
Environment-dependent residue contact energies
for proteins
Chao Zhang and Sung-Hou Kim*

Department of Chemistry and E. O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

Contributed by Sung-Hou Kim, December 27, 1999

We examine the interactions between amino acid residues in the
context of their secondary structural environments (helix, strand,
and coil) in proteins. Effective contact energies for an expanded
60-residue alphabet (20 aa 3 three secondary structural states) are
estimated from the residue–residue contacts observed in known
protein structures. Similar to the prototypical contact energies for
20 aa, the newly derived energy parameters reflect mainly the
hydrophobic interactions; however, the relative strength of such
interactions shows a strong dependence on the secondary struc-
tural environment, with nonlocal interactions in b-sheet structures
and a-helical structures dominating the energy table. Environ-
ment-dependent residue contact energies outperform existing
residue pair potentials in both threading and three-dimensional
contact prediction tests and should be generally applicable to
protein structure prediction.

The main obstacle for protein structure prediction comes from
the immense number of possible conformations accessible to

a polypeptide chain and the complexity and variety of interac-
tions involved in the folding process. This obstacle makes it a
formidable task to carry out protein folding simulations using an
all-atom representation of the polypeptide. Coarse-grained pro-
tein models, which treat amino acid residues as united interac-
tion sites, offer a more practical approach to tackling the protein
folding problem (1). Because such models omit many detailed
features of atomic interactions, new energy parameters suitable
for representing interactions at low level of resolution are
required. These parameters often are derived empirically from
the analysis of experimentally observed residue contact prefer-
ences in sets of known structures (2). Whether such knowledge-
based potentials correctly reflect the actual physical forces
stablizing the native structures of proteins remains a subject of
debate (3–6). Nevertheless, structure-derived potentials have
contributed substantially to the current theoretical studies of
protein folding (7).

Over the years, many specifically designed residue pair po-
tentials have been proposed (2, 7, 8), most of which use the 20-aa
alphabet and assume a constant energy contribution for a given
residue pair regardless of its local structural environment. How-
ever, it is known that the folded conformation of a protein is
stabilized by a multitude of weak noncovalent interactions and
the contribution of each of these interactions depends on its
context within the folded structure (9–11). To derive better,
more specific potential energy functions, one has to take into
account the influence of varied structural circumstances on the
specificity of inter-residue interactions. In this study, we examine
pairwise amino acid interactions in the context of secondary
structural environments (helix, strand, and coil) and report a set
of residue contact energies for an expanded 60-residue alphabet
(20 aa 3 three secondary structural states).

The discriminatory capability of the environment-dependent
contact energies (ERCE) was tested first in the threading
experiments where the secondary structural states of the tem-
plate protein structures are experimentally determined. Though
only the simple nongapped threading protocol was used, the
improvement over existing residue pair potentials was already
evident as ERCE correctly recognized the native structures for

more than 97% of the testing proteins. The applicability of
ERCE is greatly extended when combined with secondary
structure prediction. The new generation of algorithms for
secondary structure prediction benefits from using evolutionary
information provided by multiple sequence alignment (12–14).
Recently developed structure prediction methods, including
both ab initio methods (15–17) and fold recognition-based
methods (18–23), all used predicted secondary structures and
have achieved an important degree of success. We compared
ERCE with several existing residue pair potentials in predicting
residue contacts in the native protein structure from the amino
acid sequence. A test based on a large number of distinct protein
domains showed that the use of ERCE in combination of
predicted secondary structures led to a significant improvement
in the accuracy of contact prediction. This result has broader
implications for protein structure prediction, because an energy
function that favors conformations with higher percentage of
native contacts has a better chance to guide global optimization
toward the native folded state (24–26).

Methods
Protein Structure Set. A set of representative protein domain
structures were extracted from the Protein Date Bank (27) by
referring to the SCOP database (version 1.37) (28). Specifically,
we started with the ,40% identity set built by the authors of
SCOP and then performed additional sorting. First, we removed
composite domains and domains with fewer than 50 residues or
more than 300 residues. A single member then was selected from
each SCOP family in the four structural classes, all-a, all-b, ayb,
and a1b; wherever applicable, structures that had been deter-
mined to the highest crystallographic resolution were chosen.
Domains with only Ca-traces or containing large sequence gaps
were excluded. The structures thus obtained were inspected at
the SCOP superfamily level. If a superfamily had multiple rep-
resentatives, those structures with resolution lower than 2.30 Å
were deleted. Domains that do not form a compact globular
structure (e.g., long a-helical coiled-coils) also were removed.
The remaining protein domains were examined by pairwise
sequence alignment; when the sequence identity between a pair
was higher than 25%, only one structure, typically the one with
higher resolution, was kept. The final data set contains 407
protein domains; of those, 80 are all-a, 105 are all-b, 91 are ayb,
and 131 are a1b (the complete list is available from the authors
on request).

The Definition of Secondary Structural States. The experimentally
determined (real) secondary structural states (helix, strand, and
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coil) of residues in these structures were extracted from the DSSP
database (29). A simple mapping scheme was used where only H
states in DSSP were mapped to helix, E states mapped to strand,
and all other states mapped to coil. The predicted secondary
structural states were obtained by running the PSI-PRED program
(14). This program uses the position-specific scoring matrices
generated by PSI-BLAST (30) as input. To prepare for these
matrices, we performed a PSI-BLAST search for each of the 407
protein domains against a nonredundant sequence database
NRDB90 (31). The default E-value cutoff (0.0001) was used, and
the maximum number of iterations was set to seven. The overall
accuracy of secondary structure prediction for 407 protein
domains is 79.5%.

Extracting Contact Energies from Known Protein Structures. The
combination of 20 aa and three secondary structural states gives
rise to 60 residue types. We applied the Miyazawa–Jernigan
procedure (MJ) (32) with a different definition of the reference
state (33) to derive contact energies for this expanded residue
alphabet from the 407 protein domain structures. Specifically,
amino acid residues were represented by the centroids of their
side chains, and two residues were considered to be in contact
if the distance between their centroids fell within RC 5 6.5 Å.
The numbers of contacts formed between two residues, i and j,
and between them and the solvent molecules (represented by 0)
were related to the contact energy by a hypothetical chemical
reaction

~i 2 0! 1 ~j 2 0!º~i 2 j! 1 ~0 2 0! . [1]

The effective contact energy (eij) is defined as the negative
logarithm of the equilibrium constant of the reaction (32)

eij 5 2lnSn# ijn# 00

n# i0n# j0
D , [2]

where n# ij, 2n# i0, 2n# j0, and n# 00 are the number of residue i-residue
j contacts, the number of residue i-solvent contacts, the number
of residue j-solvent contacts, and the number of solvent-solvent
contacts, respectively. In practice, eij was estimated by

eij 5 2lnSNijN00

Ni0Nj0

Ci0Cj0

CijC00
D [3]

to minimize the bias from amino acid compositional heteroge-
neity and polypeptide chain connectivity, where Nij, Ni0, Nj0, and
N00 are the contact numbers observed in known structures, and
Cij, Ci0, Cj0, and C00 are the corresponding quantities expected
in a reference state.

The calculations of Nij 5 Spnij;p and Ni0 5 Spni0;p require the
knowledge of the contact numbers nij;p and ni0;p in individual
proteins (represented by p). Whereas nij;p was counted directly
from the structure, ni0;p was derived from

ni0;p 5 qini;py2 2 O
j51

18

nij;p , [4]

where qi is the precalculated coordination number of residue i
(Table 1) and ni;p is the number of residue i in protein p.

We assume that the reference state of a protein exhibits the
same compactness as the native folded state but with randomly
arranged residue-residue and residue-solvent contacts (for de-
tails see ref. 33). Under this assumption, we have

Cij 5 O
p

nrr;p

qini;pqjnj;p

~Ok51qknk;p!
2 [5]

Ci0 5 O
p

nr0;p

qini;pOk51qknk;p
[6]

C00 5 N00 , [7]

where nrr;p 5 SiSjnij;p and nr0;p 5 Sini0;p.

Testing the Derived Energies. To assess whether ERCE offer better
discriminatory power than the existing residue pair potentials,
we first tested these potentials by using a nongapped threading
protocol (34–36). The sequences of proteins with 200 or fewer
residues in the data set were threaded through the structures of
all proteins of the same or larger size at all possible positions.
When the energy of the native structure of a protein is lower than
that of any threaded model, we consider that the sequence of the
protein successfully recognizes its structure.

To assess the potential in a more realistic setting where only
predicted secondary structure information can be obtained, we
applied ERCE to the prediction of the three-dimensional con-
tacts in protein structures. In particular, we concentrated on
nonlocal contacts, i.e., contacts formed by residues not closely
associated by the polypeptide chain. For contacts between
on-chain neighbors, short-range interactions are probably more
important. A minimum of four residue separations were re-
quired for a contact to be considered. For the purpose of
comparing energy functions, we used a simple method for
contact prediction where any residue pair that had energy lower
than a specified cutoff was predicted to be in contact. By varying
the cutoff value, the tradeoff between the completeness (or
coverage) of the prediction (how many native contacts are
predicted) and the accuracy of the prediction (how many pre-
dicted contacts correspond to actually observed contacts) can be
examined. The actual three-dimensional contacts were identified
from protein structures by using the criterion that two residues
in contact must form at least four atom–atom contacts (two
atoms are considered in contact if the distance between them is

Table 1. Coordination numbers of amino acids in different
secondary structural environments for RC 5 6.5 Å

Amino acid a-Helix (a) b-Strand (b) Coil (C)

ALA 6.59 (1.38) 6.16 (1.26) 6.18 (1.31)
ARG 6.07 (1.34) 6.04 (1.33) 6.13 (1.25)
ASN 6.35 (1.40) 6.26 (1.10) 6.13 (1.34)
ASP 6.33 (1.22) 6.16 (1.28) 6.12 (1.28)
CYS 6.51 (1.22) 6.26 (1.24) 6.26 (1.35)
GLN 6.17 (1.26) 6.30 (1.28) 6.19 (1.23)
GLU 6.22 (1.17) 6.24 (1.22) 6.18 (1.26)
GLY 6.41 (1.46) 5.90 (1.34) 5.80 (1.30)
HIS 6.15 (1.24) 6.33 (1.26) 6.01 (1.26)
ILE 6.38 (1.35) 5.99 (1.31) 5.97 (1.26)
LEU 6.48 (1.37) 6.27 (1.24) 6.27 (1.28)
LYS 6.07 (1.17) 6.07 (1.27) 6.02 (1.50)
MET 6.31 (1.28) 6.12 (1.19) 6.21 (1.25)
PHE 6.13 (1.32) 6.15 (1.27) 6.07 (1.37)
PRO 5.95 (1.15) 5.93 (1.27) 5.84 (1.32)
SER 6.39 (1.33) 6.05 (1.39) 5.98 (1.24)
THR 6.58 (1.36) 6.05 (1.20) 6.17 (1.27)
TRP 5.72 (1.26) 5.76 (1.38) 5.61 (1.28)
TYR 6.17 (1.29) 6.15 (1.24) 6.05 (1.28)
VAL 6.59 (1.38) 6.15 (1.28) 6.19 (1.30)

The coordinate number qi (i 5 1, 60) is calculated as the number of
non-nearest neighbor contacts formed by a buried residue of type i averaged
over 407 protein domain structures. A residue is considered buried if more
than 95% of its surface area becomes inaccessible to solvent when the protein
is folded. Values in parentheses are the SDs.
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Fig. 1. Secondary structural ERCE (in RT units). The energy parameters are divided into six groups, a-a, b-b, a-b, a-C, b-C, and C-C, where a, b, and C represent
helix, strand, and coil states, respectively.
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less than 6.0 Å). The results were essentially the same when a
more (or less) stringent definition of contact was used.

Results
The Influence of Secondary Structural Environments on Inter-Residue
Interactions. The calculated contact energies are given in Fig. 1.
The 60-by-60 ERCE parameters are separated into six groups
with respect to the secondary structural environments of the
interacting pair: a-a, b-b, a-b, b-C, b-C, and C-C (where a, b,
and C represent helix, strand, and coil, respectively). Similar to
the contact energies determined by MJ (32), the energies derived
here are dominated by hydrophobic interactions. The correlation
coefficients of the contact energies from different groups with
each other and with those determined by MJ (32) are summa-
rized in Table 2.

Despite the high correlations, the average values of contact
energies from different groups differ significantly (Table 2). The
a-a and b-b contacts are generally more favorable than other
types of interactions. This result is understandable considering
that the cores of most proteins consist of closely packed regular
secondary structural elements where helices tend to gather into
bundles and b-strands often appear in assembled b-sheets. The
b-b contact energies are on average nearly one RT unit lower
than the a-a contact energies. Because most of the tertiary
contacts formed by b residues are cross-b-bridge contacts, this
result suggests that there may be a fundamental difference
between the structural and energetic principles governing
b-strand register and a-helix packing. Among the energy groups,
the a-b contact energies show the largest variations, and there-
fore, highest specificity, consistent with the unique geometric
feature of a-b packing observed in protein structures (37, 38).

Threading Experiments. There are 316 protein domains in our data
set that contain 200 or fewer residues; the number of confor-
mations generated by threading ranges from 4,000 (for a 200-
residue protein) to 40,000 (for a 50-residue protein). As shown
in Table 3, ERCE consistently outperformed MJ in the treading
tests in all four structural categories, with an overall 6% im-
provement in success rate. For 88 all-b proteins and 49 ayb

proteins, perfect recognition was achieved. In seven of the nine
cases where ERCE failed to identify the native structures, the
native structures were among the five most favorable confor-
mations. MJ failed three times more; in half of those cases, the
native structures were ranked below five.

Contact Prediction. Fig. 2 shows the performance of ERCE in
contact prediction for 407 proteins. Both predicted and real
secondary structures were used, and the prediction based on real
secondary structures in conjunction with ERCE (ERCE-Real) is
noticeably better. However, a significant improvement over MJ

Fig. 2. Contact prediction using three different potentials: MJ, JS, and ERCE.
ERCE predictions based on predicted (ERCE-Pred) and real secondary struc-
tures (ERCE-Real) both are shown. The x axis indicates the fraction of exper-
imentally determined contacts that are correctly predicted (defined here as
the coverage). Each coverage value x corresponds to an energy cutoff such
that the percentage of native contacts whose energies are lower than the
cutoff happens to be x. There are other residue pairs that do not form contacts
in the native protein structure but also have energies lower than the cutoff.
The fraction of predicted contacts that correspond to actually observed con-
tacts define the accuracy. Here we compare different prediction methods with
a common standard: the random prediction. In theory, the accuracy of a
random prediction averaged over many trials equals the ratio of native
contacts to the number of all possible residue pairs in a protein. This value
varies with protein size and contact density. For each method, the y axis
indicates how much more accurate the prediction is relative to that from a
random method.

Table 2. Comparisons between energy parameters

Average energy*

Pairwise correlation coefficients

MJ a-a b-b a-b† a-b‡ a-C† a-C‡ b-C† b-C‡ C-C

MJ 22.93 (1.45) —
a-a 20.74 (0.99) 0.86 —
b-b 21.66 (0.93) 0.80 0.94 —
a-b† 20.10 (1.33) 0.83 0.92 0.89 —
a-b‡ 20.04 (1.33) 0.84 0.92 0.89 0.88 —
a-C† 0.23 (0.93) 0.89 0.92 0.87 0.89 0.90 —
a-C‡ 0.18 (0.94) 0.91 0.92 0.89 0.90 0.92 0.90 —
b-C† 0.01 (0.87) 0.80 0.89 0.87 0.86 0.90 0.91 0.90 —
b-C‡ 20.14 (0.88) 0.81 0.91 0.90 0.89 0.89 0.89 0.91 0.83 —
C-C 0.25 (0.70) 0.86 0.91 0.88 0.87 0.89 0.95 0.93 0.92 0.91 —

The three asymmetric energy groups, a-b, b-C, and b-C, are subdivided into lower and upper off-diagonal triangular components and represented by † and
‡, respectively. MJ, ref. 32.
*In RT units. Values in parentheses are the SDs.

Table 3. Results of the threading experiments

all-a (71) all-b (88) a/b (49) a1b (108) Overall (316)

MJ 87.3% 94.3% 93.9% 90.7% 91.4%
ERCE 90.1% 100% 100% 98.1% 97.2%

The numbers in parentheses are the number of proteins in each category.
MJ, ref. 32.
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in terms of prediction accuracy was obtained by both methods.
The encouraging result achieved by ERCE in combination with
predicted secondary structures (ERCE-Pred) adds a practical
value to ERCE. We also have applied other published residue
pair potentials for the same task; of those, the only potential that
outperformed MJ was one recently reported by Skolnick and
coworkers (JS) (5). Interestingly, a recent update to MJ per-
formed slightly worse than the original energy table (data not
shown), although the updated energy table was derived from a
much larger set of protein structures (36).

More detailed comparisons of different prediction methods
are shown in Table 4. The 407 testing proteins were divided into
three size categories and four structural classes. Because the
fraction of residue pairs that form tertiary contacts in a larger
protein is less than that in a smaller protein, the level of difficulty
in predicting contact rises as the size of the protein increases.
This trend is clearly seen in the case of a random prediction
(Table 4). Although the use of potential energy function im-
proves the chance of detecting native contacts, the basic trend of
prediction accuracy versus protein size persists. ERCE-based
predictions are consistently better than other residue pair po-
tentials for all three size categories.

The analysis of prediction performance with respect to
structural classes is more revealing. Compared with the ran-
dom prediction, the use of residue pair potentials such as MJ
and JS yields the maximal gain in contact prediction for all-a
proteins. The added value of using ERCE is that it also
improves predictions on other three structural classes (all-b,
ayb, and a1b) such that the overall improvement ratios
relative to a random prediction are comparable for all four
structural classes.

Discussion
Long-range interactions play an important role in determining
the tertiary structures of proteins. However, computational
simulations of such interactions have encountered great diffi-
culties in the past. Coarse-grained reside pair potentials attempt

to strike a balance between the accuracy of energy representa-
tion and the computational expediency by harnessing the rich
amount of information about intramolecular interactions pro-
vided by experimentally solved structures. In this study, we
extended the contact energy formulation (32) to include the
influence of secondary structural environments on the specific-
ity of residue interactions, taking advantage of the amount and
quality of structural data currently available. Other ways to
divide up the data to extract features usable in various categories
of protein simulations also have been reported (10, 39–41).

The added value of ERCE over existing residue pair potentials
was explored in both threading and three-dimensional contact
prediction experiments. The merit of using contact prediction to
test energy functions is that it is independent of the conforma-
tional search algorithms and can be readily applied to a large set
of protein structures. Because the objectives of two-dimensional
contact map prediction and three-dimensional structure predic-
tion are essentially the same (16, 42–44), the combined power of
ERCE and secondary structure prediction illustrated here
should be of general interest to protein structure prediction.

It should be noted that we used the same set of 407 structures
to derive and test ERCE. It has been noticed before that contact
energies derived by the MJ formulation is relatively insensitive
to the changes in the database size and content (36, 40). Because
our data set contains a large number of nonredundant structures,
a Jackknife test produces essentially the same results (data not
shown). In fact, we also used an independent set of 91 protein
chains (33) to derive an ERCE table, and the parameters thereof
were highly correlated with those given in Fig. 1 and achieved
comparable accuracy in threading and contact prediction exper-
iments.

We thank Inna Dubchak and Bob Jernigan for critical reading of the
paper. We also thank David Jones for communicating the PSI-PRED
program. This work was supported by grants from the Department of
Energy (DE-AC03-76SF00098), the National Science Foundation (97–
23352), and the National Institutes of Health (CA78406).

1. Levitt, M. (1976) J. Mol. Biol. 104, 59–107.
2. Jernigan, R. L. & Bahar, I. (1996) Curr. Opin. Struct. Biol. 6, 195–209.
3. Godzik, A., Kolinski, A. & Skolnick, J. (1995) Protein Sci. 4, 2107–2117.
4. Thomas, P. D. & Dill, K. A. (1996) J. Mol. Biol. 257, 457–469.
5. Skolnick, J., Jaroszewski, L., Kolinski, A. & Godzik, A. (1997) Protein Sci. 6,

676–688.
6. Zhang, C. (1998) Proteins Struct. Funct. Genet. 31, 299–308.
7. Hao, M.-H. & Scheraga, H. A. (1999) Curr. Opin. Struct. Biol. 9, 184–188.
8. Rooman, M. & Gilis, D. (1998) Eur. J. Biochem. 254, 135–143.
9. Minor, D. L. J. & Kim, P. S. (1994) Nature (London) 371, 264–267.

10. Cootes, A. P., Curmi, P. M. G., Cunningham, R., Donnelly, C. & Torda, A. E.
(1998) Proteins Struct. Funct. Genet. 32, 175–189.

11. Hutchinson, E. G., Sessions, R. B., Thornton, J. M. & Woolfson, D. N. (1998)
Protein Sci. 7, 2287–2300.

12. Rost, B. & Sander, C. (1993) J. Mol. Biol. 232, 584–599.
13. Cuff, J. A. & Barton, G. J. (1999) Proteins Struct. Funct. Genet. 34, 508–519.
14. Jones, D. T. (1999) J. Mol. Biol. 292, 195–202.
15. Skolnick, J., Kolinski, A. & Ortiz, A. R. (1997) J. Mol. Biol. 265, 217–241.
16. Ortiz, A. R., Kolinski, A. & Skolnick, J. (1998) Proc. Natl. Acad. Sci. USA 95,

1020–1025.
17. Huang, E. S., Samudrala, R. & Ponder, J. W. (1999) J. Mol. Biol. 290, 267–281.
18. Russel, R. B., Copley, R. R. & Barton, G. J. (1996) J. Mol. Biol. 259, 349–365.
19. Di Francesco, V., Garnier, J. & Munson, P. J. (1997) J. Mol. Biol. 267, 446–463.
20. Rice, D. W. & Eisenberg, D. (1997) J. Mol. Biol. 267, 1026–1038.

Table 4. Comparisons of the accuracy of contact prediction by different methods

Coverage* Method/potential†

Size categories Structural classes

Overall50–114 115–179 180–299 All-a All-b a/b a1b

Random prediction 3.72 2.97 2.36 2.49 4.00 2.21 3.30 3.08
20% MJ 15.03 8.87 5.41 10.05 12.28 7.00 10.78 10.18

JS 15.43 9.11 5.55 10.31 12.73 7.15 11.01 10.45
ERCE-Pred 18.60 11.32 6.58 9.91 15.42 9.83 14.19 12.69
ERCE-Real 19.61 12.07 7.20 10.17 16.87 10.10 15.20 13.50

50% MJ 9.17 5.47 3.39 6.00 7.50 4.45 6.68 6.26
JS 9.66 5.85 3.66 6.31 8.15 4.65 7.04 6.65
ERCE-Pred 11.56 6.82 4.01 6.13 9.81 5.36 8.86 7.79
ERCE-Real 12.75 7.49 4.32 6.06 11.16 5.70 9.95 8.55

The accuracy is defined as the percentage of predicted contacts that correspond to actually observed contacts in protein structures.
*See Fig. 2 for definition.
†Abbreviations are explained in Fig. 2.

2554 u www.pnas.org Zhang and Kim



21. Rost, B., Schneider, R. & Sander, C. (1997) J. Mol. Biol. 270, 471–480.
22. Aurora, R. & Rose, G. D. (1998) Proc. Natl. Acad. Sci. USA 95, 2818–2823.
23. Grigoriev, I. V. & Kim, S.-H. (1999) Proc. Natl. Acad. Sci. USA 96, 14318–

14323.
24. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. (1997) Annu. Rev. Phys.

Chem. 48, 545–600.
25. Dill, K. A. & Chan, H. S. (1997) Nat. Struct. Biol. 4, 10–19.
26. Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J. & Scheraga, H. A. (1999) Proc. Natl.

Acad. Sci. USA 96, 5482–5485.
27. Berstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D.,

Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) J. Mol. Biol.
112, 535–542.

28. Murzin, A., Brenner, S. E., Hubband, T. & Chothia, C. (1995) J. Mol. Biol. 247,
536–540.

29. Kabsch, W. & Sander, C. (1983) Biopolymers 22, 2577–2637.
30. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W.

& Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402.
31. Holm, L. & Sander, C. (1998) Bioinformatics 14, 423–429.
32. Miyazawa, S. & Jernigan, R. L. (1985) Macromolecules 18, 534–552.

33. Zhang, C., Vasmatzis, G., Cornette, J. L. & DeLisi, C. (1997) J. Mol. Biol. 267,
707–726.

34. Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R.,
Gottsbacher, K., Casari, G. & Sippl, M. J. (1990) J. Mol. Biol. 216, 167–180.

35. Kocher, J. P., Rooman, M. J. & Wodak, S. J. (1994) J. Mol. Biol. 235, 1598–1613.
36. Miyazawa, S. & Jernigan, R. L. (1996) J. Mol. Biol 256, 623–644.
37. Cohen, F. E., Sternberg, M. J. E. & Taylor, W. R. (1982) J. Mol. Biol. 156,

821–862.
38. Reddy, B. V. B., Nagarajaram, H. A. & Blundell, T. L. (1999) Protein Sci. 8,

573–586.
39. Bahar, I. & Jernigan, R. L. (1996) Folding Des. 1, 357–370.
40. Bahar, I. & Jernigan, R. L. (1997) J. Mol. Biol. 266, 195–214.
41. Miyazawa, S. & Jernigan, R. L. (1999) Proteins Struct. Funct. Genet. 15,

347–356.
42. Gobel, U., Sander, C., Schneider, R. & Valencia, A. (1994) Proteins Struct.

Funct. Genet. 18, 309–317.
43. Shindyalov, I. N., Kolchanov, N. A. & Sander, C. (1994) Protein Eng. 7,

349–358.
44. Olmea, O., Rost, B. & Valencia, A. (1999) J. Mol. Biol. 293, 1221–1239.

Zhang and Kim PNAS u March 14, 2000 u vol. 97 u no. 6 u 2555

BI
O

PH
YS

IC
S


