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Aging is known in all organisms that have different somatic and
reproductive cells or in unicellular organisms that divide asym-
metrically. Bacteria that divide symmetrically were believed to be
immune to natural aging. The demonstration of functionally asym-
metric division and aging in Escherichia coli recently has challenged
this belief and led to the suggestion that aging might be inevitable
for all life forms. We modeled the effects of symmetric and
asymmetric division in bacteria to examine selective advantages of
the alternative strategies of division. Aging of cell components was
modeled by using a modified Leslie matrix framework. The model
suggests that asymmetric division accompanied by aging and
death of some cells results in a higher growth rate but a reduced
growth yield. Symmetric division with or without gradual replace-
ment of the old components, on the other hand, slows down the
growth rate but may increase growth yield over a wide range of
conditions. Thus, aging and immortality can be selected under
different sets of conditions, and this selection may also lead to a
tradeoff between growth rate and growth yield.

Leslie matrix � prokaryotic cell division

Aging has been an important focus of research for many
decades, and yet a number of questions remain unanswered.

Aging is an inevitable phenomenon in higher organisms in which
there is a clear separation between germ-line and somatic cells.
Whereas the germ line cells perpetuate indefinitely, the soma
undergoes irreversible changes with age and ultimately dies.
Bacterial cells that divide morphologically symmetrically were
believed to be immortal because each division gave rise to two
‘‘young’’ daughter cells. Thus, as long as the environmental
conditions were optimum for growth and division, bacterial cells
were believed not to age. Possible exceptions could be bacteria
that have a morphological and functional asymmetry in division,
such as the stalked versus motile daughter cells of Caulobacter sp.
Caulobacter cells that are known to undergo aging owing to their
asymmetric division (1).

Stewart et al. (2) showed that growing cells of Escherichia coli
also undergo aging and death. They demonstrated that although
E. coli daughter cells looked morphologically identical, there was
a functional asymmetry in division. One of the daughter cells
received old components and the other daughter cell received
the newly formed ones. Cells that inherited old components
exhibited a diminished growth rate, decreased offspring produc-
tion, and an increased probability of death. Stewart et al. (2)
demonstrated asymmetric cell division by using fluorescence
microscopy and showed further that the old pole cells lagged in
growth and division cumulatively over generations. The demon-
stration of aging in E. coli led some to suggest that no life strategy
was immune to aging and immortality was either impossible or
too costly (2–4). Although division in E. coli was demonstrated
to be functionally asymmetric, it is too early to conclude that
symmetrical division and accompanying immortality is absent or
impossible in the living world. Because asymmetric division is
argued to be responsible for aging, we examine here whether
symmetric division and accompanying immortality also could
evolve under certain sets of conditions.

Asymmetric division can be viewed as a mechanism by which
old components can accumulate in one cell and are ultimately
disposed off with the death of the cell (2–4). Oxidatively
damaged proteins are shown to be retained selectively in the
mother cell in Saccharomyces cerevisiae (5). As a result, the
mother cell undergoes aging while giving rise to young daughter
cells. Alternatively, old components can be distributed symmet-
rically in the daughter cells. In such a case, they subsequently will
get diluted by the new components. Alternatively, they can be
repaired or replaced. However, this strategy has a two-fold cost.
Presence of old components can reduce the growth rate of the
cell, and there will be a cost of repair or replacement. Therefore,
it is speculated that the ‘‘accumulate and dispose the old’’
strategy could be better than ‘‘repair and reuse’’ (2–4). However,
the possible costs and benefits of the two alternative strategies
have not been rigorously examined. It is also necessary to
challenge the presumed association of asymmetric division with
dispose-off strategy and symmetric division with repair strategy.

We employ a Leslie matrix model, which is commonly used by
population biologists to model age structured populations (6), to
examine the effects of symmetric and asymmetric division on the
dynamics of growth in bacteria. The classical Leslie matrix model
depicts the dynamics of individuals in different age classes. We
adapt it here to model the dynamics of cell components of
varying ages in a growing bacterial population. The distribution
of the components in cells is different in symmetric and asym-
metric division, and the model is modified accordingly.

Model. We assume that a cell is made up of a finite number of
growth-limiting components and each component is subject to
aging. In each time unit, every preexisting component passes to
the next age class, and all newly synthesized components form
the first age class. In the classical Leslie matrix model, the
individuals reproduce with age-specific reproductive rates. This
assumption may apply to self-replicating cell components, but for
other types of components, we need to modify the assumption.
In this model, the components have age-specific efficiencies that
contribute to growth rate of the cell, and new components are
added based on the net rate of cell growth. This dynamics can be
represented in a matrix form as follows.

Let Cn be the component of age class n. If there are m discrete
age classes of the components in the cells, Rn is the reproductive
efficiency of age class n, and Pn is the probability that a
component of age class n survives to age class n � 1, then the
Leslie transition matrix for age class distribution can be given as

�
R1 R2 · · · Rm�1 Rm

P1 0 · · · 0 0
0 P2

· · · 0 0
···

···
· · · 0 0

0 0 · · · Pm�1 0
�. [1]
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After one generation, the number of components of a given class
will change as

�
R1 R2 · · · Rm�1 Rm

P1 0 · · · 0 0
0 P2

· · · 0 0
···

···
· · · 0 0

0 0 · · · Pm�1 0
� � �

C1

C2···
Cm�1

Cm

�
t

� �
C1

C2···
Cm�1

Cm

�
t�1.

[2]

We assume that the reproductive efficiency of each component
decreases with age linearly or nonlinearly. We use a common
expression that gives linear or nonlinear decline at different
parameters.

Rn � R1 � anb, [3]

where Rn is the efficiency of the nth class, a is a positive constant
deciding the rate of efficiency decline, n is the age class, and b
is the power that decides the shape of the curve. At b � 1, the
decline is linear. At b � 1, it is convex, and at b � 1, it is concave.
We take R1 � 1 throughout. Any negative value of Rn is
considered to be zero.

For simplicity, we assume that all of the components of
different age classes are carried forward in the next age class, and
after the last age class, none of the component survives. Thus,

Pn � �1 for n � 1, 2, 3, . . . , m � 1.
0 for n � m . [4]

The rate of growth of a cell is assumed to depend on the age class
distribution of components in it. A cell with all new components
will grow and divide with maximum growth rate of 1, and the
growth rate decreases with accumulation of older components in
a way described below. We model two limiting conditions of
symmetry. In one, the division is completely asymmetric in that
all newly synthesized components go to one of the daughter cells,
and all older ones to the other. In the other condition, the
division is perfectly symmetric in that all new and older com-
ponents are divided exactly equally between the two daughter
cells. The treatment of the Leslie matrix differs in the symmetric
and asymmetric model as follows.

Asymmetric Division Model. In this model, a cell elongates by
adding new components to one pole such that after division, all
components of one cell are new and all those of the other cell are
old (Fig. 1). This assumption makes the cell age class and
component age class identical. The Leslie matrix therefore can
be interpreted as an age class distribution in the population of
cells and, thus, is identical to the classical Leslie matrix model.
Cells of each age class reproduce by an age-specific rate of
reproduction (R1 to Rm, respectively). The first age class receives
cells equal to C1R1 � C2R2 � . . . . . . . CmRm. Because the model
assumes growth in a nonlimiting environment, no death is
assumed for cells in the intermediate age classes. All cells in the
last age class are assumed to die and are removed from the
population.

Symmetric Division Model. In this model, at each cell division, the
components of each age class are assumed to be distributed
exactly equally in each of the daughter cells. As a result, every
cell has identical age class distribution of the components (Fig.
2). Unlike the asymmetric model here, the component age
classes are not identical to cell age classes; rather, every cell has
an age class distribution of components. The cells are assumed
to be immortal because a nonlimiting environment is assumed
and each cell has a majority of young components. The com-

ponents in the last, and therefore lowest, efficiency class are not
removed but instead accumulate in this class. However, these
components also may be repaired (or replaced) with repair
efficiency r, and these repaired molecules are restored to the first
age class. As a limiting case, the cost of repair is assumed to be
equal to that of synthesizing a new component. Thus, Cm*r is
added to the first age class and subtracted from the last age class.

Unlike the asymmetric model, here the intrinsic growth rate
of a cell and that of the population are identical, and their value
is decided by the component age class distribution. Components
decrease their efficiency with age in a manner numerically
identical to the asymmetric-division model. We consider two
conditions. In the first, the components act independently, and
the growth rate of the cell is a weighted average of all Ri. In the
second, the least-efficient component is assumed to become
rate-limiting in any pathway involving more than one compo-
nent. In other words, any metabolic pathway proceeds with the
speed of the slowest of the components. Components interact
randomly irrespective of their age classes. For simplicity, we

Fig. 1. Diagrammatic representation of asymmetric cell division, where Cn is
the component of age class n, Rn is the reproductive efficiency of age class n,
and Pn is the probability that a component of age class n survives to age class
n � 1. In this case, each cell has components of the same age class so all of the
cells have a defined age, and the age class distribution of the components is
the same as the age class distribution of the cells.

Fig. 2. Diagrammatic representation of the symmetric division model, where
Cn is the component of age class n. In this case, cells possess components of
different age class, and so in each cell, the components have stable age class
distribution given by the Leslie matrix ([LM]).
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assume that the average number of components required for
each pathway is two, and we apply basic probability rules to make
combinations of components. Therefore, the rate of growth
given by a certain age class distribution of components is given
by a summation of the product of Rn and the probability that the
oldest component in an interaction belongs to the nth class.
Thus, the resultant rate of growth is calculated as

R1�C1
2� � R2�2C1C2 � C2

2�

� . . . . . . Rm�2C1Cm � 2C2Cm � . . . . . . Cm
2 �, [5]

where R1 to Rm are numerically identical to the asymmetric-
division model.

Calculations of Growth Rate and Growth Yield. Numerical simula-
tions were run for 100 generations on both models. After a stable
age class distribution was attained, the growth rate and growth
yield of the populations were calculated. Growth rate was
defined as the increment in population per unit population in
unit time, and growth yield was defined as the net increase in the
number of living cells or components divided by the number of

cells or components synthesized. The denominator included the
number of components repaired.

Results
A stable age class distribution always was achieved as expected
in most Leslie matrix models. In the symmetric model, the
distribution was biased to the oldest age class as compared with
the asymmetric model (Fig. 3). In the asymmetric model, the
frequency declined monotonically with age class as in a typical
Leslie matrix model. However, because we assumed no death in
the symmetric model, the old components accumulated in the
last and, therefore, the least efficient age class. The accumula-
tion depended on the repair efficiency r. At r � 1, the distribution
was identical to that of the asymmetric division model and at
lower values of r, the last age class had a substantially higher
frequency. It is important to note that even if we assumed no
repair and that all old components were allowed to accumulate,
this process did not always result in declining fitness of the entire
population. If the efficiency of the intermediate age classes was
sufficiently high, growth continued, and the older components
were simply diluted out by growth. This process led to a balance
between dilution and accumulation such that molecules in the
oldest age class reached a stable proportion.

With higher r in the symmetric model, there was faster
replacement of old components. An increase in r always resulted
in an increased growth rate because repair was assumed to
regenerate young components and increased proportion of
young components resulted in faster growth rate. On the other
hand, the effect of r on growth yield depended on the age-
efficiency curve. For slowly declining curves (i.e., small values of
a and b), the growth yield decreased monotonically with r,
whereas for larger a and�or b, it peaked at an optimum r and then
declined slowly (Fig. 4). The optimum r largely was decided by
the growth to repair ratio. Growth added to both the numerator
and denominator in yield calculations, whereas repair added only
to the denominator. Thus, the process of repair increased the
proportion of younger components but did not add to biomass.
Growth, on the other hand, added to biomass and younger
components. A greater proportion of young components, in turn,
increased growth. Thus, growth and young components were
related by a positive feedback cycle. If the cells had accumulated
old components, repair could generate young components and
initiate the positive feedback cycle. Therefore, the growth rate
and yield increased with r. However, if the positive feedback
cycle already was operative, further increase in r did not benefit
the cell proportionately, giving rise to an optimum value of r
where the yield was maximized.

Fig. 3. Typical stable age class distribution of components in the asymmetric
(a) and symmetric (b) division model. In the latter case, the oldest age class has
a higher frequency because of the accumulation of components. Simulation
results are a � 0.063, b � 2, n � 5, and r � 0.01.

Fig. 4. Growth rate and growth yield, when the efficiency of the last age
class is zero. Growth rate of the symmetric model is always less than the
asymmetric one, but the growth yield of the symmetric model at optimum
repair efficiency is higher than the asymmetric model. Here, a � 0.03, b � 3,
and n � 5.
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If the components were assumed to act independently and the
growth rate of the cell was assumed to be a weighted average of
Rn, the two division models became numerically identical at r �
0. The growth yield of the symmetric division model was higher
because there was no loss of cells or components. Therefore,
independent component model offered no advantage to asym-
metric division. Under this assumption, asymmetric growth
never should evolve. However, asymmetric growth has been
demonstrated in E. coli (2), suggesting that this assumption may
be unrealistic.

With the growth-limiting step assumption, at very small values
of a and b, the growth rate as well as growth yield of the
symmetric model was greater than the asymmetric model. Lower
a and b resulted in small decrements in the efficiencies with age,
and the last age class contributed substantially to the growth rate.
Under these conditions, the cost of death was relatively high and,
therefore, asymmetric division did not result into better fitness.

When a and b were moderate, so as to result into zero or near
zero efficiencies in the oldest age class, the asymmetric model
had higher growth rate. However, at optimum r, the growth yield
of the symmetric model was greater than that of the asymmetric
model. When the age-efficiency curve was very steep so as to hit
zero efficiency much before the last age class, the asymmetric
model outperformed the symmetric model in both growth rate
and yield.

Fig. 5 shows the parameter areas over which the selective
advantages to the alternative strategies are distributed. When
reduction in efficiency was small and concave, symmetric divi-
sion had a clear advantage in both growth yield and growth rate.

On the other hand, when this reduction was large and highly
convex, asymmetric division had an advantage in both the
parameters. However, at intermediate levels, the symmetric
division gave better growth yield after optimizing repair effi-
ciency but a lower growth rate.

The qualitative conclusions of the model were robust toward
change in n and the average number of components that interact
in a metabolic pathway. Increases in either or both variables
made the model more complex, but the results were similar.
Reported here are only the results with n � 5 and the number
of interacting components as two.

To examine the sensitivity of the model to the assumptions, we
relaxed the critical assumptions one by one. To break the
association between asymmetric division and death versus sym-
metric division and repair, we introduced repair in the asym-
metric division model. This change, however, did not increase
the growth rate of asymmetrically dividing cells substantially but
reduced the growth yield further. This was so because in a cell
with majority of old components, replacement of a fraction of
the components affected the growth rate only marginally be-
cause older components continued to be growth limiting. On the
other hand, the cost of repair reduced the growth yield further
(results not shown). Asymmetric division with repair therefore
did not offer any selective advantage.

We have assumed that in a symmetric division model, the cost
of repair of a component is reflected in terms of growth yield
alone and does not reflect on growth rate. With relaxation of this
assumption, asymmetric division model gave even lower growth
rates. We also assumed the cost of repair of a component to be
equal to resynthesis of the entire component. In reality, a
component may be made up of many molecules, and replacing
some of them could be sufficient. If the cost of repair was
assumed to be less than resynthesis, the symmetric division
model resulted into a further higher yield. Thus, relaxing any of
the above assumptions did not change the direction of difference
between symmetric and asymmetric division models, although
there were changes in the magnitude.

Discussion
The model accommodates different shapes and slopes of the
age-efficiency curve. Currently, we do not have sufficient em-
pirical data on this curve to describe it precisely. In experiments
with E. coli, the decline appeared to be linear for seven gener-
ations (2), whereas in yeast, it was convex when measured over
a longer period (7). However, the precise relationship does not
appear to be crucial to the model. The outcome is largely decided
by whether the oldest and least efficient class had efficiency close
to zero. This situation would seem logically to be the only
realistic one in the case of asymmetric division. If the last class
still has a high efficiency, it would be improper to assume death
after this class. If, on the other hand, near zero efficiency was
reached earlier, then that itself should be considered the last age
class. Therefore, only the combinations of a and b that converge
close to zero in the last age class should be considered realistic
for a given n. Under this condition, there appears to be a unique
and simple result. Asymmetric division consistently gave higher
growth rate, whereas symmetric division gave higher growth
yield on optimization of the repair rate. It is possible, therefore,
that symmetric and asymmetric division may be favored in
different ecological niches.

The model was constructed by assuming that all types of
cellular components aged at the same rate, but this assumption
is unlikely to be realistic. In an asymmetric model, a cell will die
when one of the vital components is damaged beyond a thresh-
old. However, many still-functional components will be wasted
along with each cell death. This wastefulness is unlikely to
happen in a symmetric model, which therefore should be more

Fig. 5. Parameter areas of differential advantages to the symmetric and
asymmetric models of growth: The curve indicates the combination of a and
b, where efficiency of the last age class becomes zero (n � 5).
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advantageous from the growth yield point of view than what the
model predicts.

The assumption that less efficient components are rate-
limiting is most critical for the model. If the components acted
independently, the two types of divisions had no difference in the
growth rates. In such a case, the ‘‘dispose off’’ strategy has
nothing to gain at the cost of death of some of the cells, resulting
into lower growth yields. Therefore, asymmetric division is
unlikely to evolve if the components acted independently.

For simplicity, we assumed that there is no death of cells up
to (m � 1)th age class and all individuals of the last age class die
in the asymmetric model, whereas cells with symmetric division
are immortal. Stewart et al. (2) argued on the other hand that the
probability of death increased with cell age. Incorporating
increasing death probabilities in the model complicates the
model and poses problems in keeping similar conditions for the
two types of divisions. We can make the probability of death a
function of the cell age in the asymmetric model, but the
symmetric model is a mixture of different age class components.
We avoided this complexity because there is no a priori reason
to believe that a continuous change in death probability will
make a qualitative difference in the results.

It is possible that natural selection favors high growth rates
and growth yields under different sets of conditions. Most
laboratory studies of selection on bacteria have focused on
growth rate alone. However, slow growing organisms with high
efficiency of biomass conversion are abundant in natural envi-
ronments (8). Therefore, selection must be favoring high yielding
slow growers under some set of conditions. It has been suggested
that competition for shared resource leads to the selection for
high but inefficient ATP production, even though slow but
efficient ATP production would be more beneficial to all users
of the resource (9–12). Thus, in a competitive environment,
there will be selection for higher rate than yield, whereas in
noncompetitive environments, there will be selection for low

rate but high yield. In nutrient-rich environments, bacteria with
high growth rates are likely to be favored, whereas in nutrient-
poor environments, there is evidence for selection of slow-
growing bacteria with higher biomass conversion efficiency (8).
This phenomenon is a microbial equivalent of the r and K
selection dichotomy (8). The question whether and under what
conditions high yields would get selected can be addressed
empirically, and the model may stimulate experiments in this
direction.

It is likely therefore that symmetrical division may exist in
nature, and one might look at oligophilic bacteria for possible
candidates. Prosthecate bacteria such as Caulobacter sp. are
generally oligophilic. However, they have asymmetric division
owing to a dimorphic cell cycle that consists of alternating mobile
and stalked phase (1). There are many nonprosthecate oligo-
philic bacteria in which symmetric division is very likely to have
evolved (8), owing to selection for high-growth yield.

We modeled here perfectly symmetric and perfectly asym-
metric division. These strategies should be viewed as two ex-
treme ends of a continuum rather than distinct compartments.
Because each strategy has a distinct advantage, some optimiza-
tion of symmetry may be achieved. The optimum could be
different for different organisms depending on the selective
forces in their environments. It therefore is too early to assume
that immortality is inevitable. We need to look at many organ-
isms evolved under different environments before reaching a
firm conclusion. There is suggestion for a growth rate-growth
yield tradeoff in bacteria, and possible mechanisms have been
postulated (9–12). Symmetry of division can be another possible
reason for such a tradeoff. This tradeoff may have wider
implications, and symmetry of division may give a new dimension
to the problem of the evolution of aging, not only in prokaryotes,
but cutting across all taxa of the living world.
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