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Databases of experimentally determined protein interactions pro-
vide information on binary interactions and on involvement in
multiprotein complexes. These data are valuable for understand-
ing the general properties of the interaction between proteins as
well as for the development of prediction schemes for unknown
interactions. Here we analyze experimentally determined protein
interactions by measuring various sequence, genomic, transcrip-
tomic, and proteomic attributes of each interacting pair in the yeast
Saccharomyces cerevisiae. We find that dividing the data into two
groups, one that includes binary interactions within protein com-
plexes (stable) and another that includes binary interactions that
are not within complexes (transient), enables better characteriza-
tion of the interactions by the different attributes and improves
the prediction of new interactions. This analysis revealed that most
attributes were more indicative in the set of intracomplex inter-
actions. Using this data set for training, we integrated the different
attributes by logistic regression and developed a predictive scheme
that distinguishes between interacting and noninteracting protein
pairs. Analysis of the logistic-regression model showed that one of
the strongest contributors to the discrimination between interact-
ing and noninteracting pairs is the presence of distinct pairs of
domain signatures that were suggested previously to characterize
interacting proteins. The predictive algorithm succeeds in identi-
fying both intracomplex and other interactions (possibly the more
stable ones), and its correct identification rate is 2-fold higher than
that of large-scale yeast two-hybrid experiments.

domain signature � genomewide analysis � stable interaction �
transient interaction � logistic regression

Protein interactions are central to almost all biological processes.
Large-scale screens of protein–protein interactions (PPIs) in

several organisms (1–4), together with PPI data from small-scale
studies, have generated a large volume of experimental data that
provides a partial picture of the cellular PPI networks. Previous
studies that analyzed PPIs characterized their sequence domains
and cellular properties (5–12) and provided insight into their
evolution and regulation (13–23). At present, the richest informa-
tion on PPIs is available for the yeast Saccharomyces cerevisiae,
including documentation on experimentally determined binary
interactions (1, 2, 24–26) as well as participation of proteins in the
same complex (24, 27, 28). Intersection of these two data sources
divides the binary interactions into those that occur within larger
protein complexes [intracomplex interactions (ICIs)] and those that
were not documented as belonging to complexes [non-intracomplex
interactions (NICIs)]. The latter include interactions between pro-
teins in different complexes, interactions between a noncomplexed
protein and a protein in a complex, and interactions between two
noncomplexed proteins (Fig. 1). A possible distinction between the
ICIs and NICIs is the nature of the interactions: NICI interactions
are likely to be transient whereas those between complex subunits,
ICIs, are more stable. Separate analyses of the interactions in the
ICI and NICI data sets allow better characterization of these
interactions with regard to their various sequence, genomic, tran-
scriptomic, and proteomic attributes. Indeed, our study shows that
these two types of interactions differ in the examined characteris-
tics, supporting our approach to distinguish rather than unify them

while studying protein interactions. This separate characterization
has an additional implication: by identifying NICIs with properties
similar to those of ICIs, mistakes in the experimentally based
annotations can be identified. It is possible that an NICI with
properties similar to ICIs was misassigned because of incomplete
experimental data, and our analysis may suggest reassigning it. This
possibility is particularly intriguing in view of the current data,
where most NICIs involve at least one protein from a complex
(Fig. 1).

Results
Attribute Assignment. We selected nine attributes that may char-
acterize pairs of physically interacting proteins (Table 1). Values for
those nine attributes were assigned for each of all possible
(�6,0002�2) �1.8 � 107 pairs in the yeast proteome. Note that the
attributes were defined at the pair level and not at the single-protein
level. As Table 1 shows, the information about most attributes is
incomplete, including both the computationally derived attributes
(attributes 1–5) and the experimentally based attributes (at-
tributes 6–9). Also, assignment of the computationally derived
attributes depends on the stringency of the criteria used in the
analysis. For example, following our criteria for fusion events
(Tables 2 and 3, which are published as supporting information on
the PNAS web site), this attribute was assigned to a very small
fraction of all possible protein pairs (consistent with ref. 19). It is
possible that with less stringent criteria, more pairs could be
assigned. Using the stringent criteria, however, guarantees a higher
quality of the data.

Comparison of Attributes in the Different Data Sets. As described in
Materials and Methods and in Fig. 2, we constructed two reliable
data sets: 1,466 interacting pairs within complexes (ICIs) and 1,995
interacting pairs not within complexes (NICIs). For comparison
with noninteracting protein data sets, we also constructed the
corresponding random data sets: RICPs and RNICPs. Fig. 3
describes the fraction of pairs showing the various attributes in each
data set under study. As seen in Fig. 3, for all attributes, except for
the fold combinations, the fraction of pairs showing the attribute is
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higher in the set of ICIs compared with the set of NICIs (P � 0.04
by a �2 test with a Bonferroni correction). The fold attribute
appeared more frequently in the set of NICIs, but this result was not
statistically significant. We compared these fractions with the
fraction of known ICIs and NICIs that the large-scale Y2H exper-
iments detect (1, 2) (Fig. 3), and we found that four of the attributes
are more sensitive than Y2H: domain–domain signatures, cellular
colocalization, participation in a common cellular process, and
consistent phylogenetic profiles. Interestingly, the Y2H detects a
higher fraction of ICIs compared with NICIs (10.6% compared

with 8%; P � 0.01). We also examined the attribute frequencies in
the respective sets of noninteracting proteins, RICPs and RNICPs,
and we found that all attributes (except for the fusion event
attribute) appeared less frequently than in the respective data sets
of PPIs (Fig. 3).

Prediction of Interacting Pairs. Although each attribute distinguishes
to some extent between interacting and noninteracting pairs, the
integration of all attributes, appropriately weighted, is expected to
provide better discrimination, and thus it could potentially be used
for the development of a predictive algorithm. To incorporate the
nine attributes into a predictive scheme, we used logistic regression
(LR). Similar to linear regression, LR provides the best fitting
function between a dependent variable and a set of independent
variables. LR provides a function that incorporates the relative
contributions of the independent variables (here, attributes) to
compute the probability of an event (here, interaction between two
proteins) (ref. 29; see also Supporting Methods, which is published
as supporting information on the PNAS web site). It is possible then
to choose a probability threshold above which a pair of proteins is
determined as putatively interacting.

Our study shows that there are differences in the attribute
distributions between ICIs and NICIs, suggesting that it would be
more appropriate to treat them separately rather than unifying
them as one data set. Therefore, we turned to developing two
separate LR models for each type of interaction. However, the low
specificity values of the NICI attributes (fractions of interacting
pairs having an attribute among all pairs with that attribute), caused
by the huge size of the data set of noninteracting pairs following our
1:600 rate estimation (Fig. 2), did not enable sufficient distinction
between NICIs and RNICPs. Thus, the LR model developed on the
set of noncomplexed proteins provided unsatisfactory predictions.
The LR model developed by using the ICI and RICP data sets,
however, looked much more promising, as described below. This
LR model enables the identification of new ICIs based on their
attributes.

Fig. 1. Two types of interactions, ICIs and NICIs. (A). ICIs: binary interactions
within complexes (solid line). (B) NICIs: binary interactions not within com-
plexes (dashed line). I, NICI between two complexes. II, NICI between a
complex and a free protein. III, NICI between two free proteins. The counts of
the various types of interacting pairs based on reliable data sets are shown in
parentheses (for generation of data sets, see Fig. 2 and Materials and
Methods).

Table 1. Data sources

No.
Attribute

abbreviation
Property of

single protein
Proteome

coverage, %* Attribute of protein pair

No. of pairs
with

attribute† Data source

1 DD Domain signature 65 A domain–domain signature
combination that appears in
interacting protein pairs more
often than expected at random

454,714 Our analysis (5) using InterPro
database (51); learned from
the data and assigned by
3-fold cross-validation

2 Fold Protein fold 26 A combination of folds that
appears in interacting protein
pairs more often than expected
at random

177,895 Our analysis using protein
fold assignments of Hegyi
et al. (52); learned from the
data and assigned by 3-fold
cross-validation

3 FE NA‡ NA‡ Gene fusion event 486 Our analysis following
Marcotte et al. (11) and
Enright et al. (12)

4 PP Phylogenetic profile 100 Consistent phylogenetic profiles 822,789 Our analysis following
Pellegrini et al. (13)

5 GN NA‡ NA‡ Conservation of gene
neighborhood

5,755 von Mering et al. data (19)

6 Loc Cellular localization 72 Colocalization 3,497,490 YPD (53) and Huh et al. (37)
7 Proc Cellular process 59 Shared cellular process 634,302 YPD (53)
8 Exp mRNA expression pattern 100 Coexpression 94,370 Based on clustering of Ihmels

et al. (54)
9 Reg Transcriptional regulation 43.3 Coregulation 270,272 YPD (53) and Lee et al. (55)

*Fraction of proteins in S. cerevisiae that are annotated by this feature.
†No. of pairs with attributes among all possible �1.8 � 107 pairs in S. cerevisiae. Pairs with missing data were treated as not showing the attribute.
‡NA, not applicable.
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The LR was carried out on the ICI and RICP data sets with
5-fold cross-validation (choosing 80% of the pairs for training
and 20% for testing), showing consistent results and consistent
attribute coefficients in all five tests (see Table 4, which is
published as supporting information on the PNAS web site).
Based on these results, the LR analysis was applied to the
whole data sets of ICIs and RICPs, resulting in one set of

attribute coefficients to be used in further predictions (see
Table 5, which is published as supporting information on the
PNAS web site). The overall model fit as estimated by the
likelihood ratio was highly statistically significant (P � 0.0001).
The coefficients of the domain–domain signatures, colocal-
ization, and shared cellular process deviated significantly from
zero (P � 0.0001). Interestingly, recently Lu et al. (30) also

Fig. 2. Creating data sets of ICIs and NICIs and the corresponding data sets of noninteracting pairs. For the set of 8,695 interacting pairs, we generated a random
set of 5,217,000 pairs. We chose this number to follow the rate of 1:600, based on the estimation of 30,000 interacting pairs and a total of 1.8 � 107 possible
protein pairs in S. cerevisiae. The interacting pairs included 1,466 pairs in complexes. The random pairs included 17,800 pairs where both proteins participate
in the same complex. The latter were used as the data set of protein pairs in complexes that are not known to interact [random intracomplex pairs (RICPs)]. The
rest of the interacting pairs included 7,229 pairs, and the rest of the random pairs included 5,199,200 pairs (a ratio of 1:719). In the analysis, because we used
only 1,995 known interacting pairs that were the most reliable, we also reduced the random set accordingly to keep the same ratio of 1:719 between interacting
and noninteracting pairs. As a result, the set of noninteracting protein pairs not in complexes included 1,434,405 pairs that were derived randomly from the rest
of 5,199,200 random pairs [random non-intracomplex pairs (RNICPs)].

Fig. 3. Attribute coverage of the various data sets. Fractions of protein pairs with an attribute among the total number of pairs in a data set are shown [fractions
of pairs revealed by the yeast two-hybrid (Y2H) method are shown for comparison]. ICI, 1,466 physically interacting protein pairs within complexes (blue); NICI,
1,995 physically interacting pairs not in complexes, identified by reliable methods (red); RICP, 17,800 random pairs (noninteracting) within complexes (light
orange); and RNICP, 1,434,405 random pairs not in complexes (light blue). For a description of the data sets, see Fig. 2. For attribute abbreviations, see Table 1.
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found that four strong features are sufficient for satisfactory
predictions of co-complexed proteins, two of which regarded
participation in a common cellular process.

Fig. 4 describes the sensitivity�specificity values of the predictions
for different probability thresholds, above which a pair is deter-
mined as interacting. The sensitivity is the fraction of correctly
predicted pairs among the known interacting pairs. The specificity
is the fraction of correctly predicted pairs among all predicted pairs.
For comparison, we show also the sensitivity�specificity values of
the interactions identified by Y2H and by the individual attributes.
The combination of parameters by the LR provides better sensi-
tivity and�or specificity than do most individual attributes and the
Y2H method. For a specificity of �50%, similar to that of the
genomewide Y2H, the LR achieves �2-fold higher sensitivity: we
correctly predict 26% of ICIs, whereas the Y2H method identifies
only 10.6% of them. When applied to the set of NICIs, the
LR-based predictions succeed in identifying 11% of these interac-
tions correctly (224 of 1,995 NICI interactions).

Our ability to identify interactions between free proteins and
complexes by using the LR-based scheme that was trained on ICIs
suggests that these interactions may have been missed from the
complexes. Indeed, for some of these NICI interactions we man-
aged to find support in the literature for their involvement in
complexes. For space limitations, only one such example is de-
scribed here. This example regards the heme activator protein HapI
and the proteins that regulate its activity. It is known that the
proteins Hsp82�Hsc82, Ydj1, and Sro9 are associated with HapI in
the absence of heme (31, 32), and it was also shown that the proteins
Ssa1 and Ssa2 play a major role in HapI repression (32). In our data,
Ssa1 and Ssa2 are not documented as included in the complex with
the other proteins, but our predictive scheme still succeeds in
identifying the (known) interactions Ssa1–Hsp82 and Ssa2–Hsp82,
suggesting that Ssa1 and Ssa2 participate in the complex. Likewise,
we identify interactions between complexes, such as the interactions
between the coat protein complex COPII with the soluble N-
ethylmaleimide-sensitive fusion attachment receptor complexes
t-SNARE and v-SNARE, which play a role in cellular vesicle
transport (33).

When the algorithm was applied to all possible �1.8 � 107 pairs
in the yeast proteome (excluding the known interacting pairs) we
predicted 29,181 putative interactions (with a cutoff of 0.49, which

yields �50% specificity in prediction as in Y2H). Of these putative
interactions, 1,946 are between subunits of the same complex, i.e.,
predicted ICIs, and the rest are predicted NICIs. Among these
predicted NICIs, 87% involved at least one complexed protein, and
13% involved two free proteins, probably regarding relatively stable
interactions. Among the predicted interactions, there are interac-
tions that were revealed by large-scale screening methods that are
considered as less reliable, and our study supports them (see Table
6, which is published as supporting information on the PNAS web
site). One such example regards the proteins Lst8 and Sec13, which
belong to different complexes and play a role in protein transport.
It was suggested that these two proteins may function as compo-
nents of a post-Golgi secretory vesicle coat (34). The relationship
between Sec13 and Lst8, which was determined previously only as
a genetic interaction (34), was strongly supported by our analysis,
and it was predicted as a PPI with a probability of 0.85. The pair
Sec13–Lst8 showed six of the nine attributes: domain–domain
signature, fold combination, colocalization, shared cellular process,
fusion event, and consistent phylogenetic profiles. Remarkably,
both Sec13 and Lst8 contain the WD-40 repeat that consists of five
to eight tandem repeats, each containing a central Trp–Asp motif.
Because the WD-40 repeat is known to be involved in PPI (35), it
is possible that it also mediates the interaction between Sec13
and Lst8.

Discussion
The intersection of the information on pairwise interactions in the
yeast S. cerevisiae with that on the involvement in a protein complex
revealed an intriguing picture. In a data set of reliable interactions,
42% of the known pairwise interactions resided within multiprotein
complexes. Among the rest of the interactions, 96% involved at least
one pair-mate that participates in a protein complex (Fig. 1). This
very high fraction may either imply that the current experimental
methods that determine binary interactions are biased toward
proteins in complexes or that most interactions in the cell occur
either within or between complexes. It is also conceivable that
interactions between free proteins and complexes or between
different complexes may be interactions that occur only under
specific conditions, and therefore they were not identified as
belonging to one of the complexes. Do the ICIs and NICIs differ in
their properties? In the current analysis we show that the ICIs are
better characterized [larger fractions of pairs showing each of the
attributes (Fig. 3)] and that by using their characteristics, additional
interactions can be predicted within complexes, between com-
plexes, and between free proteins and complexes.

Characterization of Interactions. To characterize the various types of
interactions, we examined their association with nine attributes of
protein pairs (Table 1 and Supporting Methods). These attributes
can be divided into two major classes: one class includes two
attributes that relate directly to the physical interactions, the
domain–domain signatures and fold combinations. Both attributes
were learned from the database of experimentally determined PPIs,
and they seem relevant to the actual physical interactions between
proteins (it is widely acknowledged that there are special domains
that participate in the physical interaction, and it is conceivable that
there are preferred folds that are more suitable for interaction with
each other). The other class includes attributes that may be indic-
ative of functional relationships between proteins but not neces-
sarily of their physical interactions. These attributes were derived
from sources of information that are independent of the data sets
of interacting proteins. These attributes can be also divided into
different types. Colocalization and participation in a shared cellular
process are implicit for PPIs (both ICIs and NICIs), and their
presence or absence mostly testifies to the current state of anno-
tation. The attributes of coexpression and coregulation are relevant
to the coordinated transcription of the interacting proteins, and as
such they are expected to provide insights into ICIs and NICIs. The

Fig. 4. Performance of the predictive scheme based on the LR. For each
probability threshold of the LR, the sensitivity vs. specificity is plotted (the
connected line was drawn only for illustration). The threshold of 0.49 that
ensures �50% specificity is marked on the graph. For comparison, the speci-
ficity�sensitivity values of the Y2H (triangle) and all other nine attributes (gray
circles) are shown. For attribute abbreviations, see Table 1.
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attributes of fusion events, consistent phylogenetic profiles, and
conserved gene neighborhoods have evolutionary implications, and
they are expected to provide valuable insight into possible differ-
ences between ICIs and NICIs in this regard. Here we discuss the
main findings regarding the various attributes.
Domain–domain signatures. This attribute was more prominent in
ICIs than in NICIs, and in general it was more abundant in PPIs
than in noninteracting pairs. It was also assigned a high coefficient
by the LR, suggesting that it is a good discriminator between
interacting and noninteracting pairs. It should be emphasized that
the domain–domain signatures were not derived directly from all
interacting pairs, but rather they were learned from one part of the
data and assigned to the other part (see Supporting Methods).
Several other studies demonstrated the value of this attribute for
PPI prediction by using different data sets of PPIs (6–9). These
findings substantiate the biological meaning of domain–domain
signatures and support the suggestion that they are characteristic of
physically interacting proteins (5–9). Indeed, a literature and da-
tabase inspection of the overrepresented pairs of domain signatures
in interacting proteins (5) showed that 56% of the domain signature
pairs for which information is available are involved in physical
interactions (E.S. and H.M., unpublished results). Interestingly,
pairs of identical domain signatures were found in 15% of the ICIs
and in 7.5% of the NICIs. Among the interactions predicted on the
full proteome, 13.5% had the same domain signatures in the two
pair-mates, in general agreement with the suggestion that identical
interfaces are often used for interaction (for review, see ref. 36).
Colocalization and shared cellular process. Intuitively, involvement of
two proteins in a complex implies that they should be found at the
same cellular compartment in localization experiments (37). We
found, however, that within complexes, interacting pairs are signif-
icantly more often documented as colocalized than other pairs,
which suggests that noninteracting subunits within the complex may
be either spurious or present transiently (depending on the cellular
condition). The latter might complicate their detection as colocal-
ized by independent studies. This possibility implies that the protein
composition of multiprotein complexes changes dynamically, as
indeed was found in the large-scale studies in which these complexes
were discovered (27, 28). Thus, there are complexes that have
identical core proteins, and different proteins may join them for
specific tasks. Similar arguments hold for the shared cellular process
attribute.

Because colocalization and shared cellular process are implicit
for interacting proteins, their higher association with ICIs com-
pared with NICIs indicates only that the annotation is incomplete.
With complete annotation, we will be able to learn whether there
are different cellular compartments that are preferred for the
different interactions.
mRNA coexpression. mRNA coexpression of pair-mates was more
prominent among the interacting pairs in complexes than in other
pairs in complexes. Dezso et al. (38) showed that there are protein
pairs in complexes that exhibit these three properties (colocaliza-
tion, coexpression, and shared process), and they suggested that
these pairs constitute the cores of the complexes. Our results
support this conjecture and emphasize that the protein pairs
making up these cores were identified experimentally as physically
interacting. mRNA coexpression was also relatively more pro-
nounced in ICIs compared with NICIs, perhaps to ensure the right
stoichiometry of subunits in complexes. Similar findings regarding
the association of coexpression and coregulation with ICIs were
also reported in other studies (39, 40).
Phylogenetic profile. This attribute, which reflects the consistent
presence�absence of the two pair-mates in different organisms, was
more frequent among the ICIs than among the NICIs or RICPs.
This observation may suggest that the stable interactions within
complexes make up the cores that are responsible for basic,
evolutionary conserved mechanisms, whereas the other protein
pairs in the complexes or the transient pairs comprise interactions

that are organism-specific and play a role in more specialized
processes.

Prediction of Interacting Pairs. Attempts to predict physical inter-
actions have been reported with varying degrees of success (6–9,
41–43). Some of the attributes, such as coexpression or fusion
events, were used previously for predictions of co-complexed
proteins (44–46) or of functional relations (10–13). These predic-
tions identify associations between protein pairs which are not
necessarily physical interactions, although for the identified fusion
events, many of the predicted relations correspond to actual inter-
actions (as seen also in Fig. 4). In general, such attributes can
support putative binary interactions, but they cannot determine
them directly. Also, the domain–domain signatures were used by
several groups for predicting PPIs (6–9). However, there are two
limitations of using only domain–domain signatures for predictions.
First, it is clear that not every two proteins showing the domain–
domain signatures interact; and second, not all interacting proteins
can be classified by the currently annotated domains (7). Therefore,
combining the domain–domain signatures with other attributes in
a predictive scheme allows for more reliable predictions.

An attempt to develop a predictive scheme based on the whole
data set (ICIs and NICIs together) was not successful, nor did an
attempt to develop a predictive scheme for NICIs based on their
attributes succeed. In both cases, one major reason for the failure
probably involves the very large differences in size between the
interacting and noninteracting pairs. We believe that the sizes of
these data sets reflect the actual situation in the cell, where, among
millions of possible PPIs, only a very small fraction of pairs actually
interact [�30,000 based on several estimations (47)]. The well
characterized ICIs and the smaller size of the RICP set allow the
development of a reasonable predictive scheme based on the
current attributes, which shows relatively good performance for this
set. It is likely that for identifying NICIs among so many possible
pairs, the studied attributes are not sufficient, and additional
attributes of different types are required. Some additional attributes
may be measures of essentiality (30) and coordinated protein levels
(48, 49), which were shown recently to correlate with PPI and with
functionally related proteins. Still, the predictive scheme that was
trained on the ICIs succeeded in identifying 11% of the NICIs. This
success rate is �60-fold higher than the chance probability for
detecting these interactions (0.17%), and it is 1.4-fold higher than
their identification rate by the Y2H method (using the same
specificity rate as in the Y2H in the predictions). Most of the NICIs
that were correctly identified by the LR model involve at least one
protein in a complex. These interactions may have been missed
from the complexes because they occur only under certain condi-
tions, and now they are identified by us as putative components of
the complexes.

The LR model provides the probability of interaction for each
protein pair. In our analysis, we determined 0.49 as the threshold
probability above which a pair is determined to be interacting
(resulting in a specificity of �50%). We examined the attribute
combinations that lead to probabilities above this threshold, and we
found in the data set of interacting proteins as well as when the
analysis was applied to the whole yeast proteome that only pairs that
showed the three attributes of domain–domain signatures, colo-
calization, and shared cellular process passed the probability thresh-
old. As discussed above, the first two characteristics are indeed
prerequisite for an interaction to occur, which implies that with the
current state of annotation, only proteins that are documented as
colocalized, participating in a common cellular process, and con-
taining appropriate domain signatures can be predicted to interact.
However, what if such information is unavailable or if we are
interested in more reliable prediction (requiring higher specificity)?
Theoretically, there are additional attribute combinations that pass
the threshold (for details, see Table 7, which is published as
supporting information on the PNAS web site), and when the data
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annotation will be more complete, protein pairs with such combi-
nations may be revealed as well.

Our predictive model provides a sensitivity that is �2-fold higher
than the widely used Y2H method for the same specificity level. It
is clear, however, that the sensitivity and specificity provided by the
LR-based predictive scheme should be further improved. One
possible improvement involves the attribute assignment. Our pre-
dictive scheme uses attributes that are all based on documentation
available in the various biological databases. For many proteins in
our data sets there is no information for some of these attributes
(Table 1). For example, many of the yeast proteins are not yet
characterized by domain signatures, and therefore they cannot be
classified by this attribute. Thus, it is conceivable that when the
documentation becomes complete, the associations learned by the
LR model will be more precise and will lead to improved predic-
tions. Also, additional attributes that are characteristic of physical
interactions in general and of less stable interactions in particular
should lead to improvement. Furthermore, using this scheme for
initial screening and then applying a structure-based approach as
proposed by Aloy et al. (43) may also be a promising direction,
leading to a more accurate picture of both intra- and intercomplex
interactions.

Materials and Methods
Data Sets of Interacting Protein Pairs. The data of S. cerevisiae
interacting protein pairs were collected from three public data-
bases, MIPS (24), DIP (25), and BIND (26), and from compilations
of genomewide Y2H assays (1, 2). After exclusion of redundancies
and homodimers, the database included a total of 8,695 binary
interactions, involving 4,136 proteins. From this database, two data
sets were derived (Fig. 2): (i) a data set of 1,466 ICIs, which included
pair-mates that were identified as participating in a complex of at
least three proteins; the complex collection included a nonredun-
dant set of curated complexes from MIPS (24) as well as large-scale
compilations of tandem affinity purifications (27) and high-
throughput mass spectrometric protein complex identification (28);
(ii) a reliable set of 1,995 NICIs, which included protein pairs that
were not identified in complexes. This set included interactions of
relatively high confidence (50) that were identified experimentally

by non-genomewide methods (coimmunoprecipitation, cross-
linking, small-scale Y2H, etc.) and interactions that were identified
by at least two different methods. Interactions that were identified
as genetic only or by a large-scale Y2H screen only were not
included.

Data Sets of Noninteracting Protein Pairs. The proteome size of S.
cerevisiae, which includes �6,000 proteins, implies that there are
�1.8 � 107 possible protein pairs. Current estimations of the yeast
interactome (the number of PPIs) range from 12,000 (50) to
�30,000 (47). Taking the more frequently used estimation of 30,000
interactions implies that the ratio between interacting and nonin-
teracting pairs in yeast is �1:600 (30,000:�1.8 � 107). In our
analyses, we follow this ratio of 1:600 between the known interact-
ing pairs and the random pairs (representing the noninteracting
pairs). For the 8,695 known binary interactions in our database, we
generated 5,217,000 random pairs from all �6,000 yeast proteins,
and from those pairs, we extracted the RICPs and RNICPs (see
Fig. 2).

Data Sources of Attributes and Representation. Table 1 provides a
brief summary of the attributes and their data sources (for more
detail, see Supporting Methods). Each yeast protein pair is repre-
sented as a vector of nine entries, where each entry represents an
attribute, and the value indicates whether the attribute was found
to characterize this particular interaction. An entry is assigned a
value of 1 if the protein pair shows the attribute and a value of 0 if
it does not show the attribute or if there is no information about the
attribute.
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