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Previously, we established an intranasal mouse model of Klebsiella pneumoniae infection and validated its
utility using a highly virulent wild-type strain and an avirulent capsular polysaccharide mutant. In the present
study we compare the host responses to both infections by examining cytokine production, cellular infiltration,
pulmonary histology, and intranasal immunization.

Klebsiella pneumoniae has been known as an important
cause of gram-negative bacterial pneumonia for more than 100
years. The best-characterized virulence factor of this species is
capsular polysaccharide, a voluminous layer of acidic sugar
polymers responsible for a variety of K. pneumoniae pheno-
types, including protection against complement-mediated kill-
ing and inhibition of macrophage phagocytosis (6, 11). Capsule
has also been investigated using a number of different animal
models for its importance in K. pneumoniae pathogenesis. Iso-
genic capsule mutant strains are deficient for causing disease in
mice via intraurethral and intratracheal inoculation routes
(6, 24).

A substantial amount of research over the last 20 years has
focused on the importance of cytokine production in the host
defense against K. pneumoniae pulmonary infection. Nearly all
of these studies have examined infection of a wild-type strain
after intratracheal inoculation and compared outcomes in both
wild-type and immunodeficient mice (23, 26). Among the host
factors that have been investigated include tumor necrosis fac-
tor alpha (TNF-�), interleukin-12 (IL-12), IL-17, and macro-
phage inflammatory protein 1� (MIP-1�) (12, 29). These ex-
periments have helped to reinforce the importance of the
inflammatory response in clearing K. pneumoniae infection and
have provided substantial evidence for the protective role of a
TH1-mediated response. Any interference with a rapid host
response (e.g., suppression of the proinflammatory cytokines)
leads to a more severe disease process (16). Conversely, aug-
menting the immune response with exogenous inflammatory
mediators decreases the morbidity and mortality associated
with infection (23).

Despite the importance of capsular polysaccharide for the
pathogenesis of K. pneumoniae, few studies have compared the
host responses against wild-type and well-defined capsule mu-
tant strains. In examining the previous literature for in vivo
studies of capsule mutant infections, only a few of these have
included immunological assays as part of their comparison
(Table 1). Many of these studies feature one or more deficien-
cies, including the use of spontaneous capsule mutant strains,

choosing few time points for comparison, or using atypical
inoculation routes. Two studies in particular have detailed the
difference in cytokine production between a wild-type infection
and one caused by a spontaneous capsule-deficient strain and
examined the production of a number of cytokines during each
infection (30, 32). Similar levels of production of TNF-�, IL-
1�, and IL-6 were seen in both bronchoalveolar lavage (BAL)
and serum samples at most time points in both infected groups.
Interestingly, the level of IL-6 production was significantly
higher in BAL fluid from capsule mutant infected mice than
from wild-type infected mice (32). Further investigation dem-
onstrated that the capsule-deficient strain induced an early
peak of IFN-� production that was lacking in the wild-type
infected mice (30). Instead, the wild-type infection induced
higher levels of IL-10 production, and it was postulated that
capsule serves to induce the production of IL-10, which helps
to suppress the host inflammatory response and allow the
bacteria to grow in a more permissive environment.

Our initial experiments in the establishment of this intrana-
sal model demonstrated that a cpsB mutant of K. pneumoniae
was severely attenuated in its ability to cause disease (18). This
cpsB mutant (VK20) appears to be wild type in its production
of lipopolysaccharide (LPS) and enterobacterial common an-
tigen, two other surface polysaccharides of K. pneumoniae (18).
All infected mice survived intranasal challenge with as many as
9 � 108 CFU of the cpsB mutant strain. Furthermore, when
inoculated at a dose equivalent to the wild-type 50% lethal
dose (LD50), 104 CFU, the cpsB mutant bacteria were cleared
from all tissues by 48 h. All future infections were performed
with doses that would result in similar concentrations of bac-
teria in the lungs of infected mice at the 12-h time point,
allowing for a more relevant comparison between infections
(�107 CFU of the cpsB mutant strain or �104 CFU of the
wild-type KPPR1 strain) (18). However, bacterial concentra-
tions in the lungs increasingly diverge after the 12-h time point,
with the wild-type infection peaking at 72 h postinfection with
ensuing lethality. In contrast, the cpsB mutant is unable to
grow in either the trachea or lungs and fails to disseminate to
the spleen. However, small numbers of this attenuated strain
can persist in the lungs for several days (18).

Despite past achievements in elucidating the host response
to K. pneumoniae infection, we believe that our comprehensive
model can be used in concert with our defined capsule mutant
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to bring further insight to this interesting area of research. In
the present study we describe the use of the intranasal mouse
model to study the host response to K. pneumoniae infection by
either a wild-type or a capsule mutant strain. Comparing the
weights of infected tissues provided a broad comparison of
inflammation during each infection. Cytokine quantitation us-
ing both RNA and protein measurements allowed a more
detailed examination of differences in the host responses to
these infections. The use of fluorescence-activated cell sorting
(FACS) analysis and histology to examine infected lungs pro-
vides an insight into the different cell types recruited during
each infection. Finally, we evaluated the efficacy of the capsule
mutant strain in generating protective immunity against a wild-
type infection.

Gross measures of inflammation. One of the most common
methods to determine gross inflammation is to examine the
weight of infected tissues. At early time points after intranasal
inoculation, no differences were seen when whole lung and
spleen weights were compared between wild-type- and cpsB
mutant-infected mice (Fig. 1). However, at later time points
the wild-type bacteria induced a substantial inflammatory re-
sponse that was clearly lacking in the mutant infected tissue,
and this was reflected in significant differences in lung weights
at the 72- and 96-h time points. Interestingly, there were no
differences in spleen weights at any time during infection (data
not shown).

Inflammatory cytokine production. To further characterize
the host response to Klebsiella-induced pneumonia, we mea-
sured the production of several cytokines in both lungs and
serum during infection by using a mouse inflammation cyto-
metric bead array kit (BD Biosciences, San Diego, CA). Sev-
eral interesting trends were noted. High levels of cytokine
production were not apparent until at least 48 h after inocu-
lation, even among wild-type-infected lung samples (Fig. 2 and
data not shown). The intensity of this inflammatory response
tightly correlated with the severity of infection, since those

tissues with the highest bacterial counts also had the most
significant cytokine production (Table 2). Examinations of cy-
tokine production during Streptococcus pneumoniae infection
show a similar trend, where only mice that become visibly sick
show an increase of inflammatory cytokines in the lung, includ-
ing MCP-1, MIP-2, and IL-6 (9). The production of these
cytokines remains relatively low until 48 h postinfection, and
only reach high levels at 72 h and later. However, since most
studies evaluating cytokine responses in the lung use different
methods of quantitation, it is difficult to directly compare data
between publications.

Previous reports suggested that the K. pneumoniae capsule
serves to suppress the innate inflammatory response, and our
data support this model (31, 32). At early time points the
cytokines examined were all expressed at very low levels until
the 48-h time point, and IL-10 was not observed until 72 h (Fig.

FIG. 1. Weights of lungs infected by K. pneumoniae. C57BL/6 mice
were intranasally infected with either 104 CFU of the wild-type KPPR1
strain or 107 CFU of the cpsB mutant strain as described previously
(18). Lungs were harvested from five mice per group per time point,
with wild-type results indicated in gray and cpsB mutant results indi-
cated in white. Mean weights with the standard deviations are shown.
P values were determined by using a one-way analysis of variance
statistical test.

TABLE 1. Comparison of in vivo studies with capsule mutants

Type of cps
mutationa

Capsule
productionb

Infection
routec Tissue(s); time point(s)d LD50

e Immunological assay(s)f Reference

UV, HS Precipitin i.p. None Y None 1
Sp Cell vol i.p. None Y None 25
Sp India ink i.t. Lung; 1–28 days Y Lung histology 10
Sp None Burn Skin, blood, liver; 12 h–6 days Y None 8
Sp Swelling s.c. Skin abscess; 24 h N None 22
UV ELISA i.u. Bladder, urine, kidney; 5 days N None 2
Tn Immunoblot i.p. None Y None 3
In Uronic acid i.g. Intestine; 1–20 days N Intestine histology 11
Sp India ink i.n. Lung, serum; 6–72 h Y Lung histology, BAL, and

serum cytokines
32

Sp India ink i.n. None N BAL and serum cytokines 31
In ELISA i.t. Lung; 7 days N Lung histology 6
Sp Hydrophobicity i.t. Lung; 4–14 days N Lung histology 4
Sp Swelling i.g., i.u. Intestine, bladder; 1–10 days N None 24
Tn Uronic acid i.n. Trachea, lung, spleen; 12–72 h Y Lung histology 18

a The type of capsule mutation used in the study. UV, induced by UV light; Sp, spontaneous mutation; Tn, transposon insertion mutant; In, insertional mutation;
HS, induced by high salt concentrations.

b The method used to monitor capsule production. ELISA, enzyme-linked immunosorbent assay.
c The route of inoculation for the animal studies. i.p., intraperitoneal; s.c., subcutaneous; i.u., intraurethral; i.g., intragastric; i.n., intranasal; i.t., intratracheal.
d The types of tissues examined and the time frame of the study.
e Whether the LD50 was either determined in the study. Y, yes; N, no.
f The type of immunological assay(s) (if any) performed in the study.
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2). However, the lack of an early cytokine response against a
wild-type infection may be a consequence of the ability of the
capsule to inhibit phagocytosis and therefore inhibit subse-
quent processing by antigen-presenting cells. This reduction in
antigen presentation would lead to a relative reduction in T-

and B-cell stimulation and an overall reduction in the number
of activated immune cells that could produce proinflammatory
cytokines; the capsule may be working indirectly in this case to
dampen the intensity of the inflammatory response. A comple-
mentary function of the capsule appears to lie in protecting the
bacterium from this attack; even when the host mounts an
intense inflammatory response late in infection, wild-type K.
pneumoniae continues to multiply in the lungs. This confluence
of capsule-mediated phenotypes only exacerbates the destruc-
tive impact of this infection to the host and further retards the
effectiveness of the immune response.

The most interesting aspect of the cpsB mediated cytokine
response was an altered production of IFN-�. At the 48- and
72-h time points, there was a higher level of IFN-� production
in cpsB-infected lungs than during wild-type infection (Fig. 2).
IFN-� production in wild-type-infected mice did not reach the
quantities found in cpsB mutant-infected tissues at any time
point. IFN-� has been shown to play different roles when K.
pneumoniae is inoculated by different routes (20). IFN-�
knockout mice suffered greater mortality after intratracheal
infection, with a higher bacterial burden in the lungs than
wild-type mice. However, the knockout mice showed rates of
survival at least as high if not higher than wild-type mice after
intravenous K. pneumoniae inoculation. The authors of that
study concluded that localized pulmonary infection requires
IFN-� whereas systemic infection does not. Intranasal studies
have also demonstrated that mice deficient in IFN-� produc-
tion show a larger bacterial burden and suffer greater mortality
from wild-type Klebsiella infection (30). The higher levels of
IFN-� that are produced during the cpsB mutant infection are
likely a result of the high rate of phagocytosis and clearance of
the cpsB mutant strain.

Between 12 and 48 h postinfection, significantly higher con-
centrations of TNF-�, MCP-1, and IL-6 were produced in cpsB
mutant infected lungs compared to the wild-type infection
(Fig. 2). This difference may be attributable to the 1,000-fold
difference between these bacterial inocula (Fig. 2). Additional
experiments with the KPPR1 strain inoculated at 107 CFU
demonstrated a concomitant increase in TNF-� and MCP-1
production to the levels seen in cpsB mutant-infected lungs
(data not shown). Mice lacking MCP-1� (CCL3�/�) have been
shown to survive infection less well than wild-type mice and
have increased bacterial burden in their lungs (19). These mice
do not appear to be defective for recruiting monocytes, mac-
rophages, or neutrophils, and they produce normal levels of
cytokines in response to Klebsiella infection. However, using in
vitro assays alveolar macrophages from the CCL3�/� mice
were found to be defective for the phagocytosis of opsonized
Klebsiella, which may account for the uncontrolled growth ob-
served in the lungs and decreased survival (19). In addition to
directly measuring cytokine levels in tissue, we also monitored
the transcript level of these same cytokines from the lung tissue
by using quantitative reverse transcription-PCR (qRT-PCR)
(Table 3). In general, similar trends were observed.

Cellular response to infection. Earlier histological studies
showed some dramatic differences in the inflammatory cell
response over the course of wild-type infection (18). We fol-
lowed up on these experiments by comparing histological sam-
ples from both wild-type- and cpsB mutant-infected lungs. The
differences in pulmonary epithelial cell responses are dramatic

FIG. 2. Cytokine production in K. pneumoniae-infected mice. Mice
were infected with either wild-type or cpsB mutant bacteria as de-
scribed in Fig. 1. At each time point mice from each group were
sacrificed, and whole lung homogenates and blood samples were quan-
tified for cytokine production by using a mouse inflammation cytomet-
ric bead array kit (BD Biosciences, San Diego, CA). The data are
shown for five mice per time point. The upper limit of detection for this
assay is 5,000 pg per sample. �, P � 0.05; ��, P � 0.001 (unpaired
Mann-Whitney t test).
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even at an early 12-h time point (Fig. 3A to C). Although
capsule mutant-infected lungs show some hypertrophy of epi-
thelial cells compared to an uninfected sample, the wild-type-
infected lungs show dramatic cellular changes in the epithe-
lium, including hypertrophy and cytoplasmic clearance, that is
reflective of mucus production by these cells. Interestingly,
histological analysis of cpsB mutant-infected lungs indicates
large areas of lymphocyte infiltration that are absent in wild-
type-infected lungs (Fig. 3E and F). The higher concentration
of lymphocytes in cpsB mutant-infected lungs could also be a
consequence of either a loss of lymphocytes during wild-type
infection or an influx of lymphocytes induced by the high rate
of clearance of the cpsB mutant bacteria. The incredibly high
concentration of neutrophils in wild-type lungs are evidenced
by histology, with neutrophils present in many infected airways
(Fig. 3D). By comparison few neutrophils can be seen in the
airways of cpsB-infected mice, but in these infections localized
populations of lymphocytes can be seen (Fig. 3E and F).

After these experiments FACS analysis of whole lungs was
performed to determine in a more quantitative fashion what
types of cells are responding to K. pneumoniae intranasal in-
fection (Table 5). FACS assays of whole lung tissues were

performed by using previously established protocols (14, 21).
As expected, at 48 h postinfection wild-type-infected lungs
showed dramatically higher levels of Gr-1-positive cells (gran-
ulocytes) and Mac-1-positive cells (neutrophils and myeloid
cells) than the cpsB mutant-infected lungs. At this time point
wild-type-infected lungs were comprised of more than 70%
neutrophils, whereas cpsB mutant-infected lungs contained
only ca. 4%. Although the histological results show an appar-
ent increase in lymphocyte populations in cpsB mutant-in-
fected lungs, the FACS data suggest that the absolute number
of B and T lymphocytes in cpsB mutant-infected lungs is very
similar to that from uninfected mice. However, there may still
be a redistribution of these cells during cpsB infection that
could impact bacterial clearance. In addition, it is unclear
whether the difference seen via FACS is a result of the large
influx of neutrophils during wild-type infection that may skew
these percentage results.

Immunization studies. To explore whether immunization
with the cpsB mutant can provide protection against a wild-
type infection, mice were intranasally inoculated with 9 � 107

CFU of the cpsB mutant strain. Six weeks later, both immu-
nized and age-matched naive mice were challenged with 1.3 �
106 CFU of KPPR1; this dose is �500-fold greater than the
wild-type LD50 value (18). All naive mice succumbed to infec-
tion by 5 days postinoculation, whereas 80% of the immunized
mice survived (Fig. 4). This result indicates that noncapsular
Klebsiella antigens can stimulate a protective memory immune

TABLE 2. High levels of proinflammatory cytokines in the lungs correlate directly with the bacterial concentrationa

Mouse Bacterial load in wild type
(log10 CFU/g of tissue)

Bacterial concn (pg/sample)b

TNF-� MCP-1 IL-6

1 5.50 430.2 163.4 231.1
2 4.59 128.8 87.8 25.3
3 9.78 2,961.3 1,666.8 5,000.0
4 9.72 2,576.4 1,268.1 5,000.0
5 10.62 5,000.0 3,093.2 5,000.0

Mean 	 SD 8.04 	 2.78 2,219.3 	 1,998.8 1,255.9 	 1,235.2 3,051.3 	 2,669.4

a Mice were infected with 104 CFU of wild-type bacteria, and lungs were harvested at 72 h. Data are taken from the experiment described in Fig. 2.
b Correlations: TNF-�, r2 
 0.8791 and P 
 0.0185; MCP-1, r2 
 0.8008 and P 
 0.0403; IL-6, r2 
 0.9757 and P 
 0.0016.

TABLE 3. Fold change in cytokine and chemokine transcript level
as measured by qRT-PCR from whole lungsa

Time
postinfection

(h)

Avg fold change

IL-10 MCP-1 TNF-� IFN-�

WT cps WT cps WT cps WT cps

12 18.6 2.8 1.0 0.0 5.7 �1.3 1.8 1.4
24 7.9 1.8 0.0 23.8 6.9 �2.3 1.3 1.8
48 172.4 5.0 5.8 �2.8 24.6 1.0 4.0 3.5
72 1,379.6 3.2 �3.8 �4.1 38.6 �1.4 4.4 1.7

a Mice were infected with either wild-type (WT) or cps mutant K. pneumoniae
as described in Fig. 1, and samples were obtained at 12, 24, 48, and 72 h
postinfection. At each time point, mice were euthanized, and both lungs were
removed and stored in RNAlater (Ambion, Austin, TX). Total nucleic acid was
extracted by using TRIzol reagent (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. The total nucleic acid was treated twice with DNase
(Fisher Scientific, Pittsburgh, PA) at 37°C to remove contaminating DNA. cDNA
synthesis and qRT-PCRs were performed as described previously (13) Each
value represents the average fold change obtained from three independent re-
actions performed on three individual mice relative to samples from uninfected
mice. A “0” indicates no change, and a negative value indicates a reduction in
transcript compared to the baseline. The primers used for each reaction are
shown in Table 4. Reactions were also run for IL-6 and IL-17; however, because
there was no background signal for the uninfected control the fold change could
not be calculated. Nevertheless, from these reactions it was clear that for IL-6
there was an induction in mice infected with the wild type but not the cps mutant,
and for IL-17 there was an induction in mice infected with either strain.

TABLE 4. Primer sequences used for qRT-PCR analysis

Product
Primer sequence (5�–3�)

Forward Reverse

GAPDHa TGG CAA AGT GGA
GAT TGT TGC C

AAG ATG GTG ATG GGC
TTC CCG

IL-6 CTG ATG CTG GTG
ACA ACC AC

AGC CTC CGA CTT GTG
AAC TG

IL-10 TGG GTG AGA AGC
TGA AGA CC

TGG CCT TGT AGA CAC
CTT GG

MCP-1 GGA CAG ATG TGG
TGG GTT TC

GGG TGA CAG TGA TTT
CTC TTC C

IL-12 CAG TAC ACC TGC
CAC AAA GG

TTG GTG CTT CAC ACT
TCA GG

TNF-� GTC CCC AAA GGG
ATG AGA AG

TTT GCT ACG ACG TGG
GCT AC

IFN-� CAC GGC ACA GTC
ATT GAA AG

CAT CCT TTT GCC AGT
TCC TC

IL-17 TAC CTC AAC CGT
TCC ACG TC

AGC TTC CCA GAT CAC
AGA GG

a GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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response. Moreover, it also suggests that noncapsular antigens
can serve as targets to generate an effective defense against
infection by a capsule-positive strain.

As an immunizing agent, purified K. pneumoniae capsule has
been shown to protect against subsequent infection with wild-
type bacteria (7). In addition, other noncapsular epitopes have
been used to immunize against K. pneumoniae infection, in-
cluding LPS and type 3 fimbriae (5, 17, 28). In our immuniza-
tion study we found that an acapsular K. pneumoniae mutant
can also protect against wild-type infection. This finding cor-
relates with results from other pathogens, including a porcine
model of Actinobacillus pleuropneumoniae infection, wherein

inoculation with an isogenic acapsular mutant was shown to be
protective against subsequent wild-type infection (15). Our
results suggest that noncapsular epitopes of wild-type K. pneu-
moniae are still accessible to the immune system as effective
targets despite the presence of capsule and can be targeted by
the adaptive immune response in immunized mice. Alterna-
tively, there may be a time during infection when capsule
production is suppressed, allowing access to noncapsular epi-
topes. Future work to examine the expression of bacterial
genes during each stage of infection is an important future
goal, and analyzing sera from cpsB immunized mice may aid in

0.00.20.40.60.81.0

FIG. 3. Histological examination of K. pneumoniae-infected lungs. Mice were infected with either wild-type or cpsB mutant bacteria as
described in Fig. 1. At various time points after infection, mice were sacrificed, and whole lungs were removed and processed for paraffin
embedding and sectioning as described previously (18). Samples were stained with hematoxylin and eosin, and all pictures shown were taken at
�40 magnification. (A) Uninfected lung; (B) wild-type infection at 12 h; (C) cpsB mutant infection at 12 h; (D) wild-type infection at 48 h; (E) cpsB
mutant infection at 24 h; (F) cpsB mutant infection at 48 h.

FIG. 4. Protection against KPPR1 infection by immunization with
the cpsB mutant strain. n 
 20 mice per group; P � 0.0001 (log-rank
test). The data are representative of two independent experiments.

TABLE 5. FACS analysis of whole lung samples
at 48 h postinfection a

Antibody
marker Cell type Uninfected

animal (%)

Mean % 	 SD

Wild-type
mice

cpsB mutant
mice

Gr-1 Granulocytes 2.42 71.55 	 8.1 3.87 	 1.72
Mac-1 Neutrophils/

myeloid cells
10.64 73.58 	 8.1 10.96 	 2.8

CD19 B cells 8.93 4.75 	 4.1 9.37 	 1.69
TCR/CD4 CD4� T cells 18.91 4.45 	 1.2 21.7 	 4.1
TCR/CD8 CD8� T cells 21.69 5.48 	 2.4 22.39 	 4.1

a Three mice each were infected with either 104 CFU of the wild-type strain or
107 CFU of the cpsB mutant strain as described previously (18). At 48 h postin-
fection, whole lungs were taken, processed into single cell suspensions, and
evaluated via FACS analysis with several different antibodies to identify different
immune cell populations. Antibody markers are listed, along with predominant
immune cell type that was targeted. Mean percentages of total cell populations
are presented with the standard deviations. The data from the lungs of one
uninfected mouse are presented for comparison.
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discovering the accessible epitopes. One likely target is the
LPS O antigen, which has been shown through previous mi-
croscopic studies to protrude through some K. pneumoniae
capsular types, including the serotype K2 capsule that this
wild-type strain expresses (27). If the O antigen is the target of
the memory response, it would be interesting to immunize
mice with a bacterium deficient in both components and ob-
serve whether other bacterial surface components will initiate
an effective memory response. However, earlier studies indi-
cate that a capsule-negative, O antigen-negative strain is highly
susceptible to rapid clearance after intranasal inoculation, and
it may prove difficult to maintain a sufficient bacterial dose in
vivo to stimulate a memory response (18).
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