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Three-dimensional protein folds were assigned to all ORFs of the
recently sequenced genome of the hyperthermophilic archaeon
Pyrobaculum aerophilum. Binary hypothesis testing was used to
estimate a confidence level for each assignment. A separate test
was conducted to assign a probability for whether each sequence
has a novel fold—i.e., one that is not yet represented in the
experimental database of known structures. Of the 2,130 predicted
nontransmembrane proteins in this organism, 916 matched a fold
at a cumulative 90% confidence level, and 245 could be assigned
at a 99% confidence level. Likewise, 286 proteins were predicted
to have a previously unobserved fold with a 90% confidence level,
and 14 at a 99% confidence level. These statistically based tools are
combined with homology searches against the Online Mendelian
Inheritance in Man (OMIM) human genetics database and other
protein databases for the selection of attractive targets for crys-
tallographic or NMR structure determination. Results of these
studies have been collated and placed at http://www.doe-mbi.
ucla.edu/people/parag/PA_HOME/, the University of California,
Los Angeles-Department of Energy Pyrobaculum aerophilum web
site.

or the nascent field of structural genomics, it is important to

know which new protein sequences belong to known three-
dimensional folds and which are likely to have previously un-
observed folds. The latter proteins present good targets for
experimental structure determination because the new struc-
tures will likely permit the assignment of other sequences to the
novel fold. In this paper we describe methods for whole-genome
fold assignment that are statistically validated. We use these
methods, in conjunction with homology searches of sequence
databases, to determine targets for experimental structure de-
termination of proteins from the newly sequenced hyperther-
mophilic archaeon Pyrobaculum aerophilum (PA) (1), which is
the focus of a structural genomics initiative.

Previous methods of whole-genome fold assignment have used
a sharp threshold to separate “confident matches” from “non-
informative matches.” How one chooses to define the barrier
between confident and noninformative fixes the percentage of a
genome that is assigned a fold (sensitivity), and also the per-
centage that is assigned the correct fold (selectivity). Often, large
portions of a genome are ignored because their sequence—
structure scores fall below this arbitrary threshold.

An alternative approach is to generate a continuous distribu-
tion such that every sequence-structure match is assigned a
confidence level describing the likelihood that it is correct. The
method proposed in this paper derives these confidence levels by
asserting the binary hypothesis that a fold assignment is either
correct or incorrect. We have defined structures of our test set
as being structurally similar, and thus assigned correctly, if they
are in the same DALI/FSSP family (2-5), with compatibility
Z-scores greater than 2. All other assignments are considered
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incorrect. As shown below, by treating sequence-structure
scores generated by the Sequence Derived Properties (SDP)
method (6) with the binary hypothesis we derive continuous
probability distributions for how often predictions are correct as
a function of the sequence-structure compatibility score.

Materials and Methods

Pyrobaculum Genome. Predicted coding region sequences of the
PA genome were obtained from the Jeffrey H. Miller Labora-
tory of the University of California Los Angeles Molecular
Biology Institute and correspond to the 1/1/99 version of the
genome. This version contained 2,681 open reading frames
(ORFs) predicted to code for proteins.

Membrane-Spanning Proteins. Of the 2,681 PA ORFs, 551
contained membrane-spanning o«-helices as determined by
MOMENT (7) (PA.HOME/TRANSMEMBRANE_HELIX_
PREDICTION_RESULTS). These proteins were excluded from
fold recognition and novel fold prediction analysis.

Protein Sequence Databases. The Online Mendelian Inheritance in
Man (OMIM) database containing 15,743 sequences was down-
loaded from the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/Omim/; authored and edited by
V. A. McKusick and his colleagues at Johns Hopkins and
elsewhere). Similarity searches of the OMIM database were
performed by using a local implementation of the Smith—
Waterman algorithm (8) with probability values determined by
Waterman—Vingron statistics (9, 10).

Additional homology searches were performed against a
nonredundant sequence database (NRDB) containing 351,096
sequences, including 18 completed genomes (from The Institute
for Genomic Research) plus the databases from SwissProt,
TrEMBL, Protein Identification Resource (PIR), and GenPept.
The PA genome was excluded from the NRDB. Similarity
searches of the NRDB were performed by using the National
Center for Biotechnology Information implementation of
gapped BLAST (11, 12) and verified by using the Washington
University implementation of gapped BLAST (13). E values were
generated by using standard Karlin—Altschul statistics (14).

Abbreviations: BLAsT, Basic Local Alignment Search Tool; NRDB, nonredundant sequence
database; OMIM, Online Mendelian Inheritance in Man; PA, Pyrobaculum aerophilum;
PDB, Protein Data Bank; psi-BLAST, position-specific iterated BLAsT; SDP, Sequence Derived
Properties.
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Fold Assignment. Folds were assigned by using the SDP method
(6). SDP computes the compatibility of a query sequence to each
member of a database of three-dimensional folds. This proce-
dure attempts to match residue type and observed secondary
structure of proteins with known three-dimensional structures to
these properties predicted from a query sequence. Secondary
structure predictions were derived from the PHD server of
Sander and Rost (15), which can be accessed at http://
dodo.cpmc.columbia.edu/predictprotein/predictprotein.html.
The algorithm of the UCLA-DOE-MBI fold recognition server
(http://fold.doe-mbi.ucla.edu/) was modified to provide Z-
scores for compatibility of the input query sequence with every
structure in the fold database. We define Z-max to be the
Z-score corresponding to the best sequence—structure match.
Sequence similarity searches of the Protein Data Bank (PDB)
were also performed by using the Smith—Waterman algorithm to
compare pure sequence methods with fold recognition methods.

Position-Specific Iterated BLAsT (psi-BLAsT) Parameters. Additional
searches were performed by using PSI-BLAST (11) for comparison
with fold-recognition methods. Library proteins were used to
complete the SwissProt database. Searches were allowed 5
iterations to converge with a threshold of 0.0001 per iteration.
Seg and Xnu filters were used to screen for low complexity
regions within sequences.

Training Set Derivation. The library of known folds was derived
from the PDB SELECT (16, 17) library of Sander (http://
www.sander.embl-heidelberg.de/pdbsel). Because the SDP al-
gorithm works more effectively when templates are domains and
not full chains, we attempted to find domain definitions for each
of the PDB chains. If the selected chain contained a domain
definition in the DALI Domain Dictionary [DDD (5)], then we
chose the definition from DDD. If the PDB file was not found
in DDD, we looked for a domain definition in the SCOP
database (18). If we were unable to locate a previously defined
domain definition, the entire chain was used. Version 2.0 of the
DDD was used (http://www2.embl-ebi.ac.uk/dali/domain/
2.0/). Version 1.37 of the SCOP database was used (http://
scop.stanford.edu/scop/). Our final fold library contains 3,285
domain folds, derived from 2,634 PDB chains.

Correct/Incorrect Matches and “Novel” Fold Classes. We consider
structures to be either similar or dissimilar as evaluated by DALI
Z-scores (4). Structures are considered to be similar if their
pairwise DALI Z-score is greater than 2. The authors of DALI
recommend this cutoff as indicating that the two proteins will
share a common architecture and topology.

We recognize that there are many operational definitions of
a “novel” fold. We define a fold as “novel” if it is not similar to
any fold in our library, as evaluated by the DALI Z-score.

Confidence of Assignment. In fold recognition we observe a
continuous distribution of Z-scores for compatibility of an
amino acid sequence for a fold (6, 19). We must decide on the
basis of the Z-score whether the sequence adopts that fold. A
greater Z-score implies a greater compatibility between a
sequence and a structure. One can then ask the question “How
do we quantify our confidence in our assignment as a function
of a sequence-structure compatibility score?”” Once we have
posed our question in terms of a binary decision problem
(correct matches vs. incorrect matches), we can define more
precisely what we mean by quantifying prediction confidence.
What we really want to know is “How often are we making the
assertion that an assignment is correct when the assignment is
actually incorrect?” This quantity of incorrect matches above
a threshold z represents the probability of false alarm (also
known as the occurrence of false positives) and is denoted by
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Py, = P (incorrect assignment | Z-score > z). We can express
this quantity as a confidence of assignment by realizing that a
low probability of false alarm directly corresponds to a high
confidence. So we denote assignment confidence = P (correct
assignment | Z-score > z) = 1 — Py,

Results

Deriving Assignment Confidence. A confidence curve is a function
that maps a sequence—structure compatibility score to a likeli-
hood that the sequence is assigned correctly to a fold. To derive
a confidence curve, we first use the SDP method (6) to generate
an exhaustive set of sequence—structure compatibility Z-scores
between each of the 3,285 sequences and structures in our
domain fold library (excluding the true structure of that se-
quence). The Z-scores describe the compatibility of each se-
quence with a given fold. Of course, most pairings match the
sequence with the wrong structure and have a low Z-score. The
DALI algorithm is used to determine whether the actual exper-
imental structure of that sequence correctly matches an assigned
structure.

Fig. 14 is a plot of the distribution of Z-scores generated from
the training set, for both incorrect matches (dissimilar folds) and
correct matches (similar folds). We observe a clear separation
between the two distributions; the scores for correct matches
shifted to higher scores. The separation of these distributions
correlates with the ability of our Z-score to distinguish correct
matches from incorrect matches.

Notice that several of the scores for wrong matches are high.
These “wrong” matches tend to be almost correct. We observe
that some pairings denoted as dissimilar by our DALI cutoff of 2
are actually considered to be similar by other structure compar-
ison sets, such as SCOP and CATH (data not shown). To achieve
a completely automated method, all assignments are made
automatically by using DALI, rather than integrating conflicting
results from several different structure comparison methods.

Next we generate a confidence curve from which we can derive
the probabilities of false alarm and correct assignment, given a
sequence-structure compatibility score, Py, and P (correct |
Z-score > z), as shown in the Inset to Fig. 14. The probability
of false alarm is the probability that a given Z-score belongs to
the set of Z-scores for incorrect (dissimilar) sequence-structure
matches. Py, is derived from the percent area under the curve of
incorrect predictions that falls above a given Z-score threshold.
We observe that the 99% cutoff falls at approximately a Z-score
of 7.2 and the 90% cutoff falls at a cutoff around 4.0. The Inset
to Fig. 14 allows us to assess our confidence in any sequence—
structure match.

Automated Fold Assignment for the Genome of PA. To assign folds
to the genome of PA we must derive sequence—structure com-
patibility scores for the sequences of PA and then assign
probabilities of correctness to each match. We use SDP (6) as
described previously (20) to assign sequence—structure compat-
ibility scores from the 2,130 nontransmembrane proteins from
the PA genome to each of the 3,285 domain structures within the
fold recognition library. Using the function shown in the Inset to
Fig. 14, we map each sequence-structure Z-score to an asso-
ciated probability of correctness. Sequences were assigned to the
fold with the highest Z-score match and hence the highest
probability of correctness. The bar graph in Fig. 1B shows the
distribution of sequences assigned as a function of probability
value.

To give a measure of the fraction of a genome assigned as a
function of the probability threshold, we sum the bar chart from
the highest Z-score to our threshold, and divide by the number
of sequences in the whole genome. Fig. 1B shows the chart of the
fraction of the genome assigned as a function of assignment
confidence.
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Fold Assignment Probability Curve
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Fig. 1. (a) Distributions of fold assignment scores for correct (dashed line)

and incorrect (solid line) matches. A test set of 3,285 experimentally deter-
mined domain-folds were used to generate an exhaustive set of 10,784,656
(3,285 X 3,284) sequence-structure assignment pairs, excluding the assign-
ment of any sequence to its own structure. Each pair was assigned a sequence-
structure compatibility Z-score by the SDP method (6). Structures were com-
pared with the pALI algorithm and are designated structurally similar if their
DALI Z-Score is greater than or equal to 2. We assert the binary hypothesis that
an assigned structure for sequence A matches the true structure of A (dashed
line) or does not match the true structure of A (solid line). The distributions of
scores for the two cases show that similar pairs have higher sequence-
structure match scores than do nonsimilar pairs. (Inset) Fold assignment
probability curve. These distributions give the likelihood that an assigned fold
for a protein A matches the actual structure of protein A as a function
sequence-structure Z-score, as explained in the text. (B) Probability of correct
fold assignment for fraction of genome proteins assigned. Folds were as-
signed to each of the predicted soluble 2,130 ORFs within the PA genome.
Each sequence within the genome was assigned to the structure with the
highest sequence-structure compatibility Z-score. Z-scores map to probability
values via the Inset of A. Each bar shows the number of ORFs assigned as a
function of probability value. Summing the bar chart (dark line) shows the
fraction of the genome assigned a fold as a function of probability value.
Summing the bar chart weighted by probability values shows the cumulative
number of assignments predicted as a function of probability value (dashed
line).

We are interested not only in what percentage of assignments
are above a given accuracy threshold but also in the cumulative
fraction of the genome we expect to have assigned correctly as
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a function of probability value. We can derive this term by
weighting the summed terms from our bar graph by their
probability values. The curve showing the fraction of the genome
expected to be assigned properly as a function of probability is
shown by the dashed line in Fig. 1B. Note that the ratio of the
solid line to the dashed line at a particular point is the cumulative
confidence in our prediction as a function of probability. As
noted on the figure, we were able to assign 916 proteins with a
cumulative confidence level of 90% and 245 proteins with a
cumulative confidence level of 99%.

Deriving Novel Fold Confidence. Next we estimate the probability
that each sequence represents a novel fold. Our binary hypoth-
esis has two cases, “assignment as novel is true,” or “assignment
as novel is false.” To evaluate this hypothesis, we must define
what it means for a Z-max score to be “truly novel” or “falsely
novel.” To simulate the case of “truly novel” folds, we exclude
from our fold library the structure for the given sequence, as well
as all other structures that are similar (pairwise DALI scores
greater than or equal to 2). The distribution of Z-max scores for
an exhaustive probing of the fold library where compatible
structures have been removed is shown in Fig. 24 (dashed line).
This represents what we expect to see for the set of “truly novel”
folds.

For the case of “falsely novel” folds, we exclude only the self
structure, and examine the resulting distribution of Z-max
scores. In our fold library, each fold was found to have a similar
(by DALI score) fold present, and therefore all of the sequences
were considered “falsely novel.” The exhaustive set of these
Z-max scores is shown by the solid line in Fig. 24, and was used
to determine the probability of false alarm (Pg,), which translates
to a confidence curve (not shown) similar to the Inset for Fig. 1A4.
The set of “truly novel” Z-max scores is an essential check of the
method, and it shows that the distribution of Z-max scores is
greatly shifted to lower values when true structural matches are
excluded.

To generate the probability of false alarm (Pg,) we look at
Z-max scores that occur below a given threshold, and divide by
the total number of Z-max scores. For example, there are 394
false-alarm Z-max scores that occur at or below a value of 1.3,
out of a total of 3,285 Z-max scores. Thus, the value of P, for
a novel fold at this Z-max score is 394 /3,285, or 12%. This is the
likelihood of falsely predicting a fold to be novel, when it is
actually contained in the database. We observe that the 99%
cutoff falls at approximately a Z-max score of 1.1 and the 90%
cutoff falls at a cutoff around 1.3. Our continuous probability
curve allows us to assign automatically a novelty confidence for
each sequence in the genome of PA.

Automated Whole-Genome Prediction of Folds as Novel. SDP se-
quence-structure compatibility scores from each PA sequence
to each structure in our library were calculated for the auto-
mated fold assignment shown in Fig. 1B. From this set of
sequence—structure scores we extracted the maximal score for
each of the 2,130 nontransmembrane proteins within the ge-
nome. We next mapped each maximum sequence-structure
Z-score to its associated probability of assuming a novel fold.
The distribution of the number of PA sequences assigned as
novel as a function of confidence is shown in the bar graph of Fig.
2B. As before, we are curious as to how many of the sequences
in the PA genome can be assigned at different levels of certainty
to be folds that are not represented in our fold library. This is
shown by the sum of the bar graph from 1 to a given threshold,
the solid line in Fig. 2B.

Also as before, we are interested not only in what percentage
of the genome we are assigning as a function of probability value
but also in the fraction of the genome that we cumulatively
expect to assign correctly as a function of the probability value.

Mallick et al.
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Fig. 2. (A) Distribution of Z-max scores for similar folds included (solid line)
and excluded (dashed line) from the fold library. Two distributions of maxi-
mum nonself Z-scores were obtained: one where a similar fold exists in the
training set, and a second where similar structures have been excluded from
the library. The separation between these two distributions shows that the
Z-max score is a good indicator of the presence of similar folds in the library.
(B) Probability of correct novel fold assignment for fraction of genome pro-
teins assigned. The probability of a novel fold was determined for each soluble
ORF product of PA. The bar chart shows the number of ORFs predicted to have
novel folds as a function of probability value. The fraction of the genome
predicted to be novel as a function of probability value is given by the solid
curve obtained by summing the bar chart. A sum of the bar chart, weighted by
probability value, shows the cumulative number of accurate predictions as a
function of probability value (dashed line).

We derive this term by weighting the summands from our bar
graph by their probability values, as shown by the dashed line in
Fig. 2B. We note that the ratio of the dark solid line to the dashed
line at a particular point is the cumulative confidence in our
prediction as a function of probability. The 90% and 99%
cumulative confidence intervals are also indicated in Fig. 2B.

Sequence Analysis: Homology and Transmembrane Searches. Having
now assigned PA sequences to folds and found those PA
sequences that most likely assume novel folds, we seek medically
relevant sequences and sequences with a large number of
homologs by using the Smith—-Waterman algorithm against the
OMIM disease database of 15,743 disease-related proteins. To
find sequences with a large number of homologs a gapped-BLAST
search of a large NRDB was performed.

A Venn diagram describing the sequence analysis is shown in
Fig. 3. Of the 2,681 PA ORFs, 2,130 (79%) are predicted not to
contain membrane-spanning domains; additionally 1,075 (40%)

Mallick et al.
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Fig. 3. The 2,681 ORFs of the genome of PA partitioned into homologs of
human disease proteins (208, 8%, white region), membrane-spanning pro-
teins (320, 12%, horizontal line region), and proteins having >4 homologs in
other organisms (482, 18%, vertical line region). Attractive initial targets for
structural genomics are proteins without transmembrane regions, with hu-
man disease relevance, and having many homologs in other genomes (422,
16%, star region). Additional ORFs had both >4 homologs in other organisms
and transmembrane helix regions (102, 4%, crosshatch region), or both hu-
man disease homologs and transmembrane helix regions (60, 2%, light gray
region). A few proteins had >4 homologs in other organisms, and human
disease homologs and transmembrane helix regions (69, 3%, darker gray
region). There are 1,018 ORFs belonging to none of these categories (37%,
black region).

had more than 4 homologs within the NRDB, and 759 (28%) had
at least one sequence neighbor within the OMIM database at a
significance level of 1076, An attractive set of targets for
structural genomics are those that have a large number of
homologs within the NRDB and within OMIM but are not
transmembrane proteins. The PA genome contains 422 such
targets, representing 16% of the PA sequences.

Discussion

Comparison with Other Popular Fold Assignment Methods. Attaching
confidence levels to fold assignments has several advantages. It
is not necessary to ignore portions of the genome because scores
fall below an arbitrary threshold. Previous genome-wide fold
assignment methods have cited percentages of proteins that were
“successfully assigned.” We are able to assign a variable fraction
of the genome as a function of probability cutoff. This permits
independent researchers to weigh each prediction in conjunction
with other knowledge about the protein. As the database of
experimentally determined structures grows, changes in the
confidence levels of assignments will make up-dates of the fold
predictions increasingly informative.

In addition, previous methods of whole-genome fold assign-
ment have incorporated “hand pruning” in making assignments
(20-22). Although this was an effective initial method, the
growing avalanche of sequences renders hand assignment
impractical. The assignment scheme presented here was applied
in a completely automated fashion, requiring no manual
intervention.

For comparison, we also examined fold assignment based
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Using PsiBlast for Automated Fold Assignment
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Fig.4. Atestof psi-BLAST for automated fold assignment. Using pSI-BLAST with
the SwissProt sequence database, we used 3,285 sequences from our training
set to generate an exhaustive set of 10,784,656 (3,285 X 3,284) nonself
sequence-sequence assignment pairs. Using binary hypothesis testing, we
divided the resulting set of scores into two cases. For the set of correct matches
(dashed line), the actual structures for the two sequences were similar as
determined by a DALI Z-score greater than or equal to 2. The set of incorrect
matches is also shown (solid line). The reduced separation of these cases
compared with the results for SDP shown in Fig. 1A implies that confidence
intervals may be more difficult to generate by using psi-BLAST.

solely on sequence similarity. First, we used the optimal align-
ment algorithm of Smith and Waterman (8) with a GONNET
substitution matrix (23). If we look at assignments given cor-
rectness estimates above 99% (as derived by SDP sequence—
structure compatibility score), we find that Smith-Waterman
searches can assign folds to only 50 sequences (data not shown);
8§ times as many sequences were assigned by our methods.

Also for comparison, we examined fold assignment by PSI-
BLAST. This method, in combination with hand-pruning, has
been used for several full-genome fold assignments (21, 24). To
compare the SDP method to PSI-BLAST, PSI-BLAST was used to
generate an exhaustive set of scores between the sequences of
the fold library. The scoring was done in a fully automated
fashion, as was the case with the SDP analysis. Standard rec-
ommended parameters were used for PSI-BLAST, as described in
Materials and Methods.

For analysis by binary hypothesis testing, the scores for
PSI-BLAST were divided into two sets, as shown in Fig. 4. The first
set represents correct (similar) matches (dashed line), where the

score represents a pair of sequences whose known structures are
similar (DALI score greater than 2). The second set of scores
represents incorrect (dissimilar) matches (solid line). The sep-
aration of the two sets is not as clear as when binary hypothesis
testing is applied to the SDP fold assignment method (Fig. 14).
Therefore, the confidence indicators for automated PSI-BLAST
assignments would not be as strong as those of the SDP method.

Targets for Structure Determination. Table 1 shows 10 attractive
targets for structure determination in the PA genome. They all
have a high probability of being novel folds and are either a
human disease homolog or posses a large number of NRDB
homologs. In addition, they are not expected to contain trans-
membrane segments. The OMIM homologs of these PA proteins
cover a wide range of functions, not simply categories such as
metabolic pathways as might be expected. The top hits include
homologs such as the small nuclear ribonucleoprotein polypep-
tide N and a family of ABC transporters. Interestingly, the PA
protein GPA?2230 has a high degree of homology to two domains
of the human protein MDR1 (multidrug-resistance protein 1).
Residues 1-65 (of 74 total) of GPA2230 are homologous to
MDRI1 from residue 541 to 606 (65% similarity) and from
residue 1186 to 1252 (66% similarity). The regions of homology
are in putative cytosolic regions of the 12-transmembrane-
segment protein (25). Also in Table 1 are three PA proteins
that are members of large families of conserved hypothetical
proteins.

For some of the homologous human proteins, experimental
structural information exists for regions of the protein that do
not include the sequence alignment overlap with the PA protein
(data not shown). This is true for the v-Jun avian sarcoma
oncogene, where the structure (26) covers the DNA-binding
region, residues 256-314. The PA protein match to the human
protein covers the N terminus, residues 7-60. A similar situation
occurs for myosin. The known structure of myosin has revealed
the N-terminal “head” portion (27). The overlap of this PA
protein with myosin occurs in the rod-like tail domain.

To date, more than 240 PA genes have been cloned for
crystallographic analysis. A structure has been published for the
PA protein translation initiation factor 5A, PDB code 1bkb (28).
The sequence of this protein, GPA1979, scored with an assign-
ment confidence of 48%. The predicted structure, 2rsp, is
actually a different fold than the closest structure, Imjc. 2rspb
has a “complex topology,” whereas 1mjc contains a Greek key
motif. However, there is still structural similarity between the
prediction and the closest structural homolog, 1mjc. Both pro-
teins are all B. Imijc is a six-stranded B-sheet, whereas 2rsp is a
five-stranded B-sheet. The shear number, the extent to which the
strands in the sheet are staggered, is 10 in both proteins.

Table 1. Ten PA proteins that represent attractive targets for structure determination

PA no. of GenPept OMIM OMIM no. of  Match no. of Function of closest NR/OMIM
PA ID amino acids V4 P(N) no. no. amino acids amino acids homolog NRDB
GPA2549 80 1.1 0.99 806564 603541 80 60 (54%) Small nuclear ribonucleoprotein 5
GPA2288 72 1.1 0.99 1708624 125855 735 30 (73%) Diacylglycerol kinase, a 0
GPA2261 64 1.1 0.99 Hypothetical family 6
GPA2241 155 1.1 0.99 Hypothetical family 8
GPA1339 115 1.2 0.91 106985 170261 703 78 (67 %) TAP2 transporter, MHC 215
GPA2230 74 1.2 0.91 34525 171050 431 65 (66%) Multidrug-resistance protein 1 1
GPA2464 67 1.2 0.91 539960 145505 546 41 (54%) Hypertension-associated SA 15
GPA542 135 1.2 0.91 3913830 172468 172 105 (48%) AMP cyclohydrolase 36
GPA2413 75 1.2 0.91 2342473 160776 346 49 (57%) Nonmuscle myosin 0
GPA2606 73 1.2 0.91 Hypothetical family 17

Each protein has a high probability of being a novel fold [P(N) > 90%]. Also, these proteins either are homologs of human disease-related proteins (OMIM

database) or are members of large families of proteins of unknown function.
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Although our prediction is clearly not completely correct, it can
be argued that the accuracy associated with the prediction (48%)
in a sense describes how correct the prediction is.

An example of our method’s success is found in protein
GPA2549, a putative small nuclear ribonucleoprotein predicted
by these methods to have a 99% chance of being a novel fold
(Table 1). Independent of our analysis, the structures of four
homologous human proteins were determined by Kambach et al.
(29). These human proteins share 45% sequence identity with
GPA2549 and form a novel o/ fold with a strongly bent 3-sheet.
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The coordinates of these proteins were not available when the
training set was constructed. This example of a correctly pre-
dicted novel fold suggests that experimental structures of other
proteins from Table 1 may help fill in our universal fold library.
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