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Powerful algorithms are required to deal with the dimensionality
of metabolomics data. Although many achieve high classification
accuracy, the models they generate have limited value unless it can
be demonstrated that they are reproducible and statistically rele-
vant to the biological problem under investigation. Random forest
(RF) generates models, without any requirement for dimensional-
ity reduction or feature selection, in which individual variables are
ranked for significance and displayed in an explicit manner. In
metabolome fingerprinting by mass spectrometry, each metabolite
can be represented by signals at several m�z. Exploiting a prior
understanding of expected biochemical differences between sam-
ple classes, we aimed to develop meaningful metrics relevant to
the significance both of the overall RF model and individual,
potentially explanatory, signals. Pair-wise comparison of related
plant genotypes with strong phenotypic differences demonstrated
that robust models are not only reproducible but also logically
structured, highlighting correlated m�z derived from just a small
number of explanatory metabolites reflecting the biological dif-
ferences between sample classes. RF models were also generated
by using groupings of samples known to be increasingly pheno-
typically similar. Although classification accuracy was often rea-
sonable, we demonstrated reproducibly in both Arabidopsis and
potato a performance threshold based on margin statistics beyond
which such models showed little structure indicative of either
generalizibility or further biological interpretability. In a multiclass
problem using 25 Arabidopsis genotypes, despite the complicating
effects of ecotype background and secondary metabolome pertur-
bations common to several mutations, the ranking of metabolome
signals by RF provided scope for deeper interpretability.

mass spectral fingerprinting � phenotyping � random forest data analysis

Conceptually, the analysis of high dimensional metabolomics
data (1–3) is data-driven and dependent on powerful mul-

tivariate modeling techniques (4–10). As in proteomics and
transcriptomics research (11, 12), there is an imminent need to
develop strategies to verify both the reproducibility and signif-
icance of such classification results. In the present study, an
assumption is made that the goal of any data modeling experi-
ment is not only to attempt to cluster or discriminate sample
classes but also to identify the major ‘‘explanatory’’ metabolome
signals important in any model construction. Using well char-
acterized plant genotypes, many with known or predictable
biochemical differences, we describe a strategy to validate the
robustness and interpretability potential of models generated
from high dimensional metabolomics data. Metabolite ‘‘finger-
printing’’ (13–16) provides relatively comprehensive metabo-
lome representations, which is especially important when dif-
ferences between sample classes are unknown. Approaches using
mass spectrometry (such as flow infusion electrospray ionization
mass spectrometry, FIE-MS) have the advantage that signals
(ion mass to charge ratio, m�z) can be linked to candidate
metabolites by virtue of atomic mass (3, 17–20).

Data mining techniques build models (classifiers) describing
the relationship between a predictor (genotype or cultivar class
label for example) and the metabolome fingerprint (21–31).
Supervised methods use a range of different strategies including
statistical, neural, and rule-based methods (30). Operationally,
these approaches build discriminatory models between pre-
defined classes by using training data and then subsequently test
models on previously unseen test data, often derived from the
same data batch. However, an adequate test of the robustness of
any model is only achieved when the same classifier demon-
strates high predictive accuracy on validation data derived from
an independent experiment. Supervised data mining algorithms
may be categorized into those that produce directly interpretable
models that represent the data in an explicit way (e.g., as in a
mathematical formula or tree structure) and others that cannot
easily be described in terms of the original variables. Although
many of the former methods can achieve high predictive accu-
racy, they commonly generate exceedingly complex classification
models that are opaque to further interpretability (4, 6–8).
When using supervised methods, great care also has to be taken
to avoid production of overoptimistic models using essentially
variance that is unrelated to the problem under consideration
during model construction. Thus, in practical terms, a key
attribute of any model is simplicity, both to hopefully avoid
irrelevant background noise and to allow for efficient targeting
of just a few potentially explanatory variables for further inves-
tigation. Decision tree (DT) methods can be very efficient at
selecting variables with explanatory power from data sets with
high dimensionality (23, 24) and are particularly useful in
metabolomics studies where variables may be associated in a
nonlinear fashion (i.e., networks). Although accurate DT models
can be produced, the resultant tree may miss out on adequate
solutions (multiplicity problem) involving alternative explana-
tory variables to the ones considered in the final tree. To
overcome this problem, we describe the use of random forest
(RF), an extension of DT methods based on the generation and
comparison of an ensemble of trees (28). RF models cope well
with high dimensional data sets and multiclass problems and,
more importantly, also provide insight into the structure of the
data under study by quantifying the confidence in classification
voting and by indicating the importance of each variable for the
classification task (28, 31, 32).

When high-throughput data analysis is desired, it is important
to be able to validate with confidence that any highlighted
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variables in models with apparently good classification accuracy
are truly explanatory. In the present study, we describe a strategy
both to validate the explanatory potential of RF models and
explore approaches to develop significance metrics appropriate
for different types of experimental situations. An initial aim was
to define a baseline indicative of a significant difference in
models involving binary comparisons of sample classes. Building
on this information, a key objective was to develop a rationale for
the detection of models with potentially sufficient explanatory
power to guide deeper investigation of any significant metabolic
phenotype; as part of this process, we evaluated a meaningful
threshold for variable significance in ranked lists of potentially
explanatory metabolome (m�z) signals generated by RF. Finally,
based on these model interpretability measures, we discuss a
strategy for the future de novo assessment of phenotype class
membership in larger scale genotype screening experiments.

Results
Determining Metrics for Model Significance and Phenotypic Class
Membership. To define a baseline for significance, RF models
were developed that attempted to discriminate four near-
identical field plots of potato tubers (cultivar Désirée), compare
near isogenic lines in two plant species (potato, De1 and De2;
and Arabidopsis, Co0 and Co2) and classify samples representing
three independent examples each of four classes of genetically
modified plants. The internal classification accuracy and average
margins computed from the training sample, together with the
level of significance determined by permutation testing (11), are
compared with those calculated for an independent test set in
Table 1. Classification accuracies are almost always not signif-
icant at the 0.99 quantile, and margins are �0.1, reflecting a very
low confidence in class votes, indicating that lines within the
same metaclass had very similar metabolomes. Two types of
genetically modified Arabidopsis lines were selected for metab-
olite fingerprinting that were either not directly effected in
metabolism (ammonium transporter T-DNA insertion lines) or
effected in metabolites present at concentrations unlikely to be
detectable in fingerprinting experiments [brassinosteroid hor-
mone (BR) antisense lines]. Three independent lines of each
metaclass were compared with the progenitor ecotypes by RF
(Fig. 1A). Only three genotypes (C2 and a11 and a12) had
significant accuracies (threshold � 69.4% at P � 0.01), but
model margins all fell below 0.1 (significance threshold � 0.09
at P � 0.01). The top 20 variables ranked by importance score
in each RF model are shown in Fig. 1B. In classifiers with good
generalizibility, it is expected that the same explanatory variables
should be highly ranked in all models of the same metaclass and
each should be accompanied by other metabolome signals
representing isotopes, adducts, or neutral losses of the same

metabolite. Very few common features were found between the
two weakest models of each metaclasses (m�z boxed in Co2�a12,
Co2�a14, C24�C9 and C24�C31), whereas isotope pairs are
evident in the two strongest models (Co2�a11 and C24�C2).

Determining Significance Thresholds for Explanatory Variables. Po-
tato and Arabidopsis lines (see Table 2, which is published as
supporting information on the PNAS web site) were selected that
had been shown to exhibit detectable changes in metabolism
when compared with a progenitor genotype. Two transgenic
potato metaclasses (three independent representatives of each in
a Désirée background) had been genetically engineered to
synthesize fructans of different degrees of polymerization by
expression of novel enzyme activity (SST and SST�FFT geno-
types; ref. 33). Five Arabidopsis lines in a Co2 background had
been mutated in genes coding for specific enzymes in important
metabolic pathways ( fah, pgm, vtc) or genes involved in hormone
signaling (axr and etr). Two spontaneous lesion mutants in a Ws0
background (ls1 and ls5) and a further genotype expressing a
transgene coding for salicylate hydroxylase (nah) had strong
defense-related phenotypes.

RF discriminated all of the transgenic potato lines with a near
perfect classification accuracy, and in each instance the model
margin exceeded 0.5 (Fig. 1C Inset). We have demonstrated (19)
that these transgenic potato lines contain no detectable metabo-
lome differences except those signals associated with novel
fructans, which are shaded in the ranked lists of explanatory
signals shown in Fig. 1D (for identity of fructan m�z signals and
a confirmatory correlation analysis, see Table 3 and Fig. 4, which
are published as supporting information on the PNAS web site).
Thus, one logical explanatory ‘‘significance’’ threshold would be
the point at which signals not associated with fructans start to
enter the list of variables ranked by RF analysis. This point is
reached around rank 15–20 in the SST lines and at approximately
rank 30 in the SST�FFT lines (Fig. 1D). In models of both
genotype classes, this threshold occurs at an importance score of
�0.003 (see Fig. 1C). Classification accuracies in the Arabidopsis
binary comparisons approached or were higher than 80%, and
model margins (with the exception of Co2�axr and Co2�etr) were
above 0.2 (Fig. 1E Inset). In six of the Arabidopsis lines, an
importance score �0.003 was reached at variable rankings from
10 to 30, but in Co2�axr and Co2�etr, the importance scores were
generally much lower (Fig. 1E). In the three well studied
Arabidopsis Co2 lines mutated in genes coding for key enzymes
in specific metabolic pathways ( fah, pgm and vtc), almost 80% of
the top 20 electrospray ionization (ESI) variables were predicted
to be either salt adducts or isotopes of a small number (6–8) of
metabolites in both ionization modes (ESI � m�z are shaded in
Fig. 1F; see Table 4, which is published as supporting informa-

Table 1. Properties of RF models comparing sample classes with little relevant
biological differences

Model Block De De1_De2 Co2_Co0 SST SST�FFT
Ammonium
transporters

BR
antisense

Accuracy (tr) 25 65.6 61.1 55.2 45.8 33.3 57.4
Accuracy (te) 56.3 81.3 58.3 68.8 56.3 38.9 61.1

90% 28.1 57.8 58.3 38.5 38.5 37 37
95% 31.3 62.5 61.1 40.6 41.7 38.9 40.7
99% 37.5 67.2 69.4 44.8 43.8 44.4 46.3

Margin (tr) �0.092 0.12 0.04 0.02 �0.03 �0.04 0.03
Margin (te) �0.004 0.15 0.11 0.06 0.02 �0.01 0.08

90% �0.088 0.03 0.03 �0.05 �0.05 �0.04 �0.04
95% �0.081 0.05 0.05 �0.04 �0.04 �0.04 �0.04
99% �0.061 0.09 0.09 �0.03 �0.02 �0.02 �0.03

tr, training; te, test. Numbers in bold represent significance threshold.

14866 � www.pnas.org�cgi�doi�10.1073�pnas.0605152103 Enot et al.



tion on the PNAS web site, for an explanation of signal rela-
tionships in both �ve and �ve ion data). As in the potato
transgenic lines, many of the top ranking (P � � 0.01) signals in
the binary comparison of Arabidopsis lines were highly corre-
lated, suggesting that the proposed isotopes and adducts were
indeed likely to be derived from the same metabolite (Fig. 5,
which is published as supporting information on the PNAS web
site). The lowest ranking signals putatively associated with the
biochemical lesions in all three lines (pgm; rank 31 �ve ion; vtc
rank 24 �ve ion and fah, rank 20 �ve ion) are located where the
importance scores level off at values between 0.002 and 0.003.
Permutation testing was applied to determine the significance of
the variable importance score in each RF model. In data sets
from both plant species, it can be seen that the P value of
individual variables start to rise at a different position in the RF
ranking, anywhere from rank 2 in Co2�axr to position 26 in

De1�SF19 (Fig. 2 A and C). A threshold for variable significance
in both potato and Arabidopsis RF models was reached at a P
value between 0.0025 and 0.01 where a decrease in margin was
evident when m�z with larger P values were included in the
modeling process (Fig. 2 B and D).

Visualization and Interpretation of Phenotypic Relationships in Larger
Scale Experiment. The average margins of all possible pair-wise
RF models were projected into a 2D space by non linear mapping
to illustrate the relationships between 25 Arabidopsis lines (Fig.
3A). Each Arabidopsis ecotype is generally well separated and
genotypes with weak metabolome differences cluster close to
their progenitor ecotype (e.g., Co2 with a2, a11, a12, and a14 and
C24 with C2, C9, and C31). Similarly, genotypes with increas-
ingly stronger phenotypes are found at increasing distances from
the progenitor ecotype (e.g., Co2 with fah, vtc, and pgm and Le0

Fig. 1. Determining the characteristics of robust RF models. (A) Variable importance score versus ranking in weak RF models comparing Arabidopsis ammonia
transporter mutant lines and brassinosteroid synthesis antisense lines to progenitor ecotypes. (B) Ordered list of top ranking signals from data depicted in A;
correlated variables (e.g., isotopes) are color-coded and variables shared between models in the same metaclass are boxed. Variable importance score versus
ranking in stronger RF models comparing pair wise with progenitor genotypes in potato transgenic lines (C) and Arabidopsis mutants (E). (D and F) Top ranking
signals (descending order) from a selection of models depicted in A and E; m�z representing correlated variables (e.g., isotopes, salt adducts, and common
fragments) are shaded in both lists.
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with uvr, eds, and nah). The metabolome differences with the
progenitor ecotype Ws0 in the case of ls1 and ls5 are so great that
there is no apparent connectivity. The Arabidopsis genotypes
were chosen to include six lines (uvr, eds, vtc, ls1, ls5, and nah)
with described defense- or stress-related phenotypes. In a pair-
wise comparison to each other all of the defense-related mutants
in Le0 and Ws0 backgrounds had much smaller margins than
when compared with the progenitor cultivar (data not shown).
The uvr, eds, and nah genotypes shared many top-ranking signals
(Fig. 3B), whereas phenotypically unrelated mutants such as pgm
and fah had little in common. Interestingly, despite being in a
different ecotype background vtc also shared many explanatory
features with the other defense mutants. The RF models com-
paring lesion mimic mutants to Ws0 had very large margins, but
they were also substantially different from each other (Fig. 3C),
and in both cases, 25–30 top ranking variables had importance
scores �0.003 (see Fig. 1E). Ls1 and ls5 had a large number of
top ranked variables in common (color coded in Fig. 3C);
however, each line equally had a large proportion of highly
significant (P � 0.001) correlated signals that had no explanatory
power in the other line (Fig. 3D).

Discussion
Choice of Data Mining Technique. There are a range of strategies
available to analyze metabolomics data (4–10). In preliminary
work (see Table 5, which is published as supporting information
on the PNAS web site), we showed that classification accuracies
achieved by using RF were equivalent to those obtained by using
three common supervised learning algorithms. Feature selection
is of primary importance from an interpretation perspective.
One problem associated with ‘‘naı̈ve’’ modeling of metabolome
fingerprint data are the multiplicity of possible good solutions.
It is rarely the case that one unique signal (or combination of
very few uncorrelated variables) will adequately describe the
property under study. Indeed, previous studies have highlighted
the importance of including all variables in the final model to
identify ‘‘silent phenotypes’’ or unexpected metabolic pathways
(19, 20, 34–36). Several powerful data mining approaches com-
bine feature selection and classification in one analytical run; for
example, genetic algorithms or genetic programming evaluate
feature subsets by using accuracy estimates provided by a
machine learning algorithm (4, 7). These ‘‘wrapper’’ techniques
produce parsimonious models using very few variables that are
generally dominated by the stronger attributes. Effectively, this
means that correlated (essentially redundant) variables are
selected only rarely, consequently missing out on potentially
informative solutions. We suggest that RF has additional utility

because the aim is not to determine the smallest feature set but
to identify a complete set of statistically significant explanatory
variables.

Assessing Model Robustness. Validation of a classifier demands not
only a consistent predictive power but also that the variables
selected for high explanatory potential should be the same in
replicate experiments. Thus to achieve an adequate assessment
of generalizibility, it is valuable to use algorithms, such as RF,
which produce directly interpretable models that represent the
data in an explicit way. We suggest that a more stringent
representation of class boundary complexity than classification
accuracy alone is essential for assessing model quality and
further interpretability potential. By definition, the sample
margin encompasses a measure of confidence in votes for the
right class. In contrast to margin-based classifiers (e.g., support
vector machines) or discriminant techniques (such as linear
discriminant analysis or partial least squares discriminant anal-
ysis), RF does not explicitly maximize the margin, thus making
this measure valuable because it is both unbiased and related
directly to the generalization error.

In high-throughput metabolite fingerprinting, deciding
which models to consider for deeper analysis of signals is
usually problem-specific due to constraints associated with
sample size (in relation to data variance and dimensionality
characteristics) and the lack of prior knowledge about ex-
pected margin distributions. Permutation-based tests have
been used to provide such information (11). We describe an
alternative approach to evaluate any new experimental system
based on a combined examination of statistical significance
and biological information content to validate robustness and
interpretability potential. Thus, using plants of known geno-
type and predicable biochemical phenotypes, we have explored
both margin characteristics and variable behavior in FIE-MS
fingerprint models that we expect to be either poor, or possibly
adequate or robust in terms of generalizibility. These obser-
vations suggest that FIE-MS fingerprinting in combination
with RF analysis will be valuable as a prescreen to detect lines
with novel metabolic phenotypes in large populations. In
model systems, such as Arabidopsis, targeted, even quantita-
tive, profiling approaches using high mass resolution instru-
ments (3, 17, 20) will become more routine as metabolite
identity in the sample matrix is better understood, allowing
signals relating to specific molecules to be predesignated.

Selecting Significance Thresholds and Evaluating Model Interpretabil-
ity Potential. Importance score ranking combined with signifi-
cance testing of m�z signals provides an excellent metric con-

Fig. 2. Relationship between margin and variable significance in metabolome fingerprint models. Overall model P value (log 10) when including increasing
numbers of top ranking variables in RF Analysis of Arabidopsis (A) and potato (C) genotypes. Overall model margins when including variables with increasing
P value in RF analysis of Arabidopsis (B) and potato (D) genotypes. A suggested significance threshold is indicated.
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tributing to a rapid assessment of model robustness and
interpretability potential. A standardized significance cutoff
based on an arbitrary RF rank was not appropriate, because
significance testing revealed that P values for individual variables
started to rise at different rank positions in individual models. By
generating a series of models using only variables with P values
below predetermined thresholds, it was shown that margins
began to drop significantly when variables with P values �0.001
were used. Prior knowledge of biochemical difference between
genotypes, particularly in the novel fructan-producing transgenic
potato lines, allowed us to confirm that signals unrelated to the
transgenic phenotype began to populate models if variables with
a P value �0.0025 were used. In most instances, for pair-wise
comparison of genotypes, this P value threshold (P � 0.001 to
P � 0.0025) correlated with an importance score of �0.003,
below which any variables were unlikely to have any significant
explanatory power. Robust models with adequate margins
(�0.2) derived from comparison of progenitor genotypes with
mutants (or transgenic lines) with strong metabolic phenotypes
had a large proportion (�65%) of correlated m�z signals (e.g.,
potential isotopes, salt adducts, and neutral losses representing
the same predicted metabolite) in the top 30 ranked variables.
Mutants with pleiotrophic effects lacking a distinct metabolic
phenotype, such as auxin (axr-1) or ethylene (etr-1) hormone
signaling defective lines, exhibited much lower levels (�35%) of
correlated variables. In situations where the metabolic differ-
ences between genotypes are more discrete, centering on signals
derived from just a small number (2–5) of metabolites, there is
clearly a much greater potential for further interpretability.
Typically in such models, the top ranking signals are highly
correlated and importance scores drop rapidly to the significance
threshold.

Interpretation of Phenotypic Relationships in Larger Mutant Geno-
type Populations. In large, multiple-class experiments, the mean-
ingful representation of high dimensional multivariate models is
problematic, particularly if the objective is to assign any pheno-
typic relatedness based on separation ‘‘distances’’ that encapsu-
late the diversity of genotypic differences. Few studies have
tackled this problem, and our rather small experiment (consid-
ering the number of Arabidopsis mutants available) already
illustrates the richness of the information derived from metabo-
lome fingerprints based on mass spectrometry. A traditional
approach would be to compare each genotype to a so called
progenitor line (e.g., Desiree or Columbia in the present exam-
ple) and relate phenotypic differences to a representative ex-
ample of a given species. However, this strategy runs the risk of
missing crucial or novel relationships between specific lines. For
example, in the present study, we demonstrate that effectively
‘‘unlinked’’ genotypes (e.g., vtc and eds) can, in fact, share many
highly ranked explanatory variables; in this case, the ecotype
background dominates the modeling process. A further factor
impinging on effective phenotyping is the problem of secondary
effects of mutations on the metabolome that mask the true
explanatory differences between classes; this is demonstrated in
the present study by the fact that the defense-related mutants
had a large subset of highly ranked variables that were probably
associated with their general light (UV) sensitivity. Similarly, the
two lesion mimic mutants had a large number of signals in
common related to secondary effects after the induction of cell
death. However, in both of these situations, by examining the list
of top-ranking signals, it is possible to identify real differences
between such genotypes.

In conclusion, we suggest that direct interpretability, and a
nonbiased capacity to deal with multiple adequate solutions, are
just as important as achieving a high classification accuracy in
any metabolome modeling procedure using high dimensional
data. By representing and ranking all potentially explanatory

Fig. 3. Metabolome modeling with larger multiple class problems. (A) Two-
dimensional mapping of 25 Arabidopsis lines using Sammon nonlinear mapping.
Control ecotypes are colored blue, and progenitor ecotypes of mutant lines are
presented as squares. The ecotype background of mutant lines is depicted by
color: red, LeO; yellow, C24; pink, Ws0; green, Columbia. The lines linking phe-
notypically related genotypes represent margins in pair-wise comparisons and
are color coded as follows: black solid line, �0.1; yellow dotted line, 0.1–0.2; blue
dashed line, 0.2–0.3. Margins �0.3 have been omitted for the representation. (B)
Top ranking signals in common (color coded) between RF models representing
pair-wise comparisons between selected defense related and UV sensitive geno-
types and their progenitor ecotypes. (C) RF models comparing lesion mimic
mutants (ls1 and ls5) with the progenitor genotype (Ws0) indicating the presence
of many common signals (color coded). (D) A correlation analysis of variables
contributing significantly (P � � 0.005) to models discriminating mutant lines ls1
and ls5 from the progenitor ecotype Ws0.
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variables in an explicit way, RF models provide an increased
opportunity for assessment of model generalizibility and deeper
phenotypic investigation. With more standardized metabolome
fingerprinting procedures in the future, we suggest that ranked
lists of top explanatory variables (perhaps 20–30 with an ade-
quate model margin) may provide robust, directly comparable
representations of sample composition in situations requiring
high throughput classification tasks.

Materials and Methods
Plant Material, Sample Preparation, and Metabolite Analysis. Exper-
imental transgenic potato genotypes engineered to synthesize
fructans (33) were derived from the cultivar Désirée and have
been described (19). A somaclonal variant (De2) generated via
tissue culture provided a near-isogenic line of the commercial
Désirée cultivar (De1). Procedures for sample preparation and
extraction have been described (19). Information on the Arabi-
dopsis genotypes selected for this study and additional details of
metabolite analysis are presented in Supporting Text, which is
published as supporting information on the PNAS web site. A
minimum of 30 biological replicates were used to develop
FIE-MS fingerprints in both ionisation modes.

Data Modeling. Sample classification, selection, and ranking of
potentially explanatory variables in FIE-MS data were
achieved by using an implementation of RF as described in
Supporting Text. Training�test set partitioning was carried out
on the basis of independent analytical batches with 18 and 12
plant replicates selected to form the training and test set,
respectively. For each RF model, classification accuracies and
average margins were computed from the ‘‘out of bag’’ training
samples. One thousand trees were generated in each modeling
experiment by using the overall fingerprint if not stated
otherwise. The importance score for each m�z for each
classification task to define a ranked list of potentially explan-
atory signals was computed according to Breiman (28). The
levels of significance were determined by a permutation test

(11, 37) under the null hypothesis that the importance score is
not relevant to the classification task. The P value is defined
as the fraction of times an importance score in the class-
permuted data are greater or equal to the score in the
unpermuted data. Two thousand permutations were per-
formed. Average margins (38) of the training samples were
used as input for the Sammon nonlinear mapping algorithm
(39) using the library ‘‘MASS’’ in the R environment (http:��
www.r-project.org).

FIE-MS Signal Interpretation. The initial data analysis by RF
produced a list of m�z signals ranked by importance scores or P
value for each classification task. The lists of top ranked m�z
(generally top 40) were examined for groups of potentially
related signals that could represent either the (de)protonated
ion (e.g., [M�H]� � M � 1), salt adducts (both single and
double charged e.g., [M�Na]� � M � 23, [M�K]� � M � 39
or [M�Na�K]2� � (M � 23 � 39)�2), common neutral losses
(e.g., [M�H-H2O]� � M-17 and [M�H-HCOOH]� � M-45),
the homogeneous dimer ion [e.g., [2M�H]� � 2(M � 1)], and
dimer ion pair adducts [e.g., [2M�Na]� � 2(M � 23)] as well as
isotopes (M � 2 or M � 3 amu) of a single metabolite. Because
several overlapping solutions predicting the presence of different
metabolites were often possible, the most likely combination of
ions putatively identifying a specific metabolite was confirmed
by further examining signal relationships in a correlation analysis
using just m�z with an appropriate low P value.
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