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Abstract
Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse
in adolescence, compared with abundant research using adult animal models. As smoking is typically
initiated in adolescence, an important question to address is whether the adolescent brain responds
differently to nicotine compared with the adult. To investigate this question, we examined the
expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated
in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. Baseline
expression of arc and c-fos was higher in adolescent brains compared with adults. Following acute
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DS  
dorsal striatum

fmi  
forceps minor of the corpus callosum

gcc  
genu of corpus callosum

LO  
lateral orbital

mPFC  
medial prefrontal cortex

nic  
nicotine

QDR  
quinoid dihydropteridine reductase

sal  
saline

SmCtx  
somatosensory cortex

VDB  
nucleus of the vertical limb of the diagonal band

VLO  
ventral and lateral orbital cortex

VS  
ventral striatum.
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nicotine treatment (0.1, 0.4 mg/kg), we found a marked induction of arc mRNA in the prefrontal
cortex of nicotine-treated adolescents compared with a less pronounced increase of arc in the adult.
c-fos and NGFI-B were also upregulated by nicotine, but not in an age-related manner. In contrast,
nicotine induced less arc, c-fos, and NGFI-B expression in the somatosensory cortex of adolescents
compared with adults. A fourth gene, quinoid dihydropteridine reductase was expressed at lower
levels in white matter of the adolescent forebrain compared with the adult, but was not affected by
nicotine. These results suggest that in adolescence, the activity of specific early response genes is
higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects
key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may
represent a neurobiologically vulnerable period with regard to nicotine exposure.
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plasticity; development; drug abuse; prefrontal cortex; immediate-early gene

Smoking is an addictive habit that typically develops in adolescence. Despite its clear clinical
relevance, relatively little is known about the neurobiology of immediate and long-term
consequences of smoking during adolescence, or age-specific contributions to nicotine
addiction. Nicotine has a number of well-established neurochemical and molecular effects on
adult neural systems (Dani and Heinemann, 1996), including upregulation of nicotinic
acetylcholine receptors (nAChRs) following chronic nicotine treatment (Wonnacott,
1990;Perry et al., 1999). However, beyond central cholinergic effects, systems involved in
cellular plasticity and learning are also markedly affected by nicotine. Nicotine has been linked
to increased dopamine levels in mesocortical limbic regions (Di Chiara and Imperato, 1988),
and its behavioral and rewarding effects are partially dependent on dopaminergic activation
(Clarke et al., 1988;Di Chiara, 2000). Nicotine also interacts with glutamate systems in the
brain, enhancing fast excitatory synaptic transmission at glutamatergic synapses (McGehee et
al., 1995). Since current major theories of addiction and memory implicate interactions
between dopaminergic and glutamatergic systems, this profile of nicotine effects suggests
nicotine may induce long-term synaptic alterations at the level of gene expression. Indeed, in
the adult rat model, studies have shown acute and chronic nicotine administration activates the
immediate-early gene c-fos in multiple limbic and cortical regions (Nisell et al., 1997;Pich et
al., 1997;Salminen et al., 1999). Other immediate early genes implicated in the
mesocorticolimbic response to nicotine include cAMP-response element CREB and deltaFosB
(Kelz et al., 1999;Pandey et al., 2001).

The extent to which neurochemical and molecular mechanisms identified as important in the
adult are applicable to the adolescent brain is undetermined. Adolescent rats display altered
behavioral responses to nicotine compared with adults in a number of paradigms (Vastola et
al., 2002;Faraday et al., 2003;Levin et al., 2003;Belluzzi et al., 2004;O’Dell et al., 2004). We
have recently reported that although the overall locomotor doseresponse sensitivity to nicotine
is similar in adolescents and adults, adolescent rats fail to display long-term contextual cue
conditioning (Schochet et al., 2004). Changes in nicotinic acetylcholine, serotonergic,
dopaminergic and glutamatergic receptor systems in forebrain and midbrain regions following
prolonged adolescent nicotine exposure have all been reported (Slotkin, 2002; Abreu-Villaca
et al.,2003a,2003b;Ad-riani et al., 2003;Collins et al., 2004b).

Relatively little is known about the effect of nicotine on plasticity-related genes in the
adolescent brain. As cortical substrates are actively developing in the adolescent (Lewis,
1997), we hypothesized that nicotine might differentially affect expression of these genes in
adolescents compared with adults. We report here that arc, NGFI-B, and c-fos, three plasticity-
related early response genes, are upregulated in cortical and striatal sites following acute
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nicotine. Moreover, the expression of arc, a dendritically targeted mRNA whose protein
product is involved in synaptic modification and learning, is more strongly induced by nicotine
in adolescence than in adulthood.

EXPERIMENTAL PROCEDURES
Subjects and handling

For all experiments, male Sprague-Dawley rats (Harlan, Madison, WI, USA) were used.
Animals were housed in pairs in clear plastic cages in an animal colony. Food and water was
available at all times. Lighting in the animal colony was on a 12-h light/dark cycle, with lights
on at 07:00-19:00 h. Rats arrived in the colony 4 days prior to testing, and were handled daily
in order to minimize stress during testing. All animal care was in strict accordance with
University of Wisconsin-Madison Institutional Animal Care and Use Committee guidelines as
defined by the NIH. Care was taken to minimize the number of animals used and their suffering.

The effects of nicotine on gene expression were assessed in two separate conditions. Our first
experiment examined the acute effects of nicotine and the second experiment examined the
doseresponsivity of the gene expression. For the examination of the acute nicotine effects on
gene expression, we used a total of 32 rats. Of these rats, 16 were tested at approximately 70
days of age (adult, average weight 306 g), and 16 were tested at 30 days (early adolescent,
average weight 84 g). On the test day, rats were given a single s.c. injection of nicotine [n=8
adolescent, n=8 adult, 0.4 mg/ml/kg s.c. nicotine hydrogen tartrate salt (Sigma, St. Louis, MO,
USA), dissolved in saline, pH adjusted to 7.2 with NaOH] or a single saline injection (n=8
adolescent, n=8 adult, 1 ml/kg, s.c.). We have previously found that adolescent and adult
animals show similar locomotor responses to increasing doses of nicotine. The moderate dose
of 0.4 mg/kg nicotine used in our previous sensitization and conditioning experiments was
used in this study (Schochet et al., 2004).

In our second experiment, we examined whether the effect of nicotine on arc expression in
adolescents and adults was dose-dependent using a total of 16 rats. Of these rats, eight were
tested at approximately 70 days of age (adult, average weight 303 g) and eight were tested at
30 days (early adolescent, average weight 99 g). On the test day, rats were given a single s.c.
injection of nicotine (n=4 adolescent, n=4 adult, 0.1 mg/ml/kg s.c. nicotine hydrogen tartrate
salt (Sigma, St. Louis, MO, USA), dissolved in saline, pH adjusted to 7.2 with NaOH) or a
single saline injection (n=4 adolescent, n=4 adult, 1 ml/kg, s.c.).

In all studies, injections were administered between 12:00 and 14:00 h. One hour after the
injection, rats were anesthetized with halothane, and their brains rapidly removed, frozen, and
stored at -80 °C. Cryostat sections (20 μm) were collected onto Superfrost plus microscope
slides (Fisher, Pittsburgh, PA, USA) and stored dry at -80 °C until use.

In situhybridization
Sections were post-fixed in 4% paraformaldehyde for one 1/2 h at 4 °C. Following three washes
of 2× SSC (1× SCC=150 mM NaCl, 15 mM citrate, pH 7.0), slides were briefly digested with
Proteinase K (0.2 μg/μL; Qiagen, Valencia, CA, USA) for 10 min at 37 °C. Slides were then
acetylated for 10 min at room temperature with 0.25% acetic anhydride in 0.1 M
triethanolamine, pH 8, washed in 2× SSC and dehydrated in a graded ethanol series. Sections
were hybridized overnight at 55 °C in a hybridization solution containing 10% dextran sulfate,
3× SSC, 0.5 M NaPO4, 50% formamide, 1× Denhart’s, and 200 μg/ml tRNA, pH 7.5, 0.05 M
DTT and 0.1 ng/μL[35S]-labeled antisense cRNA probe. Following hybridization, sections
were washed in 500 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, and digested for 1h
at 37 °C in the same solution containing 20 μg/ml pancreatic RNAse A (Ambion, Austin, TX,
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USA). Slides were then washed in 1× SSC, 0.2 M DTT (5 min), 0.5× SSC, 0.2 M DTT (5 min),
and 0.1 M SSC, 0.2 M DTT (1 h, 70 °C), dehydrated in a graded ethanol series and dried. For
autoradiography, sections were exposed to a phosphorimager screen for one week and scanned
with a Molecular Dynamics Typhoon phosphorimager (Molecular Dynamics Inc., Sunnyvale,
CA, USA). Slides were also subjected to autoradiography for 6 weeks using Kodak NTB-2
liquid emulsion (Eastman Kodak Co, Rochester, NY, USA) and stained as previously described
(Landry et al., 1989). Photomicrographs were taken on a Leica DMRX microscope equipped
with a Leica DC300F camera.

Probe preparation
Four genes were chosen for analysis, arc, c-fos, NGFI-B and quinoid dihydropteridine
reductase (QDR). Arc, c-fos, and NGFI-B are immediate early genes selected for study based
on their role in synaptic plasticity and sensitivity to drugs of abuse. Increases in arc, c-fos, and
NGFI-B expression have been described following treatment with drugs including cocaine,
morphine, amphetamine and nicotine (Fosnaugh et al., 1995;Konradi et al., 1996;Pich et al.,
1997;Werme et al., 2000a;Steward and Worley, 2002). We previously found that the gene
QDR (Turner et al., 1974) was expressed at higher levels in the adult compared with the
adolescent brain based on preliminary gene expression microarray analysis (Schochet et al.,
2002). Total RNA from rat brain was extracted using Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and used to generate a cDNA library using reverse transcriptase as described by the
manufacturer (Amersham Biosciences, UK). cDNA for arc, NGFI-B and QDR used for in
situ hybridization was amplified from this library using standard PCR conditions. The
following primers were used to generate PCR products for the gene indicated. Numbers in
parentheses after the primer sequence represent the base number as defined by the gene
sequence in the Unigene database. The sequence in italics corresponds to the T7 polymerase
recognition sequence used for 35S-labeled antisense cRNA probe generation as described by
the manufacturer (Promega Corporation, Madison, WI, USA).

Arc, forward primer 5-CCCCAGGAAGCTGATGGCTAC-GAC-3′(693-714), reverse primer
′ 5′-CAGAGATGCATAATAC-
GACTCACTATAGGGAGAGAGTGTCAGCCCCAGCTCAATCA-AG-3′(1472-1494).

NGFI-B, forward primer 5-GGTGTATGGCTGCTACCC-TGG-3′(428-448), reverse primer ′
5′-CAGAGATGCATAAT-
ACGACTCACTATAGGGAGAGAGTCCAAATGTGCTCGAATG-AGG-3′(1208-1229).

QDR, forward primer 5-TCAGTTCCGCGGGAGTCTT-3 (20-39), reverse primer 5-
CAGAGATGCATAATACGACTCACTAT-′
AGGGAGAGATTACAGGCCCCCACTCATTC-3 ′ (970-950).

c-fos, forward primer 5′-AATAAGATGGCTGCAGCCAA-′ 3′(573-592), reverse primer 5′-
CAGAGATGCATAATACGACT-
CACTATAGGGAGAGAGGATGGCTTGGGCTCAAGGT-3′ (890-871).

Plasmid pBluescript-II-SK containing c-fos cDNA was kindly provided by T. Curran. Plasmid
was linearized with BamH1 and transcribed with T7 polymerase for the generation of 35S-
labeled antisense cRNA probe [573-890].

Data analysis
Optical density data values were generated using the ImageQuant software (Molecular
Dynamics, Amersham Biosciences). For arc, c-fos, and NGFI-B, six brain regions were chosen
for analysis, based on data in adult rats showing their involvement in the overall drug response.
These regions were the medial prefrontal cortex (mPFC), ventral and lateral orbital cortex
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(VLO), cingulate cortex, somatosensory cortex (SmCtx), ventral striatum (VS), and dorsal
striatum (DS). As shown in Fig. 1, analysis was performed by delineating standard geometric
shapes around the appropriate anatomical region. One section was analyzed per brain region,
and counting was carried out on both sides of each chosen section. Following automatic
calculation, density values were subsequently normalized to white matter density values
calculated for each slice. This normalization was performed to adjust for differential binding
of probe to each section; as these genes are not expressed in white matter, the levels of intensity
in these regions would represent background nonspecific binding. For QDR, a gene found
primarily in white matter, expression levels were measured in the forceps minor of the corpus
callosum (fmi), the genu of the corpus callosum (gcc) and the nucleus of the vertical limb of
the diagonal band (VDB). A region of gray matter not expressing QDR was selected for each
section to provide background binding values.

Two kinds of statistical analysis were carried out on the in situ hybridization data. To determine
cortical versus subcortical effects, a three-factor, between-within ANOVA was carried out with
treatment and age as between-subjects factors, and brain region (cortical vs. subcortical) as the
within-subjects factor. The cortical regions were analyzed by compacting optical density values
for mPFC, VLO, cingulate and SmCtx as one variable. Subcortical or striatal regions were
composed of the optical density values for VS and DS compacted as one variable. If overall
interactions indicated significance, a two-factor ANOVA was performed with treatment and
age as the between-subjects factors for each individual brain region.

Cell counts of arc mRNA-expressing cells in the VLO were performed on images collected
on a Leica DMRX microscope equipped with a Leica DC300F camera. Silver grain
accumulations corresponding to arc-expressing cells were visualized in dark field at 20×
objective magnification and counted using Image Pro Plus 5.0.0.39. Two animals in each of
four groups (adolescent saline and nicotine, adult saline and nicotine) were analyzed and data
from the VLO from each hemisphere were pooled (N per group=4). An area of 0.55 mm by
0.68 mm corresponding to the boxed region shown in Fig. 4A was counted and a size cutoff
of 100 um2 was employed to eliminate individual and non-specific clusters of silver grains
from contributing to the total count.

RESULTS
Arc mRNA is differentially expressed in specific regions of the prefrontal cortex

Gene expression profiling using in situ hybridization was used to determine whether acute
nicotine treatment differentially affects the expression of early response, plasticityrelated genes
in the adolescent compared with the adult forebrain. One of the genes that was selected for this
analysis, the activity regulated, cytoskeletal-associated gene arc, undergoes dynamic changes
in dendritic mRNA localization in response to specific stimuli in the hippocampus and is
important in long-term potentiation (Steward and Worley, 2002). Following acute nicotine
treatment at a dose of 0.4 mg/kg, an increase in arc expression was evident in specific forebrain
regions of both the adolescent and adult compared with saline controls (Fig. 2B). In regions of
the adolescent cortex, however, this nicotine-induced increase was much greater than that
observed in the adult, particularly in prefrontal and sensorimotor cortical regions (Fig. 2B).
However, baseline (saline treated) arc mRNA expression was found to be higher in the
adolescent compared with the adult brain. This baseline difference may be linked to alterations
in active synaptogenesis in the adolescent brain, as arc expression in dendritic spines has been
correlated to synaptogenesis in opioidresponsive neurons in rat caudate-putamen (Wang and
Pickel, 2004). To determine whether the induction of arc in specific cortical regions was due
to a differential increase over baseline levels, we used densitometry to compare arc expression
levels between regions and ages.
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Statistical analysis confirmed the enhanced nicotine-induced increase in arc expression
observed in adolescent cortical regions (Fig. 2A). A significant age×treatment interaction was
present [F(1,20)=4.853, P=0.0395] for arc in cortical, but not striatal regions, indicating a
differential effect of nicotine on arc expression in adolescent animals. ANOVA analysis of
cortical regions further indicated significant main effects of age [F(1,20)=31.210, P<0.001],
treatment [F(1,20)=28.490, P<0.001], and region [F(3,30)= 8.881, P<0.001]. Significant main
effects were also present in the subcortical (striatal) regions for age [F(1,20)=17.613, P<0.001],
treatment [F(1,20)=6.525, P=0.05], and region [F(1,20)=11.887, P<0.01]). This overall profile
as well as significant age×region interactions in both the cortical [F(3,60)=2.797, P>0.05) and
subcortical analyses (F(3,60)=10.841, P>0.005) indicates that the brains of adolescent animals
expressed more arc mRNA overall.

A more focused ANOVA on select brain areas was performed to further determine region-
specific effects of nicotine on arc expression. Most strikingly, a significant age×treatment
interaction was present in the VLO cortex [F(1,20)=4.932, P=0.0381] indicating a differential
induction of arc mRNA in this region of the adolescent prefrontal cortex compared with the
adult. In the VLO, adolescent rats given nicotine displayed a 182% increase in arc expression
relative to their saline counterparts compared with a 98% increase in adults given nicotine
compared with adults given saline. Trends toward a significant age×treatment interaction were
also present in the adolescent medial prefrontal [F(1,20)=2.684, P=0.1170] and sensorimotor
cortex [F(1,20)=3.939, P=0.0611], suggesting that the differential induction of arc expression
in the adolescent may be present in a number of cortical regions. In the mPFC, arc expression
in nicotine-treated adolescents was increased 114% from saline treatment, whereas adult
nicotine treatment values were 53% higher than saline counterparts. Interestingly, in
sensorimotor cortex, adolescents expressed arc only 130% more when given nicotine
compared with saline, whereas adults given nicotine expressed 229% more arc than saline-
treated animals. Significant main age effects were present in all regions examined, indicating
increased arc expression in adolescent brain occurred in a global manner. Significant main
effects of treatment for both adolescents and adults were present for all regions except DS,
indicating that arc expression increased after nicotine administration.

A lower dose of nicotine, 0.1 mg/kg, was tested to determine if the observed increases in arc
expression were dose dependent. At this dose of nicotine, no age×treatment effects were
present, although adolescents again expressed more arc overall [F(1,88)=29.342, P<0.001],
and nicotine tended to increase arc mRNA expression [F(1,88)=3.784, P=0.05] (Fig. 3),
confirming the previous experiment. This suggests that the differential expression of arc
observed at 0.4 mg/kg was not due merely to a general increased sensitivity of adolescents to
nicotine.

The elevation in arc expression in the adolescent cortex following nicotine administration
occurred in a layer-specific pattern (Fig. 4). In saline-treated adolescents, arc expression was
primarily evident within the deeper layers of the cortex. An example of this expression pattern
in S1 region of the frontal cortex is shown in Fig. 4A. Following nicotine treatment, in addition
to an accumulation of arc mRNA within the deeper cortical layers, a dramatic elevation in
arc mRNA was evident within layer IV (Fig. 4B).

High magnification micrographs of sections subjected to arc in situ hybridization and emulsion
autoradiography indicated that silver grain accumulation occurred primarily over cells
containing large, pale-staining nuclei, consistent with labeling over cells of a neuronal
morphology (arrows in Fig. 5). An example of a typical labeling pattern in adult and adolescent
cortex is shown for the VLO (Fig. 5), a region where a differential induction of arc in
adolescents relative to adults was evident. Although basal levels of arc in the VLO were higher
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in the adolescent than the adult (compare Fig. 5C and D), a greater nicotine-induced increase
in arc was present in the adolescent (Fig. 5E) compared with the adult (Fig. 5F).

Cell counts of the VLO were performed to determine whether the increase in arc expression
following nicotine administration was due to an increase in the number of cells expressing
arc or an increase in arc expression within cells that express the mRNA in the basal state. We
found that the number of arc mRNA-expressing cells in VLO was similar in adults and
adolescents and did not change after nicotine treatment (adolescent nicotine, 211±33;
adolescent saline, 197±23; adult nicotine, 180±15; adult saline, 191±9) suggesting that arc
expression increased in cells that expressed arc in the basal condition.

Fos mRNA is induced in adolescent forebrain following nicotine treatment
We also examined the influence of acute nicotine treatment on the expression of the early
response transcription factor, c-fos. Interestingly, c-fos expression patterns following nicotine
treatment in both the adolescent and adult forebrain were similar to the expression patterns
observed for arc (compare Fig. 6B with 2B). As with arc expression, the highest levels of c-
fos were observed in adolescent VLO and SmCtx (Fig. 6A). However, no significant
age×treatment interactions were found for cortex, indicating that nicotine increases c-fos
expression to the same degree in adolescents as in adults. Statistical analysis of cortical regions
indicated significant main effects of age [F(1,20)=14.999, P<0.001], treatment [F(1,20)
=21.648, P<0.001], and region [F(3,60)=26.878, P<0.001]. Significant main effects were also
present in the subcortical (striatal) regions for age [F(1,20)=17.613, P<0.001], treatment [F
(1,20)=13.867, P=0.001], and region [F(1,20)= 5.919, P<0.05). However, a significant
age×region interaction was present only for cortex [F(3,20)=5.067, P>0.05], as the adolescents
displayed greater cortical expression of c-fos, suggestive of altered plasticity mechanisms in
these areas.

The more focused ANOVA indicated that significant main effects of age and treatment were
present in all regions, with the exception of DS, in which there were no significant treatment
effects. In contrast with the effects of nicotine on arc expression, no significant interactions
were present for any regions, although a strong trend toward a significant age×treatment
interaction was present in the VS [F(1,20)=4.210, P=0.0535)], where acute nicotine appeared
to cause a larger increase in c-fos mRNA levels in the adolescent than in the adult. High
magnification micrographs of sections subjected to emulsion autoradiography again indicated
that silver grain accumulation occurred primarily over cells containing large, pale-staining
nuclei, consistent with labeling over cells of a neuronal morphology (Fig. 5C). We found no
difference in c-fos mRNA-expressing cells in VLO between adults and adolescents and no
change after nicotine treatment.

A similar induction of NGFI-B is evident in adolescent and adult forebrain after acute nicotine
NGFI-B is an immediate early gene encoding an orphan nuclear receptor that is rapidly
recruited under a variety of stimuli (Svenningsson et al., 1995; Werme et al.,2000a,2000b),
and we therefore examined the expression of this gene following nicotine administration.
Unlike the pattern of expression seen for arc and c-fos, acute nicotine did not produce any
differential age effects for NGFI-B, although nicotine treatment generally increased NGFI-B
expression (Fig. 7). The overall analysis of NGFI-B revealed significant main effects of
treatment in both cortical [F(1,20)= 5.087, P>0.05] and subcortical regions [F(1,20)=4.463,
P>0.05]. Main effects of region were also present for both cortex [F(3,60)=11.598, P<0.001]
and striatum [F(3,60)=33.055, P>0.001]. However, no main effects of age were present. A
significant treatment×region interaction was found for cortex [F(3,60)=6.476, P>0.001], but
not striatum, suggesting that nicotine affected NGFI-B expression more strongly in cortical
regions than subcortical. Conversely, a significant age×region interaction was present in the
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striatum [F(3.60)=9.942, P=0.005] but not cortex. In Fig. 7, it is apparent that the overall levels
of NGFI-B expressed in the DS may be higher in adolescents than adults. Silver grain
accumulations in emulsion-treated slides were similar to arc and c-fos suggesting expression
of NGFI-B in neurons (Fig. 7c).

QDR expression is not affected by acute nicotine treatment
We were interested in determining whether acute nicotine administration affected the
expression of QDR, an enzyme implicated in monoamine and nitric oxide biosynthesis (Turner
et al., 1974;Gorren and Mayer, 2002). In a preliminary microarray analysis directed at
identifying genes whose expression patterns differed in the adolescent compared with the adult
brain, QDR was found to be expressed at higher levels in adult brain (Schochet et al., 2002).
Further, QDR was present primarily in white matter and was expressed in oligodendrocytes
(not shown). An examination of major white matter regions following saline or nicotine
treatment did not reveal any effect on QDR expression (Fig. 8A), although intense expression
of QDR was evident in the adult forebrain (Fig. 8B). Therefore, QDR served as a non-affected
“control” gene for our analysis.

DISCUSSION
These studies report three novel observations. First, the expression of arc, a dendritically
targeted gene important for synaptic plasticity and involved in learning and memory, is
upregulated in adolescence, and moreover, differentially increased in specific cortical regions
of the adolescent compared with the adult following acute nicotine administration. Second, the
plasticity-related genes arc and c-fos, but not NGFI-B, are higher in the baseline state in
adolescent forebrain compared with adults. Third, the oligodendrocyte-enriched gene QDR is
markedly more abundant in the adult compared with the adolescent brain, although its
expression is not affected by nicotine. Taken together, these results suggest that a dynamic
developmental profile of the expression of specific molecular markers is present in adolescent
brain, and that acute nicotine influences the expression of plasticityassociated markers.

Maturation of the adolescent brain
The prefrontal cortex, an area of adolescent brain where we found differential induction of
arc following acute nicotine, undergoes dramatic changes during adolescence including
extensive synaptic pruning, alterations in dopaminergic input and changes in intrinsic circuitry
(Rosenberg and Lewis, 1995;Cunningham et al., 2002;Erickson and Lewis, 2002;Cruz et al.,
2003). Anatomical tracing studies indicate that projections from the amygdala to mPFC
continue to increase in density throughout adolescence (Cunningham et al., 2002), suggesting
that connectivity between emotional and cognitive areas undergoes refinement during this
period. Further, cortical gray matter volume changes dynamically during adolescence in areas
including mPFC and orbital prefrontal cortex (Kolb and Nonneman, 1976;Seeman et al.,
1987;Giedd, 1999;Giedd et al., 1999;Seeman, 1999). Similarly, cerebral white matter volume
increases throughout the adolescent period (Giedd et al.,1996a,1996b) in parallel with
myelination of intrinsic fiber connections (Nauta, 1971;Benes, 1989;Paus et al., 1999). These
findings suggest that plastic changes occur within the mammalian forebrain throughout the
adolescent period.

Basal and nicotine-induced acute arc expression levels in the brain are age-dependent
Arc appears to be part of this developing substrate. Arc is an immediate-early gene that marks
synapses undergoing modification (Lyford et al., 1995), is implicated in activitydependent
plasticity and memory (Steward et al., 1998;Steward and Worley, 2002;Kelly and Deadwyler,
2003) and accumulates in dendrites at sites of recent synaptic activity (Guzowski et al.,
2000;Guzowski, 2002). Additionally, arc is upregulated following amphetamine and cocaine
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administration in a number of brain regions (Fosnaugh et al., 1995;Yamagata et al., 2000). For
the first time, we show that arc is also strongly induced by nicotine in adult and adolescent
rats in a dose-dependent manner, suggesting that the effects of nicotine involve alterations in
genes and proteins regulating the post-synaptic density. Higher basal and drug-induced
expression of arc in the adolescent suggests that altered underlying cortical plasticity reflective
of an active state of synaptic modeling is present in the forebrain during this stage of
development.

Within the cortex, nicotine altered the distribution of arc expression in a layer-specific manner.
Arc expression was higher in the adolescent than the adult in cortical layer VI, a cortical output
layer. Following acute nicotine, layer IV, which receives heavy input from the thalamus, was
strongly recruited (Guillery and Sherman, 2002). Thus, this profile of increased arc expression
suggests that nicotine has a profound effect on plasticity in integrative thalamocortical
networks.

Differential induction of arc in the nicotine-treated adolescent was greatest in the ventrolateral
orbital region of the prefrontal cortex, an area of brain important for maintaining
representations of reward value and in guiding goal-directed responses (Pickens et al.,
2003;Rolls, 2004). The occurrence of nicotine-induced gene induction primarily in cortical
rather than striatal regions perhaps reflects a preferential effect of nicotine on cognitive and
attentional functions, which may be immature in the adolescent (Benes et al., 2000). Immaturity
of systems involved in reward and cognition is implied by recent electrophysiological data
showing NMDA-D1 enhancement of depolarized “up states” in prefrontal cortex is not present
in early adolescence and develops only in adulthood (Tseng and O’Donnell, 2005). In addition,
a less pronounced effect of nicotine on arc expression in adolescent striatum may be due to
differences in relative maturity of this region compared with cortical regions, as in fact, striatal
neurons reach morphological and electrophysiological maturityprior to adolescence (Tepper
and Trent, 1993). Given that arc is known to be regulated by NMDA and dopamine receptors,
the upregulation of arc induced by nicotine may be mediated by these receptor systems.
Additionally, given the well-established effects of nicotine on cholinergic function, a role for
nicotinic receptors in the gene response to nicotine should not be excluded. Indeed,
upregulation of nicotinic receptor subtypes and increases in cholinergic receptor binding have
been reported in midbrain, cortex and hippocampus following adolescent nicotine exposure
(Trauth et al., 1999;Adriani et al., 2004). Adolescent nicotine exposure also increases nicotine
self-administration in adulthood (Adriani et al., 2004).

As our analysis only considered forebrain regions, other age-related effects may be present in
additional brain areas. In fact, in contrast to more rostral brain regions, induction of arc, c-
fos and NGFI-B in SmCtx was less pronounced in adolescents given nicotine than in adults.

These results are consistent with recent studies showing that the time-course of the
development of nicotine-induced c-fos expression varies in different sensory cortical and
limbic regions (Leslie et al., 2004). It will be interesting to determine whether other brain
regions not examined in the current study, such as the hippocampus and amygdala, show similar
differences in nicotine-induced early response gene expression between adolescents and adults.

The possibility that plasticity mechanisms with regard to drug exposure are different in adult
and adolescent brains is intriguing, given there are differences in the behavioral response to
nicotine and other drugs of abuse in adolescent and adult rats (Spear, 2000;Vastola et al.,
2002;Belluzzi et al., 2004). For example, adolescent rats show blunted locomotor sensitization
to repeated nicotine, compared with adults, and reduced cue-conditioning (Collins et al.,
2004a;Schochet et al., 2004). In fact, the lack of nicotine cue conditioning in the adolescent
compared with the adult may relate to ceiling levels of arc expression in the prefrontal cortex,
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a region critical for expression of contextual conditioning (Schroeder et al., 2001; Schiltz et
al., 2003;Schochet et al., 2004).

The immediate early genes c-fos and NGFI-B are upregulated by nicotine, but not in an age-
dependent manner

c-fos, a well-characterized transcription factor, was induced in the adolescent brain following
acute nicotine. Consistent with these data, age-dependent effects have been demonstrated for
c-fos, which has been shown to progressively increase in the prefrontal cortex and striatum
during the adolescent period (Kellogg et al., 1998;Andersen et al., 2001;Leslie et al., 2004).
Since higher levels of c-fos mRNA were evident in the adolescent fore-brain following saline
treatment, it is likely that the threshold for induction of this gene is lower in the adolescent
brain than in the adult, suggesting that basal neuronal activity may be higher in the adolescent.
Nicotine and other drugs of abuse increase c-fos expression under D1 and NMDA receptor
control (Pagliusi et al., 1996;Nisell et al., 1997;Pich et al., 1997;Ostrander et al., 2003) and can
be blocked by dopamine and glutamate antagonists (Kiba and Jayaraman, 1994;Konradi et al.,
1996;Liu and Weiss, 2002).

An induction of NGFI-B (Nur77) following acute nicotine administration has not been
previously reported. NGFI-B is an orphan nuclear receptor belonging to a larger class of steroid-
thyroid hormone receptors and has been associated with dopaminergic target structures
(Zetterstrom et al., 1996). Chronic morphine or cocaine administration, as well as other
manipulations, alters the expression of NGFI-B in cortex, striatum, and accumbens
(Svenningsson et al., 1995; Werme et al.,2000a,2000b). Of the three early-response genes
studied, NGFI-B was the only gene whose expression pattern was the same in adolescents and
adults regardless of treatment, indicating it is less influenced by a developmental context.
Taken as a whole, the observation of changes in arc and c-fos, but not NGFI-B expression,
suggests that the downstream targets of arc and c-fos may be more affected by adolescent
development than targets of NGFI-B.

QDR is expressed in an age-dependent manner, but is not affected by nicotine administration
QDR was expressed at higher levels in the adult compared with the adolescent brain in a
distribution suggesting principal expression in white matter (oligodendrocytes). QDR is
required in the regeneration of tetrahydrobiopterin, a cofactor essential for the function of
aromatic amino acid hydroxylases and nitric oxide synthases, implicating the enzyme in several
important biosynthetic pathways (Turner et al., 1974;Kaufman et al., 1975;Gorren and Mayer,
2002). Our observation that QDR is expressed primarily in oligodendrocytes suggests age-
related differences in biosynthetic mechanisms that may be related to differences in white
matter volume and myelination observed in the adolescent.

CONCLUSIONS
These results have special relevance to the problem of nicotine addiction, a major contributor
to morbidity and mortality in this country. Although the precise underlying causes and
substrates of addiction are unknown, a major theory posits that addictive drugs interact with
and influence primary motivational systems, and in particular the plasticity mechanisms within
these systems (Jentsch and Taylor, 1999). Our results show that in adolescence, not only is
certain gene activity higher in brain areas crucial for emotional regulation and decision-making,
but that nicotine affects key plasticity molecules in these areas in a manner different from that
the adult brain. Thus, adolescence may represent a neurobiologically vulnerable period for
drug abuse.
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Fig. 1.
Schematic diagrams of brain regions selected for gene expression analysis. Coronal forebrain
sections were subjected to in situ hybridization and the numbered regions further analyzed
using densitometry as described in Experimental Procedures. The light gray numbered regions
were analyzed for arc, c-fos and NGFI-B and the dark gray numbered regions for QDR.
Distance in mm from bregma: A, 3.70; B, 2.70; C, 1.60; E, 1.60; D, 1.20; F, 0.70. 1, Medial
prefrontal; 2, ventrolateral/lateral orbital; 3, cingulate; 4, VS; 5, DS; 6, sensory motor; 7, fmi;
8, the gcc; 9, the VDB.
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Fig. 2.
Arc expression is differentially induced in specific regions of the adolescent forebrain
following acute nicotine (Nic) administration at 0.4 mg/kg. (A) Regions of the adolescent and
adult forebrain were analyzed using densitometry after sections were subjected to in situ
hybridization using 35S-labeled probe to arc mRNA. Relative signal intensity is shown in
optical density units. Note the dramatic elevation in arc mRNA expression in the adolescent
brain following acute Nic (white bars). Although basal levels of arc were higher in adolescent
(light gray bars) compared with adult (black bars), a differential induction of arc mRNA was
evident in the VLO/lateral orbital area (LO) of the prefrontal cortex. (B) Coronal forebrain
sections from three representative adolescent and three adult animals treated with either saline
(Sal) or Nic were processed for in situ hybridization with arc probe. Images from each section
were color rendered to enable visualization of arc induction (white-red, highest and blue,
lowest levels). A pronounced induction of arc was evident in specific regions of adolescent
forebrain following Nic treatment. *** Treatment effect, P<0.001; ††† age effect, P<0.001; #
age×treatment interaction, P<0.05.

SCHOCHET et al. Page 17

Neuroscience. Author manuscript; available in PMC 2006 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Arc expression is not differentially induced following acute administration at 0.1 mg/kg. Bar
graph of densitometry data showing signal density in specific forebrain regions. Nic, nicotine,
Sal, saline; LO, lateral orbital cortex; * treatment effect, P=0.05; ††† age effect, P<0.001.
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Fig. 4.
Arc mRNA accumulation in adolescent cortex following nicotine administration occurs
primarily in layers IV to VI. (A) Representative cortical section from a saline-treated adolescent
rat following in situ hybridization and emulsion autoradioagraphy showing silver grain
accumulations primarily in layer VI. Gray square in inset represents the region of cortex
depicted in A and B. (B) Coronal section from a nicotine-treated adolescent showing a dramatic
induction of arc signal in layer IV and enhanced expression of arc in layers V and VI. Acb,
nucleus accumbens; CPu, caudate-putamen; G1, M1 and S1, regional subdivisions of frontal
cortex. Scale bar=1mminA,B.
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Fig. 5.
Nicotine induces arc expression in neurons of the ventrolateral orbital cortex. (A) Coronal
forebrain sections were analyzed for optical density on a phosphorimager and autoradiography
using liquid emulsion. Boxed area represents the regions of the VLO depicted as an interaction
plot in B and photomicrographs in C-F. (B) Interaction plot showing the differential elevation
of arc mRNA in adolescent VLO following nicotine administration. High magnification of
counter stained emulsion sections of adolescent (C) and adult (D) saline and adolescent (E)
and adult (F) nicotine. Silver grain accumulation corresponding to arc mRNA is evident over
violet Nissl-stained tissue. Note the pronounced accumulation of signal in large, spherical
patterns suggestive of arc mRNA in neurons. M1, region of frontal cortex. Scale bar=20 μm
in C-E.
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Fig. 6.
c-fos Is induced in the adolescent and adult forebrain following acute nicotine (Nic)
administration. (A) Bar graph of densitometry data showing signal density in specific forebrain
regions. (B) Representative sections from adolescent and adult animals treated with either
saline (Sal) or Nic. Color rendering depicts heightened expression of c-fos in adolescent
forebrain following acute Nic treatment. (C) Photomicrograph of an emulsion-dipped section
from Nic-treated adolescent brain showing silver grain accumulation in a pattern suggestive
of c-fos mRNA in neurons. *** treatment effect, P<0.001; ††† age effect, P<0.001. Scale
bar=20 μminC.
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Fig. 7.
NGFI-B mRNA expression was elevated in the forebrain of adolescent and adult rats following
nicotine (Nic) treatment. (A) Bar graph of optical density scans showing a moderate induction
of NGFI-B in specific forebrain regions. (B) Coronal forebrain sections from adolescent and
adult rats color rendered to show NGFI-B mRNA expression. (C) Photomicrographs of sections
subjected to emulsion autoradiography showed silver grain accumulation over cells containing
large, pale, Nissl-stained nuclei consistent with neurons. Sal, saline; * treatment effect, P<0.05.
Scale bar=20 μm in C.
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Fig. 8.
QDR is expressed at higher levels in adult compare with adolescent forebrain. (A) Optical
density bar graphs of specific white matter regions from adolescent and adult rats treated with
either saline (Sal) or nicotine (Nic). Although Nic had no affect on expression, QDR mRNA
was more abundant in adult forebrain. (B) Representative coronal forebrain sections from Nicor
Sal-treated adolescent or adult rats color rendered to illustrate expression of QDR mRNA. †††
Age effect, P<0.001.
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