effort to reduce the
number of primers required to amplify the genes of two dif-
ferent bacterial genomes by identifying regions of high se-
quence similarity. However, the algorithm compares only two
sequences at a time and does not identify conservation over a
large set of sequences. Using PROFILES, Rodriguez et al. (16)
calculated “homology profiles” for aligned sequences from
foot-and-mouth disease viruses by creating a consensus se-
quence and recording the number of sequences showing a
nucleotide difference from that consensus sequence. These
profiles were used to visualize similarities or differences be-
tween sequences, and primer pairs were then chosen manually
by simply inspecting the “homology profiles.”

Primer Premier (PREMIER Biosoft International, Palo
Alto, CA) designs primer and microarray sequences for a given
set of sequences. A limiting requirement in its application to
large databases for highly mutable viruses such as influenza
viruses, which often contain incomplete and nonoverlapping
regions, is that all sequences in the set must contain data over
a specific nucleotide range. In contrast, the method presented
herein is more robust, as it allows conserved regions to be
identified even when only a fraction of the set contains se-
quence information at a certain position.

GPRIME (4) is most similar in regards to the aforemen-
tioned goals for examining a set of sequences. Beginning with
an aligned set of sequences, GPRIME finds homologous re-
gions of a specific length in a data set using an “ambiguity
consensus.” In the application described by Gibbs et al. (4), the
homologous regions were manually selected by examining re-
dundancy values, melting temperatures, gaps, and possible sec-
ondary structures. The sequences chosen were compared to
those in the EMBL database by using a FASTA search to
determine their specificity for the target genomes. Also out-
lined was a tool that identifies sequence regions where PCR
primers could distinguish between two subsets of data by not-
ing differences between the consensus sequences from the two
data sets. The sequences chosen were tested for their ability to

prime separate reverse transcription-PCRs with RNA ex-
tracted from orchid leaves showing symptoms of viral infection.
Although these programs are applied to very limited data sets
and are not used for microarray applications, they allowed
introduction of the idea of the use of a more systematic ap-
proach to the selection of capture oligonucleotides for diag-
nostic applications.

The method for the efficient identification of capture and
label pairs described herein is similar to the method used with
the GPRIME program, in that it begins with a set of aligned
sequences. In contrast to the limited data sets used by the
GPRIME program, however, the individual gene-specific da-
tabases in this study contained up to 1,000 sequences or more.
Conserved regions of a minimum length and a Shannon en-
tropy not exceeding 0.2 for each nucleotide were found by
using a “majority consensus” (21). Importantly, the method
described here can be used to design microarray probes as well
as primers for PCR experiments.

MATERIALS AND METHODS

Implementation and programs used. The BioEdit software package (version
7.0.4.1) was used to visualize sequences (6). Wherever possible, other programs
were run as accessory applications within the BioEdit interface. Multiple-se-
quence alignment was performed by using the Clustal W program (version 1.4)
(24). DNADIST (version 3.5c in PHYLIP, version 3.6) was used to create
phylogenetic trees. DNADIST was chosen because it uses a fast algorithm that
allows phylogenetic trees to be constructed from large data sets in a reasonable
amount of time. TreeView (Win32, version 1.6.6) (13) and MEGA3 (version 3.0)
(7) were used to display and manipulate the phylogenetic trees. In addition to
these existing programs, a number of Python scripts were written and imple-
mented as follows: the label_tree program labels each node in a .dnd file (phy-
logenetic tree) with a unique integer to facilitate the visualization and subdivision
of phylogenetic trees. The dnd2fa program converts the information in a .dnd (or
a Newick .nwk) file back to a FASTA file containing sequence information. The
fa2fa program allows the contents of one FASTA file to be subtracted from
another, outputting a file containing the remaining sequences. The ConFind
program identifies conserved regions in a specified data set (ConFind has been
described in detail and published elsewhere [21]). The find_oligos program
chooses all appropriate capture and label sequences by iteratively walking along
the conserved region until the minimum G�C content, melting temperature, and
Shannon entropy requirements are met. The pick_oligos program ranks the
potential capture and label sequence output from the find_oligos program on the
basis of length, Shannon entropy, and melting temperature and chooses the oligo-
nucleotide pairs with the lowest penalty without allowing the nucleotide positions
of the oligonucleotides to overlap with other capture-label pairs.

Databases. Sequence information for a large number of influenza viruses was
available from the large publicly available database at the Los Alamos National
Laboratory (http://www.flu.lanl.gov/) (11) and a smaller database at the Centers
for Disease Control and Prevention.

In order to detect sequence similarities to non-influenza virus sequences, i.e.,
to confirm the specificities of the sequences identified, a BLAST (Basic Local
Alignment Search Tool) analysis was performed. The database created for
BLAST analysis of the identified sequences contained human genome sequence
information from the EST (Expressed Sequence Tags) database and sequence
information for several organisms that cause influenza-like illnesses (specifically,
influenza B and C viruses, paramyxovirus, rhinovirus, respiratory syncytial virus,
Bacillus anthracis, coronaviruses, adenoviruses, Legionella spp., Chlamydia pneu-
moniae, Mycoplasma pneumoniae, and Streptococcus pneumoniae [http://www.cdc
.gov/mmwr/preview/mmwrhtml/mm5044a5.htm]) from the NCBI nonredundant
database (ftp://ftp.ncbi.nlm.nih.gov/BLAST/db/). By default, BLAST uses the top
and bottom strands, i.e., the sequence and its reverse complement, to search for
sequence similarities in the database; but only the top strand of each capture and
label sequence was analyzed by use of BLAST against the sequences in this
database. Individual sequences with E values less than 10,000 were considered a
“hit”; i.e., they were considered to potentially hybridize to a non-influenza virus
sequence.

FIG. 1. Scheme of the assay design describing the direct hybridiza-
tion used for the positive control (left-hand side) and the two-step
hybridization process for detection of viral RNA (right-hand side).
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RESULTS AND DISCUSSION

Overview. The goal of this study was to develop an algorithm
for use in the mining of large databases to find potential cap-
ture and label sequences that would enable the typing and
subtyping of a wide range of different influenza viruses on a
microarray.

The microarray assay consisted of short (�25-mer) “capture”
DNA oligonucleotides immobilized on a microarray surface, hy-
bridization of influenza virus RNA to the capture sequence,
and detection by the hybridization of a fluorophore-conjugated
“label” DNA oligonucleotide (�25-mer) to a second region on
the target RNA. In addition, several positive control spots in
which a capture sequence annealed directly to a complemen-
tary label sequence were included in the microarray design for
ease of viewing (Fig. 1).

In order to achieve these goals, the capture and label se-
quences were required to meet a set of defined criteria, as
follows: (i) the sequences were specific for a targeted gene
segment and showed no cross-reactivity with other capture and
label sequences, (ii) the sequences were conserved over a wide
range of influenza viruses in order to allow the typing and
subtyping of as many different influenza viruses as possible,
and (iii) each capture and label sequence was between 16 and
25 nucleotides (nt) in length (these lengths result in a suffi-
ciently high melting temperature and sufficient specificity) and
were separated by only 1 nucleotide. As described by Chandler
et al. (2), the separation of capture and label sequences by
more than 1 nucleotide results in a significant decrease in the
fluorescence signal detected. A conserved region of at least 45
nt in length allowed for capture and label sequences within
these limits.

Method development. (i) Finding conserved regions. The
flowchart shown in Fig. 2 describes the overall process of
finding conserved regions for a specific database of interest.
From all available sequences, gene-specific databases contain-
ing only the sequences of a specific gene and subtype (e.g.,
influenza A virus, hemagglutinin [HA gene], H1 subtype) were
created and converted to the FASTA (a sequence alignment
package) format (Fig. 2, step 1). In certain cases, the gene-
specific database created was limited by specification of a start-
ing year, especially for viral subtypes or types that predomi-
nated during the time period from 2000 to the present, and, as
a result, were frequently sequenced. Once the gene-specific
database was created, a multiple-sequence alignment was per-
formed with the data set by using ClustalW (Fig. 2, step 2) (24)
A multiple-sequence alignment was performed by using the
fast algorithm with bootstrap values of 1,000 and a k-tuple
value of 4. Additionally, a neighbor-joining phylogenetic tree
was created. A more rigorous phylogenetic tree prepared by
using a maximum-likelihood or parsimony method is possible;
however, the neighbor-joining algorithm was chosen due to the
large size of the databases and the computational time in-
volved in applying a more rigorous method. The nodes of the
phylogenetic tree were arbitrarily numbered to assist with the
later division of the tree.

The conserved regions finder (called “ConFind”; Fig. 2, step
4) was written in-house and modeled after the Find Conserved
Regions option in BioEdit. A full description of this software
can be found elsewhere (21). Briefly, ConFind identifies con-

served regions found even when only a fraction of the se-
quences included contain sequence information at certain po-
sitions. The default values were set to a minimum length of
45 nt, 0.2 allowed bits of Shannon entropy per base (with 2
exceptions allowed), and a minimum of 10 sequences. Note,
however, that the stringency of these requirements (step 3) was
often changed to enable the selection of more or less con-
served regions, depending on the particular situation.

ConFind was applied to a gene-specific database by using
the default stringency requirements, as noted in step 4 of Fig.
2. If conserved regions were found, information regarding the
original sequence information, the positions of the conserved
region, and the positional Shannon entropies were output to
file, noted in Fig. 2, step 6. If conserved regions were not
found, the stringency was loosened and the procedure was
repeated.

Often, even when very loose stringency requirements were
applied, the genetic variability of influenza virus prevented the
identification of conserved regions over an entire gene-specific
database (sometimes containing 1,000-plus sequences). The
phylogenetic tree was then examined and divided into smaller
subtrees, shown as steps 10 and 11 in Fig. 2, in an effort to find
additional regions of conservation. This process was not auto-
mated, as a number of different criteria could potentially be
chosen to determine sequence “difference” or “similarity,”
such as virus age, geographic region, and host organism. The
power of this analysis lies in the fact that the process is very
goal specific, and a different desired end goal may result in a
different breakdown of the phylogenetic tree.

The subtrees (in the Newick tree format with no sequence
information) were extracted from the main tree and converted
back to the FASTA format (Fig. 2, step 12) to be used as the
subsequent input in step 3. As one of the goals was to capture
the largest number of “different” influenza viruses with a lim-
ited set of capture and label sequences, the phylogenetic trees
were originally broken down into as few subtrees as necessary.

FIG. 2. Flowchart outlining the overall process for finding con-
served regions.
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Once conserved regions that adequately represented the se-
quences in the gene-specific database examined were found,
capture and label sequences were selected.

(ii) Selection of capture and label sequences from conserved
regions. While “conservation” of a sequence within a large
number of influenza viruses is an important criterion, several
other criteria were used in order to optimize selection of cap-
ture-label pairs, including secondary structure melting temper-
atures, G�C content, and length. Initially, 28 capture-label
sequences representing influenza A virus HA genes from the
H1 and H3 subtypes, influenza A virus neuraminidase (NA)
genes of the N1 and N2 subtypes, and influenza A virus M
genes were manually selected based on a “score” (described
below) that reflected these criteria. The selection routine was
then automated for the selection of a much larger pair set.

For automated sequence selection, an additional program
(the find_oligos program) that allowed the identification of all
possible capture-label pairs within a single conserved region
was written. As outlined in Fig. 3, the algorithm walks itera-
tively, starting at position 1, along the conserved region and
searches for pairs of sequences separated by 1 nucleotide.
Additional requirements are a length for each sequence be-
tween 16 and 25 nt; a minimum melting temperature for the
annealing to the reverse complement (matching melting tem-
peratures) for both the label and the capture sequences of
50°C; a maximum melting temperature of 35°C for the most
probable secondary structure, as determined by MFOLD (29);
and a G�C content of between 30 and 70%. Because of the
length range of 16 to 25 nt for each sequence, several pairs with
different lengths could be found for each starting position. If
several pairs were found, the pair with the highest degree of
conservation, i.e., the pair with the lowest maximum Shannon
entropy score, was chosen. If several potential capture-label
pairs still remained for this start position, the longest one was
chosen (Fig. 4, step 2). An additional program, pick_oligos,
was written to rank the possible capture-label pairs identified

(Fig. 4, step 3) according to the following rules: (i) “good”
capture and label pairs should be highly conserved (have a low
Shannon entropy), and any highly mutable positions present
should be located on separate oligonucleotides (for stability, it
is preferable to have two potential mismatches on two separate
sequences rather than to have two potential mismatches on a
single sequence); and (ii) to improve the stability of the hy-
bridization, longer oligonucleotides with higher melting tem-
peratures are preferred.

The ranking was performed by defining a set of penalties, as
outlined in Table 1. To our knowledge, there is no detailed un-
derstanding of the combined effects that numerous variables such
as the criteria shown in Table 1 have on hybridization to surface-
bound oligonucleotides. As a result the penalty values were cho-
sen empirically so that the ranking results of the pick_oligos
program on a test data set matched the results of a manual
ranking performed by a skilled researcher. The pick_oligos
program chose the capture-label pair with the lowest penalty
and removed capture-label pairs that had a sequential overlap
with the chosen pair (Fig. 4, steps 4 and 5). This process was
repeated with all possible capture-label pairs.

Method implementation. A total of 4,917 influenza virus
sequences were divided into 15 different smaller gene-specific
databases, as shown in Table 2, representing different gene
specific subtypes (e.g., subtypes H1, N1, and N3). Databases
containing very large numbers of sequences (�1,000) were
generally reduced by investigating viruses recovered only rel-
atively recently, which is reasonable, considering the rapid
evolutionary nature of influenza virus. ConFind found con-
served regions by use of the gene-specific database; but if none
were found, the database was divided into smaller subtrees, as
discussed later. The total numbers of conserved regions for
each gene-specific database are shown in Table 2.

An integral and unique aspect of the method used to find
capture and label pairs was the breakdown of the original
gene-specific database into several smaller subsets. Depending
on the research objectives, the breakdown can be conducted
according to the use of a large number of different criteria,

FIG. 3. Flowchart describing the process of choosing appropriate
capture-label pairs from a single conserved region. tm, melting
temperature.

FIG. 4. Neighbor-joining phylogenetic tree for 499 influenza virus
A NA (subtype N1) gene segment sequences. The brackets at the right
show the initial division of the tree, together with the initial number of
conserved regions found for each particular subset.
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such as phylogenetic lineage, virus age, the geographic region
of origin, the host species, or sample pretreatment. For the
influenza virus microarray, each gene-specific database was
subdivided according to phylogenetic information, as there is
likely a connection between phylogenetic information and an-
tigenicity (22). As an example, the breakdown of the tree for
the N1 subtype of the NA gene of influenza A virus is shown in
Fig. 4. In this example, by using the parameters described in
the “Finding conserved regions” section, no conserved regions
were found for the complete set of 499 subtype N1 sequences.
A visual inspection of the phylogenetic tree suggested a logical
breakdown into four smaller subsets, which were analyzed sep-
arately. Subset A consisted of 16 H1N1 sequences, most of
which (14) were the sequences of strains circulating in humans
between 1933 and 1947. The two exceptions were A/swine/
Korea/S175/2004 and A/swine/Korea/S10/2004, respectively.
Six conserved regions were found for this subset. Subset B (156
sequences) contained, with only a few exceptions, sequences
from H1N1 viruses that infected humans within the last 10
years. The few exceptions observed were H1N1 viruses recov-
ered from 1977 to 1992 (A/Hokkaido/2/92, A/Yamagata/32/89,
A/Swine/Obihiro/5/92, A/Hokkaido/11/88, A/Yamagata/120/86,

A/Chile/1/83, A/Fiji/15899/83, A/camel/Mongolia/82, A/USSR/90/
77A, A/USSR/90/77B, and A/Kiev/59/79). Seven conserved re-
gions were found for this subset. Subset C (51 sequences)
contained 40 H1N1 sequences collected from swine and avian
viruses. The remaining 11 sequences were from viruses of
other subtypes (subtypes H5N1, H6N1 H7N1, and H9N1). Due
to the large genetic diversity, no conserved regions were ini-
tially found for subset C. Subset D contained 276 sequences for
viruses collected in the last 8 years and consisted entirely of
species from Eurasia. It contained 258 H5N1, 13 H6N1, 2
H7N1, and 2 H9N1 sequences and 1 H11N1 sequence. While
the H5N1 strains were mostly circulating in avian species, sub-
set D also contained 31 avian H5N1 strains that had been
contracted by humans. Both Eurasian and North American
avian lineages were represented. A total of six conserved re-
gions were found for subset D. As subsets B and D both
contained sequence information from viruses that recently in-
fected humans, these subsets were further evaluated in a man-
ner similar to that described for the initial breakdown. Subset
C was also further analyzed, as no conserved regions were
found initially.

TABLE 1. Empirical penalties assigned to potential capture-label pairs for final sequence selection

Criteriona Assigned penalty
value Explanation, notes

Total Shannon entropy penalty 10 (E1 � E2)
E1 � 0.1 15 Extra penalty for high mismatch probability
E2 � 0.1 15
Both E1 and E2 on the same oligonucleotide 10 The presence of E1 and E2 on separate oligonucleotides

is preferred to minimize potential mismatches
E1 and E2 � 0.1 and both E1 and E2 on the

same oligonucleotide
20

Tm 1/Tm (°C) Higher Tm preferred
Length 1/length (nt) Longer sequence preferred

a E1 and E2, the two highest Shannon entropies within the capture-label pair examined; Tm, melting temperature.

TABLE 2. Description of original influenza virus sequence databases and results from application of
conserved region and sequence selection methods described

Database

Yr includeda Species included
Total no. of
sequences in

database

No. of conserved
regions found

No. of capture-label
pairs foundInfluenza

virus type
Gene segment

(subtypeb)

A HA (H1) 2000 or later Swine, bird, human, camel 230 10 7
A HA (H2) All Human, bird 110 19 15
A HA (H3) 2000 or later Swine, bird, human, equine 850 107 65
A HA (H5) 2000 or later Swine, bird, human, leopard, tiger, equine 248 45 27
A HA (H7) 1998 or later Bird 156 15 15
A HA (H9) All Bird 326 17 13
A NA (N1) All Swine, bird, human, leopard, tiger 499 133 106
A NA (N2) All Swine, bird, human 1012 40 28
A NA (N3) All Bird 44 15 25
A NA (N7) All Bird, equine 9 9 8
A NP All Swine, bird, human 487 53 43
A MP 2000 or later Swine, human, bird 540 77 41
B HA All Human 343 66 39
B MP All Human 31 11 7
B NP All Human 32 12 8

Total 4,917 629 447

a The year indicated is the earliest year of virus isolation, whereas “all” indicates that sequences from all available years were included in the analysis.
b If applicable.
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Evaluation of potential interferences. The final step in se-
lecting capture and label sequences for the identification of
influenza virus was to search for potential cross-hybridizations
by using the BLAST program (1). This required an additional
database that contained sequences from potentially interfering
species that might be present in the target RNA hybridization
mixture and that might also hybridize to the identified capture
and label pairs, resulting in false-positive signals. Since it was
impractical to analyze all available genomes with the BLAST
program, a smaller database was created to include human
mRNA and genomes from other microorganisms that cause
influenza-like illnesses, as well as the genomes for influenza B
and C viruses (as described in the Materials and Methods
section). Because of the two-step hybridization, false-positive
signals from nontarget organisms can be observed on a mi-
croarray only if one of the capture sequences together with any
of the label sequences hybridizes to the same gene. Thus, if a
capture sequence was found to “hit” a gene within the data-
base (as described in the “Databases” section), a second level
of comparison was conducted to check whether a label se-
quence also hit the same gene. If both capture and label se-
quences were found to hit the same gene, the sequence was
discarded as a possible source of false-positive signals on the
microarray.

From the 629 conserved regions identified from all of the
influenza virus sequence databases accessed, a total of 447
potential capture-label pairs (Table 1) were selected after ap-
plication of the find_oligos and pick_oligos programs. From
these 447 capture-label pairs, 75 pairs with the best scores that
represented different types and subtypes were chosen for initial
experimental evaluation, as follows: influenza A virus HA
genes of the H1, H3, and H5 subtypes; influenza NA genes of
the N1 and N2 subtypes; the M genes of both influenza type A
and type B viruses; and influenza B virus HA and NP genes.
Together with the 28 manually chosen sequences (as described
in the “Selection of capture and label sequences from con-
served regions” section), a total of 103 capture-label pairs were
experimentally evaluated. The sequences identified by this
method and refined experimentally are shown in Table 1 of
reference 26.
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